Twisted Heisenberg-Virasoro type left-symmetric algebras

Hongjia Chen∗1 and Junbo Li2

1School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
2School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, Jiangsu, P. R. China

Abstract

The compatible left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra with some natural grading conditions are completely determined. The results of earlier work on left-symmetric algebra structures on the Virasoro algebra play an essential role in determining these compatible structures. As a corollary, any such left-symmetric algebra contains an infinite-dimensional nontrivial subalgebra that is also a submodule of the regular module.

Keywords: twisted Heisenberg-Virasoro algebra, left-symmetric algebra, Virasoro algebra.

AMS classification: 17B68, 17D25.

1 Introduction

Left-symmetric algebras, or LSAs in short, originally introduced by Cayley in the context of rooted tree algebras (see [5] or [3]) are also called Vinberg algebras [19], Koszul algebras or quasi-associative algebras [14]. LSAs are closely related to vector fields, rooted tree algebras, vertex algebras, operad theory, convex homogeneous cones, affine manifolds, Lie groups, Lie algebras and so on. For more information on origins and the applications of LSAs see the survey paper [3] by Burde. Recently much attention has been paid to such objects and many related papers appeared (i.e., [2, 3, 7, 10, 12, 13, 17]). We know that LSAs and RSAs (the opposite algebras of LSAs, called right-symmetric algebras) are examples of Lie-admissible algebras, i.e., the commutator defines a Lie bracket. An important project related to LSAs is to determine all the compatible left-symmetric algebra structures on a Lie algebra. The Virasoro type left-symmetric algebras were investigated in [11] and [13], whose super cases were determined in [12]. Recently, the authors classified all the compatible left-symmetric algebra structures on the W-algebra $W(2,2)$ in [6].

In the present paper we shall classify all the left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra with similar natural grading conditions. The twisted Heisenberg-Virasoro algebra H, introduced by Arbarello et al. in [1] more than twenty years ago, is an infinite-dimensional Lie algebra with a \mathbb{C}-basis $\{L_n, I_n, c_1, c_2, c_3 \mid n \in \mathbb{Z}\}$ and the following non-vanishing brackets:

$$
[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3-m}{12}\delta_{m+n,0}c_1, \\
[L_m, I_n] = -nI_{m+n} + (m^2-m)\delta_{m+n,0}c_2, \\
[I_m, I_n] = n\delta_{m+n,0}c_3.
$$

(1.1)

*Corresponding author. Email: H.C.: hjchen@mail.ustc.edu.cn; J.L.: sd_junbo@163.com
The twisted Heisenberg-Virasoro algebra is the central extension of the Lie algebra \(\{ f(t) \frac{d}{dt} + g(t) | f, g \in \mathbb{C}[t, t^{-1}] \} \) of differential operators of order at most one [1] and contains the infinite dimensional Heisenberg algebra (the subalgebra spanned by \(\{ c_3, L_n | n \in \mathbb{Z} \} \)) and the Virasoro algebra (the subalgebra spanned by \(\{ c_1, L_n | n \in \mathbb{Z} \} \), denoted \(V \)) as its subalgebras, which both play important roles in mathematical physics. Until now the structures and representations of the twisted Heisenberg-Virasoro have been investigated in many papers, among which Arbarello et al. studied the irreducible highest weight representations for \(\mathcal{H} \) in [1], Billig described the structure of the irreducible highest weight modules for the twisted Heisenberg-Virasoro Lie algebra at level zero in [4], Shen and Jiang determined its derivation algebra and automorphism group in [18], Lu and Zhao gave a complete classification of irreducible Harish-Chandra modules in [16], Liu and Jiang classified all indecomposable Harish-Chandra modules of the intermediate series in [15] and Fu, Jiang and Su exhausted all the possible nontrivial superextensions of this type algebra in [9].

Throughout this paper, \(\mathbb{C} \) and \(\mathbb{Z} \) denote the field of complex numbers and the ring of integers, respectively. Unless specified otherwise, all the Lie algebras and left-symmetric algebras are defined over \(\mathbb{C} \) and we assume that \(\epsilon \in \mathbb{C} \) possesses the following properties:

\[
\Re \epsilon > 0, \quad \epsilon^{-1} \notin \mathbb{Z} \quad \text{or} \quad \Re \epsilon = 0, \quad \Im \epsilon > 0.
\]

2 Preliminaries and main results

In this section, we introduce some definitions and notation for left-symmetric algebras, and follow with some results about Virasoro type left-symmetric algebras.

Definition 2.1. Let \(\mathcal{A} \) be a vector space over a field \(\mathbb{F} \) equipped with a bilinear product \((x, y) \mapsto xy\). \(\mathcal{A} \) is called a **left-symmetric algebra** if for any \(x, y, z \in \mathcal{A} \), the associator

\[
(x, y, z) = (xy)z - x(yz)
\]

is symmetric in \(x, y \), that is,

\[
(x, y, z) = (y, x, z), \quad \text{or equivalently} \quad (xy)z - x(yz) = (yx)z - y(xz).
\]

Definition 2.2 (ref. [8]). A vector space \(M \) is said to be a **module** over a left-symmetric algebra \(\mathcal{A} \) if it is endowed with a left action

\[
\mathcal{A} \times M \rightarrow M, \quad (a, m) \mapsto am
\]

and a right action

\[
M \times \mathcal{A} \rightarrow M, \quad (m, a) \mapsto ma
\]

such that

\[
a(bm) - b(am) - (ab - ba)m = 0
\]

and

\[
b(ma) - (bm)a - m(ba) + (mb)a = 0
\]

for any \(a, b \in \mathcal{A}, m \in M \).

For any left-symmetric algebra \(\mathcal{A} \), its underlying vector space can be endowed with the natural \(\mathcal{A} \)-module structure: \((a, m) \mapsto am, (m, a) \mapsto ma, a, m \in \mathcal{A}\), which is called the **regular** \(\mathcal{A} \)-module.

Left-symmetric algebras are Lie-admissible algebras (ref. [17]).

Proposition 2.1. Let \(\mathcal{A} \) be a left-symmetric algebra. For any \(x \in \mathcal{A} \), denote \(L_x \) the left multiplication operator (i.e., \(L_x(y) = xy \) for all \(y \in \mathcal{A} \)).
1). The commutator
\[[x, y] = xy - yx, \quad \forall x, y \in \mathcal{A}, \]
defines a Lie algebra $\mathcal{G}(\mathcal{A})$, which is called the sub-adjacent Lie algebra of \mathcal{A} and \mathcal{A} is called a compatible left-symmetric algebra structure on the Lie algebra $\mathcal{G}(\mathcal{A})$ or $\mathcal{G}(\mathcal{A})$ type left-symmetric algebra.

2). Let $L : \mathcal{G}(\mathcal{A}) \to \mathfrak{gl}(\mathcal{A})$ with $x \mapsto L_x$. Then (L, \mathcal{A}) gives a representation of the Lie algebra $\mathcal{G}(\mathcal{A})$, that is,
\[[L_x, L_y] = L_{[x, y]}, \quad \forall x, y \in \mathcal{A}. \]
We call it a regular representation of the Lie algebra $\mathcal{G}(\mathcal{A})$. \hfill \Box

Let $\rho : \mathcal{G} \to \mathfrak{gl}(V)$ be a representation of any Lie algebra \mathcal{G}. A 1-cocycle $q : \mathcal{G} \to V$ is a linear map on vector space associated to ρ (denoted by (ρ, q)) satisfying
\[q[x, y] = \rho(x)q(y) - \rho(y)q(x), \quad \forall x, y \in \mathcal{G}. \]
Let \mathcal{A} be a left-symmetric algebra and $\rho : \mathcal{G}(\mathcal{A}) \to \mathfrak{gl}(V)$ be a representation of its sub-adjacent Lie algebra. If g is a homomorphism of the representations from \mathcal{A} to V, then g is a 1-cocycle of $\mathcal{G}(\mathcal{A})$ associated to ρ. There is not always a compatible left-symmetric algebra structure on any Lie algebra \mathcal{G}. A sufficient and necessary condition for a Lie algebra with a compatible left-symmetric algebra structure is given as follows.

Proposition 2.2. Let \mathcal{G} be a Lie algebra. Then there is a compatible left-symmetric algebra structure on \mathcal{G} if and only if there exists a bijective 1-cocycle of \mathcal{G}. \hfill \Box

In fact, let (ρ, q) be a bijective 1-cocycle of \mathcal{G}, then
\[x * y = q^{-1}\rho(x)q(y), \quad \forall x, y \in \mathcal{G}, \]
defines a left-symmetric algebra structure on \mathcal{G}. Conversely, for a left-symmetric algebra \mathcal{A}, the identity transformation id is a 1-cocycle of $\mathcal{G}(\mathcal{A})$ associated to the regular representation L (ref. [10, 17]).

To avoid confusion, for a Lie algebra \mathcal{G} we denote a compatible left-symmetric algebra on \mathcal{G} by $\mathcal{A}(\mathcal{G})$. A compatible left-symmetric algebra structure on the Virasoro algebra $\mathcal{V} = \bigoplus_{n \in \mathbb{Z}} L_n \oplus \mathbb{C}c_1$ is said to have the natural grading condition if the multiplication of $\mathcal{A}(\mathcal{V})$ satisfies
\[c_1 c_1 = c_1 L_m = L_m c_1 = 0, \quad L_m L_n = f(m, n) L_{m+n} + \omega(m, n)c_1, \quad (2.1) \]
for two complex-valued functions $f(m, n), \omega(m, n)$ on $\mathbb{Z} \times \mathbb{Z}$. The condition (2.1) is said to be natural because it means that $\mathcal{A}(\mathcal{V})$ is still \mathbb{Z}-graded and c_1 is also a central extension given by $\omega(m, n)$. Such left-symmetric algebra structures were classified in [13].

Theorem 2.1. Any left-symmetric algebra structure on the Virasoro algebra \mathcal{V} satisfying (2.1) is isomorphic to one of the left-symmetric algebras given by the multiplication
\[L_m L_n = \frac{-n(1 + cn)}{1 + c(m + n)} L_{m+n} + \frac{c_1}{24} (m^3 - m + (\epsilon - \epsilon^{-1})m^2) \delta_{m+n, 0}. \]

Since the algebra \mathcal{H} is also \mathbb{Z}-graded: $\mathcal{H} = \bigoplus_{m \in \mathbb{Z}} \mathcal{H}_m$, where $\mathcal{H}_m = \mathbb{C}L_m \oplus \mathbb{C}I_m \oplus \delta_m, 0(\mathbb{C}c_1 \oplus \mathbb{C}c_2 \oplus \mathbb{C}c_3)$ for all $m \in \mathbb{Z}$, it is natural to suppose that the compatible left-symmetric algebra structures satisfy a similar grading condition. That is, the multiplications of $\mathcal{A}(\mathcal{H})$ satisfy
\[\begin{align*}
L_m L_n & = f(m, n) L_{m+n} + \omega(L_m, L_n)c_1, \\
L_m I_n & = g(m, n) I_{m+n} + \omega(L_m, I_n)c_2, \\
I_m L_n & = h(m, n) I_{m+n} + \omega(I_m, L_n)c_2, \\
I_m I_n & = a(m, n) I_{m+n} + b(m, n) I_{m+n} + \omega(I_m, I_n)c_3, \\
c_1 c_1 & = c_1 L_m = L_m c_1 = c_1 I_n = I_n c_1 = 0. \end{align*} \]
where \(f(m,n), g(m,n), h(m,n), \omega(\cdot, \cdot) \) are all complex-valued functions.

The main result of this paper can be formulated as the following theorem.

Theorem 2.2. Any left-symmetric algebra structure on the twisted Heisenberg-Virasoro algebra \(\mathcal{H} \) satisfying relation (2.2) is isomorphic to one of the left-symmetric algebras determined by the following functions:

\[
\begin{align*}
 f(m,n) &= -n(1 + \epsilon n) / (1 + \epsilon (m+n)), \\
 g(m,n) &= -n(1 + (1 - \epsilon n)\alpha \delta_{m+n,0}), \\
 h(m,n) &= n(1 + \epsilon n)\alpha \delta_{m+n,0}, \\
 a(m,n) &= 0, \\
 b(m,n) &= 0, \\
 \omega(L_m, L_n) &= \frac{1}{24}((m^3 - m + (\epsilon - \epsilon^{-1})m^2)\delta_{m+n,0}, \\
 \omega(L_m, I_n) &= (m^2 - m + (\epsilon m^2 + m)\beta)\delta_{m+n,0}, \\
 \omega(I_m, L_n) &= n(1 + \epsilon n)\beta \delta_{m+n,0}, \\
 \omega(I_m, I_n) &= \frac{n}{2} \delta_{m+n,0}
\end{align*}
\]

for any \(m, n \in \mathbb{Z} \) and some constants \(\alpha, \beta \in \mathbb{C} \).

By the main theorem, we have

Corollary 2.1. Let \(\mathcal{A}(\mathcal{H}) \) be a compatible left-symmetric algebra on \(\mathcal{H} \) satisfying the natural grading conditions. Denote the subspaces \(\text{span}_\mathbb{C}\{I_n, c_2 \mid n \in \mathbb{Z}\} \) and \(\text{span}_\mathbb{C}\{I_n, c_3 \mid n \in \mathbb{Z}\} \) by \(\mathcal{A}_2 \) and \(\mathcal{A}_3 \) respectively.

1. \(\mathcal{A}_3 \) and \(\mathcal{A}_{23} = \mathcal{A}_2 + \mathcal{A}_3 \) are all nontrivial subalgebras of \(\mathcal{A}(\mathcal{H}) \).

2. \(\mathcal{A}_{23} \) is a \(\mathcal{A}(\mathcal{H}) \)-submodule of the regular module and is also a module over the subalgebra \(\mathcal{A}(\mathcal{V}) \), which is a left-symmetric algebra on the Virasoro algebra.

3. \(\mathcal{A}_2 \) is another submodule over \(\mathcal{A}(\mathcal{V}) \), but it is not an \(\mathcal{A}(\mathcal{H}) \)-submodule.

3 Proof of Theorem 2.2

We will divide the proof of main theorem into two main steps. The first step is to determine the left-symmetric algebra structures on the centerless Heisenberg-Virasoro algebra, denoted by \(\mathcal{H} \), which is defined by the relations (1.1) with \(c_i = 0 \). Then we obtain the central extensions of the left-symmetric algebra on \(\mathcal{H} \), i.e., the left-symmetric algebra structures on \(\mathcal{H} \).

3.1 The centerless case

The grading conditions of the left-symmetric algebra structures on \(\mathcal{H} \) are those given in relation (2.2) with \(c_i = 0 \), which gives the following lemma.

Lemma 3.1. A bilinear product defined by (2.2) with \(c_i = 0 \) gives a compatible left-symmetric algebra
structure on \mathcal{H} if and only if
\[
\begin{align*}
 f(m, n) - f(n, m) &= m - n, \\
 g(m, n) - h(n, m) &= -n, \\
 a(m, n) &= a(n, m), \\
 b(m, n) &= b(n, m), \\
 f(n, k)f(m, n + k) - f(m, k)f(n, m + k) &= (m - n)f(m + n, k), \\
 g(n, k)g(m, n + k) - g(m, k)g(n, m + k) &= (m - n)g(m + n, k), \\
 h(n, k)g(m, n + k) - f(m, k)h(n, m + k) &= -nh(m + n, k), \\
 h(n, k)a(m, n + k) - h(m, k)a(n, m + k) &= 0, \quad (3.1) \\
 h(n, k)b(m, n + k) - h(m, k)b(n, m + k) &= 0, \\
 a(n, k)f(m, n + k) - g(m, k)a(n, m + k) &= -na(m + n, k), \\
 b(n, k)g(m, n + k) - g(m, k)b(n, m + k) &= -nb(m + n, k), \\
 b(n, k)a(m, n + k) - b(m, k)a(n, m + k) &= 0, \\
 a(n, k)h(m, n + k) + b(n, k)b(m, n + k) &= a(m, k)h(n, m + k) + b(m, k)b(n, m + k)
\end{align*}
\]
hold for all $m, n, k \in \mathbb{Z}$.

By Theorem 2.1, in order to obtain a compatible left-symmetric algebra structure on \mathcal{H} with the grading condition (2.2), one can suppose
\[
f(m, n) = \frac{-n(1 + cn)}{1 + \epsilon(m + n)}. \quad (3.2)
\]
Furthermore, we have the following technical lemma that determines all the compatible left-symmetric algebra structures on \mathcal{H} with $f(m, n)$ defined by (3.2).

Lemma 3.2. Fixing some $\epsilon, a, b \in \mathbb{C}$ and the corresponding $f(m, n)$ defined by (3.2), there is only the following solution simultaneously satisfying all equations in (3.1):
\[
\begin{align*}
 h(m, n) &= n(1 + cn)\alpha\delta_{m+n,0}, \\
 g(m, n) &= -n(1 + (1 - cn)\alpha\delta_{m+n,0}), \\
 a(m, n) &= \frac{a\delta_{\alpha,0}}{1 + \epsilon(m + n)}, \\
 b(m, n) &= b\delta_{\alpha,0}.
\end{align*} \quad (3.3)
\]
Hence these functions define a compatible left-symmetric algebra structure on \mathcal{H}.

Proof. It is easy to check that the complex-value functions $f(m, n), g(m, n), h(m, n), a(m, n), b(m, n)$ given in (3.3) simultaneously satisfy (3.1).

Conversely, for any $m, n \in \mathbb{Z}$, introduce the notations:
\[
G(m, n) = \frac{1 + (m + n)}{1 + \epsilon n}g(m, n), \quad H(n, m) = \frac{1 + (m + n)}{1 + \epsilon m}h(n, m),
\]
then (3.1) implies the following relations:
\[
(1 + cn)G(m, n) - (1 + cm)H(n, m) = -n(1 + \epsilon(m + n)), \quad (3.4)
\]
\[
G(n, k)G(m, n + k) - G(m, k)G(n, m + k) = (m - n)G(m + n, k), \quad (3.5)
\]
\[
H(n, k)G(m, n + k) + kH(n, m + k) = -nH(m + n, k). \quad (3.6)
\]
Taking $m = 0$ in (3.4) and in (3.6), we obtain
\[
H(n, k)H(n + k, 0) = 0.
\]
Immediately, we have
\[H(n, 0) = 0, \quad G(0, n) = -n, \quad \forall \ n \in \mathbb{Z}. \]

Noticing that (3.6) implies
\[H(0, k)G(m, k) + kH(0, m + k) = 0 \]
for all \(m, k \in \mathbb{Z} \), thus, if there is some \(k \neq 0 \) such that \(H(0, k) = 0 \), then \(H(0, m) = 0 \) for all \(m \in \mathbb{Z} \).

According to above discussion, the proof of this lemma shall be fall into two cases.

Case 1. \(H(0, l) = 0 \) for all \(l \in \mathbb{Z} \).

In this case, taking \(n = -k = m \) in (3.6), we obtain \(H(-2k, k) = 0 \) for all \(k \in \mathbb{Z} \). Observing the sequence
\[
H(-2k, k) \xrightarrow{n=-2k=2m,(3.6)} H(-3k, k) \xrightarrow{n=-3k=3m,(3.6)} \ldots \xrightarrow{n=-ak=am,(3.6)} H(-(a + 1)k, k) \ldots ,
\]
one can deduce
\[H(-am, m) = 0, \quad G(m, -am) = am \frac{1 + \epsilon(m - am)}{1 - \epsilon am}, \quad \forall \ a, m \in \mathbb{Z}, \ a \geq 2. \]

Similarly, one has
\[
H(0, k) \xrightarrow{n=k=-m,(3.6)} H(k, k) \xrightarrow{n=2k=-2m,(3.6)} \ldots \xrightarrow{n=ak=-am,(3.6)} H(ak, k) \ldots ,
\]
which implies \(H(am, m) = 0 \) for all \(a \in \mathbb{Z} \setminus \{ -1 \} \). By these vanishing cases and (3.6), for \(m + n \neq 0 \), we have
\[H(m, n) = 0, \quad \forall \ m, n \in \mathbb{Z}, \ m + n \neq 0. \]

Now, taking \(m + n + k = 0 \) in (3.6), we have
\[kH(n, -n) = -nH(-k, k), \quad \forall \ n, k \in \mathbb{Z}. \]

If we denote \(H(-1, 1) \) by \(\alpha \). Then one has
\[H(-k, k) = k\alpha, \quad \forall \ k \in \mathbb{Z}. \]

Case 2. \(G(-k, k) = 0 \), for all \(k \in \mathbb{Z} \).

Firstly, taking \(m + n + k = 0 \) in (3.6), we obtain
\[kH(n, -n) = -nH(-k, k), \quad \forall \ n, k \in \mathbb{Z}, \]
which implies
\[\frac{kn}{1 - \epsilon n} = \frac{kn}{1 + \epsilon k}, \quad \forall \ n, k \in \mathbb{Z}. \]

by using (3.4). But this is impossible.

According to (3.1), we have obtained
\[f(m, n) = \frac{-n(1 + \epsilon n)}{1 + \epsilon (m + n)}, \quad h(m, n) = n(1 + \epsilon n)\alpha\delta_{m+n,0}, \quad g(m, n) = -n(1 + (1 - \epsilon n)\alpha\delta_{m+n,0}). \]

The left thing we have to do is to calculate \(a(m, n) \) and \(b(m, n) \). If \(\alpha = 0 \), then one has \(g(m, n) = -n \) and \(h(m, n) = 0 \). Similarly as before, setting \(A(m, n) = (1 + \epsilon(m + n))a(m, n) \), we have the relation
\[(n + k)A(n, k) = kA(n, m + k) + nA(m + n, k). \quad (3.7)\]

Taking \(k = 0 \) in above relation, we obtain
\[A(m, 0) = A(0, n) = A(0, 0), \quad \forall \ m, n \in \mathbb{Z}. \]
Considering the case \(n = k \) in (3.7) and using \(A(m, n) = A(n, m) \), one has \(A(m, n) = a \), which implies
\[
a(m, n) = \frac{a}{1 + \epsilon(m + n)}
\]
for some constant \(a \in \mathbb{C} \) and for all \(m, n \in \mathbb{Z} \). Similarly, we can have \(b(m, n) = b \) for some constant \(b \in \mathbb{C} \).

If \(\alpha \neq 0 \), we have \(h(n, -n)a(m, 0) = 0 \) by taking \(n = -k \neq m \) in the sixth relation in (3.1). This implies \(a(m, 0) = 0 \). Thus \(g(m, k)a(n, m + k) = -ka(n, m + k) \). By the similar discussion as \(\alpha = 0 \) case, we get
\[
a(m, n) = b(m, n) = 0, \ \forall \ m, n \in \mathbb{Z}.
\]
The proof of Lemma 3.2 is now complete. \(\square \)

3.2 Twisted Heisenberg-Virasoro type left-symmetric algebras

We give our classification of twisted Heisenberg-Virasoro type left-symmetric algebras by determining the central extensions of the left-symmetric algebra structures on \(\mathcal{H} \). First, one has the following lemma:

Lemma 3.3. A multiplication defined by relations in (2.2) gives a compatible left-symmetric algebra structure on \(\mathcal{H} \) if and only if (3.1) and the following identities hold for all \(m, n, k \in \mathbb{Z} \)
\[
\begin{align*}
\omega(L_m, L_n) - \omega(L_n, L_m) &= \frac{m^3 - m}{12} \delta_{m+n,0}, \\
\omega(L_m, I_n) - \omega(I_n, L_m) &= (m^2 - m)\delta_{m+n,0}, \\
\omega(I_m, I_n) - \omega(I_n, I_m) &= n\delta_{m+n,0}, \\
f(n, k)\omega(L_m, L_{n+k}) - f(m, k)\omega(L_n, L_{m+k}) &= (m - n)\omega(L_{m+n}, L_k), \\
g(n, k)\omega(L_m, I_{n+k}) - g(m, k)\omega(L_n, I_{m+k}) &= (m - n)\omega(L_{m+n}, I_k), \\
h(n, k)\omega(L_m, I_{n+k}) - f(m, k)\omega(I_n, L_{m+k}) &= -n\omega(I_{m+n}, L_k), \\
h(n, k)\omega(I_m, I_{n+k}) &= h(m, k)\omega(I_n, I_{m+k}), \\
g(m, k)\omega(I_m, I_{m+k}) &= n\omega(I_{m+n}, I_k) = 0, \\
a(n, k)\omega(L_m, L_{n+k}) &= b(n, k)\omega(L_m, I_{n+k}) = 0, \\
a(n, k)\omega(I_m, L_{n+k}) &= a(m, k)\omega(I_n, L_{m+k}), \\
b(n, k)\omega(I_m, I_{n+k}) &= b(m, k)\omega(I_n, I_{m+k}).
\end{align*}
\]

According to Theorem 1.1 and Lemma 2.2, one can suppose
\[
f(m, n) = \frac{-n(1 + cn)}{1 + \epsilon(m + n)}, \quad \omega(L_m, L_n) = \frac{1}{24}(m^3 - m + (\epsilon - \epsilon^{-1})m^2)\delta_{m+n,0}, \quad (3.9)
\]
\[
h(m, n) = n(1 + cn)\alpha\delta_{m+n,0}, \quad (3.10)
\]
\[
g(m, n) = -n(1 + (1 - cn)\alpha\delta_{m+n,0}), \quad b(m, n) = bd_{\alpha,0}, \quad (3.11)
\]
for some constants \(b, \alpha \in \mathbb{C} \) and it is clearly that (3.9) implies that \(a(m, n) = 0 \) for all \(m, n \in \mathbb{Z} \).

Proof of Theorem 1.2. It is easy to check that the complex-value functions \(f(m, n) \), \(g(m, n) \), \(h(m, n) \), \(a(m, n), b(m, n) \) and \(\omega(\cdot, \cdot) \) given in (3.3) simultaneously satisfy (3.1) and (3.8). Set \(\varphi(m, n) = \omega(L_m, I_n) \) and \(\psi(m, n) = \omega(I_m, L_n) \). Then we have the relations
\[
\varphi(m, n) - \psi(n, m) = (m^2 - m)\delta_{m+n,0}, \quad (3.12)
\]
Then the main Theorem follows.

\[g(n,k)\varphi(m,n + k) - g(m,k)\varphi(n,m + k) = (m - n)\varphi(m + n,k), \quad \text{(3.13)} \]

\[h(n,k)\varphi(m,n + k) - f(m,k)\psi(n,m + k) = -n\psi(m + n,k), \quad \text{(3.14)} \]

which together give

\[\psi(m,0) = \varphi(m,0) = \psi(0,m) = \varphi(0,m) = 0, \quad \forall \ m \in \mathbb{Z}. \]

Then (3.13) and (3.14) become

\[k\varphi(n,m + k) - k\varphi(m,n + k) = (m - n)\varphi(m + n,k), \quad \text{(3.15)} \]

and

\[k\frac{\psi(n,m + k)}{1 + \epsilon(m + k)} = -\frac{n\psi(m + n,k)}{1 + \epsilon k}. \quad \text{(3.16)} \]

Setting \(m = 0 \) in above equations, one can suppose

\[\varphi(m,n) = \delta_{m+n,0}\varphi(m), \quad \psi(m,n) = (1 + \epsilon n)\delta_{m+n,0}\psi(m). \]

Now taking \(m + n + k = 0 \) in (3.15) and (3.16), we obtain

\[(m - n)\varphi(m + n) = (m + n)(\varphi(m) - \varphi(n)), \quad (m + n)\psi(n) = n\psi(m + n). \]

Using induction on \(m,n \), one can deduce

\[\varphi(m) = \frac{m^2 - m}{2}\varphi(2) - (m^2 - 2m)\varphi(1) \quad \text{and} \quad \psi(m) = -m\psi(-1). \]

Plug them into (3.12), we obtain

\[\frac{m^2 - m}{2}\varphi(2) - (m^2 - 2m)\varphi(1) - m(1 + \epsilon m)\psi(-1) = m^2 - m, \]

which implies

\[\varphi(2) = 2(1 + \psi(-1) + 2\epsilon\psi(-1)), \quad \varphi(1) = (1 + \epsilon)\psi(-1). \quad \text{(3.17)} \]

Denoting \(\psi(-1) \) by \(\beta \), we get

\[\omega(I_m, I_n) = \varphi(m)\delta_{m+n,0} = (m^2 - m + (\epsilon m^2 + m)\beta\delta_{m+n,0}, \]

\[\omega(I_m, I_n) = (1 + \epsilon n)\psi(m)\delta_{m+n,0} = n(1 + \epsilon n)\beta\delta_{m+n,0}. \]

Furthermore, recalling the ninth relation in (3.8), one has

\[b(m,n) = 0, \quad \forall \ m,n \in \mathbb{Z}. \]

Finally, we aim to determine \(\omega(I_m, I_n) \). First, we have \((n + k)\omega(I_n, I_k) = 0 \) by taking \(m = 0 \) in the eighth relation in (3.8). Then we can suppose

\[\omega(I_m, I_n) = \theta(m)\delta_{m+n,0}. \]

Taking \(k = 0 \) in (3.8), one has \(\theta(0) = 0 \). Then we can rewrite the relation in (3.8) as (taking \(m + n + k = 0 \))

\[(m + n)\theta(n) = n\theta(m + n). \]

Therefore, there exists some \(\theta \in \mathbb{C} \) such that \(\theta(n) = n\theta \). Taking it back to the third relation of (3.8), we obtain \(\theta = -\frac{1}{2} \). Thus we obtain

\[\omega(I_m, I_n) = \theta(m)\delta_{m+n,0} = \frac{n}{2}\delta_{m+n,0}. \]

Then the main Theorem follows. □
4 Acknowledgements

This was supported by the China Postdoctoral Science Foundation grant (No 201003326) and the National Science Foundation of China (No 11101056).

References

