UNCOUNTABLE FAMILIES OF PRIME z-IDEALS IN $C_0(\mathbb{R})$

HUNG LE PHAM

Abstract. Denote by $\mathfrak{c} = 2^{\aleph_0}$ the cardinal of continuum. We construct an intriguing family $(P_\alpha : \alpha \in \mathfrak{c})$ of prime z-ideals in $C_0(\mathbb{R})$ with the following properties:

• If $f \in P_{i_0}$ for some $i_0 \in \mathfrak{c}$, then $f \in P_i$ for all but finitely many $i \in \mathfrak{c}$;
• $\bigcap_{i \neq i_0} P_i \not\subset P_{i_0}$ for each $i_0 \in \mathfrak{c}$.

We also construct a well-ordered increasing chain, as well as a well-ordered decreasing chain, of order type κ of prime z-ideals in $C_0(\mathbb{R})$ for any ordinal κ of cardinality \mathfrak{c}.

1. Introduction

Let Ω be a locally compact space. In [5], we introduced the notion of pseudo-finite family of prime ideals as follows.

Definition 1.1. An indexed family $(P_i)_{i \in S}$ of prime ideals in $C_0(\Omega)$ is pseudo-finite if $f \in P_i$ for all but finitely many $i \in S$ whenever $f \in \bigcup_{i \in S} P_i$.

A pseudo-finite family $(P_i : i \in S)$ of prime ideals in $C_0(\Omega)$ has many interesting properties, for example, when S is infinite, the union $\bigcup_{i \in S} P_i$ is again a prime ideal and any infinite subfamily of (P_i) gives rise to the same union.

A pseudo-finite family of prime ideals $(P_i : i \in S)$ is said to be non-redundant if for every proper subset T of S, $\bigcap_{i \in T} P_i \neq \bigcap_{i \in S} P_i$. Non-redundancy is equivalent to either of the following ([5, Lemma 3.4]):

(a) $P_\alpha \not\subset P_\beta$ ($\alpha \neq \beta \in S$);
(b) $\bigcap_{\beta \neq \alpha} P_\beta \not\subset P_\alpha$ for each $\alpha \in S$.

Note that (a) is apparently weaker, whereas (b) is apparently stronger than the non-redundancy. Thus, in this case, $\bigcap_{i \in S} P_i$ cannot be written as the intersection of less than $|S|$ prime ideals and $|S| \leq |C_0(\Omega)|$. Furthermore, for every pseudo-finite family of prime ideals, the subfamily consisting of those ideals that are minimal in the family is non-redundant and pseudo-finite and has the same intersection as the original family.

The notion of pseudo-finiteness has a connection with automatic continuity theory. It is proved in [5] that, assuming the Continuum Hypothesis, for each pseudo-finite family $(P_i : i \in S)$ of prime ideals in $C_0(\Omega)$ such that $|C_0(\Omega)/\bigcap_{i \in S} P_i| = \mathfrak{c}$, there exists a homomorphism from $C_0(\Omega)$ into a Banach algebra whose continuity ideal is $\bigcap_{i \in S} P_i$. Recall that the continuity ideal is the largest ideal of $C_0(\Omega)$ on which the homomorphism is continuous, and the continuity ideal as well as the kernel are always intersections of prime ideals in $C_0(\Omega)$ (see [1] for more details).

2000 Mathematics Subject Classification. Primary 46J10; Secondary 54C40, 46J20.

Key words and phrases. Algebra of continuous functions, prime ideal.

This research is supported by a Killam Postdoctoral Fellowship and an honorary PIMS PDF.
Suppose that Ω is metrizable and that $\partial^{(\infty)}\Omega^{P} \neq \emptyset$; see §2 for the definition. Examples of such spaces include many countable locally compact spaces and all uncountable locally compact Polish spaces. For such Ω, it is known that there exists an infinite non-redundant pseudo-finite sequence of prime ideals in $C_{0}(\Omega)$ ([5]). Here, we are going to show that there exists even a non-redundant pseudo-finite family $(P_{i} : i \in c)$ of prime ideals in $C_{0}(\Omega)$ (Theorem 3.9). As a consequence, assuming the Continuum Hypothesis, there exists a homomorphism from $C_{0}(\Omega)$ into a Banach algebra whose continuity ideal cannot be written as intersection of countably many prime ideals.

Note that when Ω is metrizable and $\partial^{(\infty)}\Omega^{P} = \emptyset$, then every non-redundant pseudo-finite families of prime ideals in $C_{0}(\Omega)$ is finite and the continuity ideal of every homomorphism from $C_{0}(\Omega)$ into a Banach algebra is the intersection of finitely many prime ideals. ([5])

In §4, we shall construct, for every ordinal κ of cardinality at most c, a well-ordered decreasing chain of order type κ of prime z-filters on any uncountable locally compact Polish space. In particular, combining with [3, Theorem 12.8], there exists a well-ordered decreasing chain of order type κ of prime z-filters beginning with any non-minimal prime z-filters on R (this was shown for $\kappa \leq \omega_{1}$, where ω_{1} is the first uncountable ordinal, in Theorems 8.5, 13.2 and Remark 13.2 of [3].) We also show that there are various countable compact subspaces of R on which there is a well-ordered decreasing chain of order type ϵ of prime z-filters (ϵ is identified with the smallest ordinal of cardinality ϵ).

In [3], it was asked whether there exists an uncountable well-ordered increasing chain of prime z-filters on R. We shall construct in §5, for every ordinal κ of cardinality at most ϵ, a well-ordered increasing chain of order type κ of prime z-filters on any uncountable locally compact Polish space. We also construct well-ordered increasing chains of order type ϵ of prime z-filters on various countable compact subspaces of R.

All three constructions have as a common ingredient the result due to Sierpinski that N can be expressed as the union of ϵ ”almost disjoint” infinite subsets.

2. Preliminary definitions and notations

For details of the theory of the algebras of continuous functions, see [2].

Let Ω be a locally compact space; our convention is that the topological spaces are always Hausdorff. The one-point compactification of Ω is denoted by Ω^{P}.

For each prime ideal P in $C_{0}(\Omega)$, either there exists a unique point $p \in \Omega$ such that $f(p) = 0$ ($f \in P$), in which case, we say that P is supported at the point p; or otherwise, we say that P is supported at the (point at) infinity.

It is an important fact that, for each prime ideal P in $C_{0}(\Omega)$, the set of prime ideals in $C_{0}(\Omega)$ which contain P is a chain with respect to the inclusion relation.

For each function f continuous on Ω, the zero set of f is denoted by $Z(f)$. Define $Z[\Omega] = \{Z(f) : f \in C(\Omega)\}$. For each closed subset $Z \subset \Omega$, we have $Z = Z(f)$ for some function $f \in C_{0}(\Omega)$ if and only if $\Omega \setminus Z$ is σ-compact. An ideal I of $C_{0}(\Omega)$ is a z-ideal if $g \in I$ whenever $g \in C_{0}(\Omega)$, $Z(g) \supset Z(f)$ and $f \in I$.

A z-filter \mathcal{F} on Ω is a non-empty proper subset of $Z[\Omega]$ that is closed under finite intersection and supersets. Each z-filter \mathcal{F} associates with the ideal $Z^{-1}[\mathcal{F}] = \{f \in C(\Omega) : Z(f) \in \mathcal{F}\}$ of $C(\Omega)$.
A z-filter \(\mathcal{P} \) is a prime z-filter if \(Z_1 \cup Z_2 \notin \mathcal{P} \) whenever \(Z_1, Z_2 \in \mathbb{Z}[\Omega] \setminus \mathcal{P} \).

Let \(\mathcal{P} \) be a prime z-filter on \(\Omega \). Then we say that \(\mathcal{P} \) is supported at a point \(p \in \Omega \), if \(p \in Z \) for each \(Z \in \mathcal{P} \); if there exists no such \(p \), we say that \(\mathcal{P} \) is supported at the (point at) infinity. The support point of each prime z-filter \(\mathcal{P} \) coincides with the support point of the prime \(\mathcal{P} \setminus \mathcal{P}^{-1}[\mathcal{P}] \).

Let \(\Omega \) be a compact space. Define \(\partial^{(1)} \Omega = \partial \Omega \) to be the set of all limit points of \(\Omega \). Since \(\Omega \) is compact, \(\partial \Omega \) is non-empty unless \(\Omega \) is finite. We then define inductively a non-increasing sequence \((\partial^{(n)} \Omega : n \in \mathbb{N}) \) of compact subsets of \(\Omega \) by setting \(\partial^{(n+1)} \Omega = \partial (\partial^{(n)} \Omega) \) for each \(n \in \mathbb{N} \). Set \(\partial^{(\infty)} \Omega = \bigcap_{n=1}^{\infty} \partial^{(n)} \Omega \). By the compactness, either \(\partial^{(\infty)} \Omega \) is non-empty or \(\partial^{(l)} \Omega \) is empty for some \(l \in \mathbb{N} \).

A Polish space is a separable completely metrizable space. Every separable metrizable locally compact space is a Polish space.

3. Pseudo-finite families of prime ideals and prime z-filters

Let \(\Omega \) be a locally compact space. First, we shall make a connection between pseudo-finite families of prime ideals and pseudo-finite families of prime \(\mathcal{P} \)-ideals in \(\mathcal{C}_0(\Omega) \). For each closed subset \(E \) of \(\Omega \), we define the \(\mathcal{P} \)-ideal

\[
K_E = \{ f \in \mathcal{C}_0(\Omega) : E \subseteq \mathbb{Z}(f) \}
\]

The following is [4, 3.3 and 3.4], we shall give here a combined proof.

Lemma 3.1. [4] Let \(I \) be an ideal in \(\mathcal{C}_0(\Omega) \). Then

\[
I^2 = \bigcup \{ K_E : E \text{ is closed in } \Omega \text{ and } K_E \subseteq I \}
\]

is the largest \(\mathcal{P} \)-ideal contained in \(I \). If \(I \) is a prime ideal then so is \(I^2 \).

Proof. It is easy to see that \(I^2 \) contains every \(\mathcal{P} \)-ideal contained in \(I \). Since the sum of two \(\mathcal{P} \)-ideals is again a \(\mathcal{P} \)-ideal, we see that

\[
I^2 = \sum \{ K_E : E \text{ is closed in } \Omega \text{ and } K_E \subseteq I \}
\]

where the sum is algebraic. Thus \(I^2 \) is the largest \(\mathcal{P} \)-ideal contained in \(I \).

Now, suppose that \(I \) is prime. Let \(f_1, f_2 \in \mathcal{C}_0(\Omega) \setminus I^2 \). Then there exists \(g_1, g_2 \in \mathcal{C}_0(\Omega) \setminus I \) such that \(\mathbb{Z}(g_1) \supset \mathbb{Z}(f_1) \). Then \(\mathbb{Z}(g_1 g_2) \supset \mathbb{Z}(f_1 f_2) \). The primeness of \(I \) implies that \(g_1 g_2 \notin I \). So \(f_1 g_2 \notin I^2 \). \(\square \)

The following strengthens the implication (a)⇒(c) of [5, Lemma 8.4].

Proposition 3.2. Let \(\Omega \) be a locally compact space. Let \(\{ P_i : i \in S \} \) be an infinite non-redundant pseudo-finite family of prime ideals in \(\mathcal{C}_0(\Omega) \). Then \(P = \bigcup_{i \in S} P_i \) is a prime \(\mathcal{P} \)-ideal, and \(\{ P^*_i : i \in S \} \) is a non-redundant pseudo-finite family of prime \(\mathcal{P} \)-ideals whose union is \(P \) such that \(P^*_i \subseteq P \) (i \(\in S \)).

Proof. We shall need another theorem of [4] which say that the sum of two non-comparable prime ideals in \(\mathcal{C}_0(\Omega) \) is indeed a prime \(\mathcal{P} \)-ideal ([4, 3.2]).

We know that \(P \) must be a prime ideal. Assume toward a contradiction that \(P \) is not a prime \(\mathcal{P} \)-ideal. Choose \(\alpha_1 \neq \alpha_2 \in S \) arbitrary. Then \(P_{\alpha_1} + P_{\alpha_2} \) is a prime \(\mathcal{P} \)-ideal. Suppose that we already have distinct indices \(\alpha_1, \ldots, \alpha_n \in S \) such that \(\sum_{i=1}^n P_{\alpha_i} \) is a prime \(\mathcal{P} \)-ideal. Then \(P \neq \sum_{i=1}^n P_{\alpha_i} \), and so we can find \(\alpha_{n+1} \in S \)
such that \(P_{\alpha_{n+1}} \not\in \sum_{i=1}^{n} P_{\alpha_i} \). The induction can be continued. However, this gives a contradiction since then

\[
P = \bigcup_{n=1}^{\infty} P_{\alpha_n} = \bigcup_{n=1}^{\infty} \sum_{i=1}^{n} P_{\alpha_i}
\]
is a \(z \)-ideal. Hence, \(P \) is a prime \(z \)-ideal.

We claim that \((P_i^\alpha : i \in S) \) is a pseudo-finite family with union \(P \). Indeed, assume toward a contradiction that there exists \(f \in P \) and distinct \(\alpha_n \in S \) (\(n \in \mathbb{N} \)) such that \(f \not\in P_{\alpha_n}^\alpha \) (\(n \in \mathbb{N} \)). For each \(n \), we can then find \(f_n \not\in P_{\alpha_n} \) such that \(\mathcal{Z}(f_n) \supset \mathcal{Z}(f) \); we can further assume that \(0 \leq f_n \leq 2^{-n} \). Define \(f_* = \sum_{n=1}^{\infty} f_n \).

Then we see that \(f_n \leq f_* \) so \(f_* \not\in P_{\alpha_n} \) (\(n \in \mathbb{N} \)), and that \(\mathcal{Z}(f_n) \supset \mathcal{Z}(f) \) so \(f_* \in P \).

This is a contradiction to the pseudo-finiteness of \((P_i : i \in S) \).

It remains to prove the non-redundancy of \((P_i^\alpha : i \in S) \). So, assume that \(P_\alpha^\beta \subset P_\alpha^\gamma \) for some \(\alpha \neq \beta \in S \). Then \(P_\alpha^\beta \) is contained in both \(P_\alpha \) and \(P_\beta \), and so \(P_\alpha \) and \(P_\beta \) are in a chain. This contradicts the non-redundancy of \((P_i : i \in S) \).

Conversely, it is obvious that if \((Q_i : i \in S) \) is a pseudo-finite family of prime \((z)\)-ideals and \(P_i \) is a prime ideal containing \(Q_i \), then \((P_i : i \in S) \) is a pseudo-finite family of prime ideals.

We define a similar notion of pseudo-finite families of prime \(z \)-filters.

Definition 3.3. An indexed family \((P_i)_{i \in S} \) of prime \(z \)-filters \(\Omega \) is pseudo-finite if \(Z \in P_i \) for all but finitely many \(i \in S \) whenever \(Z \in \bigcup_{i \in S} P_i \).

A pseudo-finite family of prime \(z \)-filters \((P_i : i \in S) \) is said to be non-redundant if for every proper subset \(T \) of \(S \), \(\bigcap_{i \in T} P_i \neq \bigcap_{i \in S} P_i \). Similar to [5, Lemma 3.4] we have the following.

Lemma 3.4. Let \((P_\alpha : \alpha \in S) \) be a pseudo-finite family of prime \(z \)-filters on \(\Omega \). Then the following are equivalent:

(a) \((P_\alpha) \) is non-redundant;

(b) \(P_\alpha \not\subset P_\beta \) (\(\beta \neq \alpha \in S \));

(c) \(\bigcap_{\beta \neq \alpha} P_\beta \not\subset P_\alpha \) for each \(\alpha \in S \).

Proof. Obviously, (c) \(\Rightarrow \) (b).

We now prove (b) \(\Rightarrow \) (a). Fix \(\alpha \in S \). By condition (b), \(P_\beta \not\subset P_\alpha \) (\(\beta \neq \alpha \in S \)). Choose \(Z_0 \in P_\beta \setminus P_\alpha \) for some \(\beta \in S \setminus \{ \alpha \} \). Then, by the pseudo-finiteness, we have \(Z_0 \in P_\beta \) for all but finitely many \(\beta \in S \). Let \(\beta_1, \ldots, \beta_n \) be those indices \(\beta \in S \setminus \{ \alpha \} \) such that \(Z_0 \not\in P_\beta \). For each \(1 \leq k \leq n \), choose \(Z_k \in P_{\beta_k} \setminus P_\alpha \), and set \(Z = \bigcup_{k=0}^{n} Z_k \). Then \(Z \in P_\beta \) (\(\beta \in S \setminus \{ \alpha \} \)), but \(Z \not\in P_\alpha \), by the primeness of \(P_\alpha \). Thus (c) holds.

The following definition and proposition are adapted from [5].

Definition 3.5. Let \(\Omega \) be a locally compact space, and let \(S \) be a non-empty index set. Let \(\mathcal{F} \) be a \(z \)-filter on \(\Omega \), and let \((Z_\alpha : \alpha \in S) \) be a sequence of zero sets on \(\Omega \).

Then \(\mathcal{F} \) is extendible with respect to \((Z_\alpha : \alpha \in S) \) if both the following conditions hold:

(a) \(Z_\alpha \not\in \mathcal{F} \), and \(Z_\alpha \cup Z_\beta \in \mathcal{F} \) (\(\alpha \neq \beta \in S \));

(b) for each \(Z \in \mathcal{Z}(\Omega) \), if \(Z \cup Z_\alpha \in \mathcal{F} \) for some \(\alpha \in S \), then \(Z \cup Z_\alpha \in \mathcal{F} \) for all except finitely many \(\alpha \in S \).
Proposition 3.6. Let Ω be a locally compact space. Suppose that there exist a β-filter \mathcal{F} and a family $(Z_\alpha : \alpha \in S)$ in $\mathbb{Z}\Omega$ such that \mathcal{F} is extendible with respect to $(Z_\alpha : \alpha \in S)$. Then there exists a pseudo-finite family of prime β-filters $(\mathcal{P}_\alpha : \alpha \in S)$ such that $Z_\alpha \in \bigcap_{\gamma \neq \alpha} \mathcal{P}_\gamma \setminus \mathcal{P}_\alpha$ for each $\alpha \in S$.

Proof. We see that the union of a chain of β-filters, each of which contains \mathcal{F} and is extendible with respect to (Z_α), is also extendible with respect to (Z_α). Thus, by Zorn’s lemma, we can suppose that \mathcal{F} is a maximal one among those β-filters.

For each α, set $\mathcal{F}_\alpha = \{Z \in \mathbb{Z}\Omega : Z \cup Z_\alpha \in \mathcal{F}\}$, and set $\mathcal{P} = \bigcup_{\alpha \in S} \mathcal{F}_\alpha$. By the extensibility of \mathcal{F}, we see that whenever $Z \in \mathcal{P}$ then $Z \in \mathcal{F}_\alpha$ for all except finitely many $\alpha \in S$. Thus, in particular, the set \mathcal{P} is actually a β-filter.

Claim 1: For each $Z_0 \in \mathbb{Z}\Omega \setminus \mathcal{P}$, we have $\{Z \in \mathbb{Z}\Omega : Z \cup Z_0 \in \mathcal{F}\} = \mathcal{F}$. Indeed, we see that $Z_\alpha \notin \mathcal{G} = \{Z \in \mathbb{Z}\Omega : Z \cup Z_0 \in \mathcal{F}\}$ ($\alpha \in S$); for otherwise, Z_0 would be in \mathcal{P}. It then follows easily that \mathcal{G} is extendible with respect to (Z_α). This and the maximality of \mathcal{F} imply the claim.

Claim 2: \mathcal{P} is a prime β-filter. We have to prove that, whenever $Z_1, Z_2 \in \mathbb{Z}\Omega$ are such that $Z_1 \cup Z_2 \in \mathcal{P}$, but $Z_1 \notin \mathcal{P}$, then $Z_2 \notin \mathcal{P}$. Indeed, let $\alpha \in S$ be such that $Z_\alpha \cup Z_1 \cup Z_2 \in \mathcal{F}$. Then $Z_\alpha \cup Z_2 \in \mathcal{F}$, by the first claim, and so $Z_2 \in \mathcal{F}_\alpha$.

Now, for each $\alpha \in S$, define
$$D_\alpha = \{Z_\alpha \cup Z : Z \in \mathbb{Z}\Omega \setminus \mathcal{P}\}.$$ Then, by Claim 2, the set D_α is closed under finite union. Obviously, $D_\alpha \cap \mathcal{F}_\alpha = \emptyset$. Thus, there exists a prime β-filter \mathcal{P}_α containing \mathcal{F}_α such that $D_\alpha \cap \mathcal{P}_\alpha = \emptyset$.

We see that $\mathcal{F}_\alpha \subset \mathcal{P}_\alpha \subset \mathcal{P}$ and $Z_\alpha \notin \mathcal{P}_\alpha$ ($\alpha \in S$). The result then follows. \Box

We now define a “prototype” space Ξ. Denote by \aleph_1 the point adjacent to \aleph_0 to obtain its one-point compactification \aleph_0^\ast. The product space $(\aleph_0^\ast)^\mathbb{N}$ is a compact metrizable space. Define Ξ to be the compact subset of $(\aleph_0^\ast)^\mathbb{N}$ consisting of all elements (n_1, n_2, \ldots) with the property that there exists $k \in \aleph_0$ such that $n_i \geq k$ $(1 \leq i \leq k)$ and such that $n_i = \aleph_0$ $(i > k)$. The convention is that $\aleph_0 > n$ ($n \in \aleph_0$).

Lemma 3.7. [5, Lemma 9.2] Let Ω be a locally compact metrizable space. Suppose that there exists a point $p \in \partial(\aleph_0^\ast)(\Omega^\ast)$. Then there exists a homeomorphic embedding ι of all \aleph_0 onto a closed subset of Ω^\ast such that $\iota(\aleph_0, \aleph_0, \ldots) = p$.

A key to our construction is the result due to Sierpinski that there exists a family $(E_\alpha : \alpha \in \varepsilon)$ of infinite subsets of \aleph_0 satisfying the following properties:

(i) $\aleph_0 = \bigcup_{\alpha \in \varepsilon} E_\alpha$, and
(ii) $E_\alpha \cap E_\beta$ is finite for each $\alpha \neq \beta \in \varepsilon$.

We sketch the nice construction of such family as follows (cf. [7]): The set \aleph_0 is isomorphic to
$$C = \bigcup_{n=1}^{\aleph_0} \{f : \{1, \ldots, n\} \to \{1, 2\}\}.$$ For each $f : \aleph_0 \to \{1, 2\}$, define
$$C_f = \{\text{the restrictions of } f \text{ to } \{1, \ldots, n\} : (n \in \aleph_0)\}.$$ We see that $C = \bigcup_{f \in \aleph_0 \setminus \{1, 2\}} C_f$ and that $C_f \cap C_g$ is finite for each $f \neq g$. We can then map back from C to \aleph_0. Inspecting the construction, we see that $(E_\alpha : \alpha \in \varepsilon)$ enjoys the following property:

(i') The cardinality of $\{\alpha \in \varepsilon : n \in E_\alpha\}$ is ε for each $n \in \aleph_0$.
Lemma 3.8. There exists a non-redundant pseudo-finite family \(\{Q_\alpha : \alpha \in \mathfrak{c}\} \) of prime \(z \)-filters on \(\Xi \) such that each \(z \)-filter is supported at the point \((\infty, \infty, \ldots) \).

Proof. Let \(\{E_\alpha : \alpha \in \mathfrak{c}\} \) be the family of infinite subsets of \(\mathbb{N} \) as in the previous paragraph. For each \(\alpha \in \mathfrak{c} \), define
\[
N_\alpha = \{(j_1, j_2, \ldots) \in \Xi : j_n = \infty (n \in E_\alpha)\}.
\]
Let \(F \) to be the \(z \)-filter generated by all \(N_\alpha \cup N_\beta (\alpha, \beta \in \mathfrak{c}, \alpha \neq \beta) \). We claim that \(F \) is extendible with respect to \((N_\alpha : \alpha \in \mathfrak{c}) \); the proof will then be completed by applying Lemma 3.6.

Obviously, \(N_\alpha \cup N_\beta \in F (\alpha \neq \beta) \). We claim that \(N_\alpha \notin F (\alpha \in \mathfrak{c}) \). Indeed, assume the contrary. Then there exist \(\gamma_1, \ldots, \gamma_m \in \mathfrak{c} \setminus \{\alpha\} \) such that \(N_\alpha \supset \bigcap_{i=1}^m N_{\gamma_i} \). Since \(E_\alpha \) is infinite whereas each \(E_\alpha \cap E_{\gamma_i} \) is finite, there exists \(l \in E_\alpha \setminus \bigcup_{i=1}^m E_{\gamma_i} \). We see that \((j_i) \in \bigcap_{i=1}^m N_{\gamma_i} \setminus N_\alpha \) where \(j_i = l \) and \(j_i = \infty (i \neq l) \); a contradiction.

Finally, suppose that \(N \in \mathsf{Z}[\Xi] \) such that \(N \cup N_\alpha \in F \) for some \(\alpha \in \mathfrak{c} \). Then, there exist \(\gamma_1, \ldots, \gamma_m \in \mathfrak{c} \setminus \{\alpha\} \) such that
\[
N \cup N_\alpha \supset \bigcap_{i=1}^m N_{\gamma_i}, \quad \text{and so } N \supset \bigcap_{i=1}^m N_{\gamma_i} \setminus N_\alpha.
\]
As above, there exists \(l \in E_\alpha \setminus \bigcup_{i=1}^m E_{\gamma_i} \). We can then choose \(\gamma_{m+1}, \ldots, \gamma_n \in \mathfrak{c} \) such that
\[
\{1, \ldots, l\} \subset \bigcup_{i=1}^n E_{\gamma_i}.
\]
We claim that \(N \supset \bigcap_{i=1}^n N_{\gamma_i} \). Indeed, let \((j_i) \in \bigcap_{i=1}^n N_{\gamma_i} \). Then \(j_1 = \cdots = j_l = \infty \). We see that there exists \(k > \infty \) such that \(j_i \geq k \) \((1 \leq i \leq k)\) and \(j_i = \infty \) \((i > k)\). For each \(r \in \mathbb{N} \), set \(j^{(r)}_i = j_i \) \((i \neq l)\) and set \(j^{(r)}_i = k + r \). Then, we see that \((j^{(r)}_i) \in \bigcap_{i=1}^n N_{\gamma_i} \setminus N_\alpha \). Since \(\lim_r (j^{(r)}_i) = (j_i) \). Thus \((j_i) \in N \). Hence, for each \(\beta \in \mathfrak{c} \setminus \{\gamma_1, \ldots, \gamma_n\} \), we have \(N \cup N_\beta \in F \).

Theorem 3.9. Let \(\Omega \) be a locally compact metrizable space. Suppose that \(p \in \partial(\infty)[\Omega^p] \). Then there exists a non-redundant pseudo-finite family \(\{P_\alpha : \alpha \in \mathfrak{c}\} \) of prime \(z \)-filters on \(\Omega \), each \(z \)-filter is supported at \(p \).

Moreover, by setting \(P_\alpha = C_0(\Omega) \cap \mathsf{Z}^{-1}[P_\alpha] \), we obtain a non-redundant pseudo-finite family of prime \(z \)-ideals in \(C_0(\Omega) \), each ideal is supported at \(p \), such that
\[
\left|C_0(\Omega) \left/ \bigcap_{\alpha \in \mathfrak{c}} P_\alpha \right. \right| = \mathfrak{c}.
\]

Proof. In this proof, we shall identify \(\Xi \) with a closed subset of \(\Omega^\mathfrak{c} \) such that \((\infty, \infty, \ldots) \) is identified with \(p \); in the case where \(p \in \Omega \), we can further assume that \(\Xi \subset \Omega \) (cf. Lemmas 3.7).

Let \(\{Q_\alpha : \alpha \in \mathfrak{c}\} \) be the family of prime \(z \)-filters on \(\Xi \) as constructed in Lemma 3.8. For each \(\alpha \in \mathfrak{c} \), set
\[
P_\alpha = \{Z \in \mathsf{Z}[\Xi] : (Z \cup \{p\}) \cap \Xi \in Q_\alpha\}.
\]
Note that every closed subset of \(\Xi \) is in \(\mathsf{Z}[\Xi] \), so we can see that each \(P_\alpha \) is a prime \(z \)-filter on \(\Omega \). The pseudo-finiteness of \(\{P_\alpha : \alpha \in \mathfrak{c}\} \) and of \(\{P_\alpha : \alpha \in \mathfrak{c}\} \) then follows from that of \(\{Q_\alpha\} \). The cardinality condition follows from the fact that \(|\mathsf{C}(\Xi)| = \mathfrak{c} \).
By the non-redundancy of \((Q_\alpha : \alpha \in \mathfrak{c})\), for each \(\alpha \in \mathfrak{c}\), there exists
\[N_\alpha \in \bigcap_{\beta \neq \alpha} Q_\beta \setminus Q_\alpha. \]

By the Uryson’s lemma, we can find \(Z_\alpha \in \mathbb{Z}[\Omega]\) such that \((Z_\alpha \cup \{p\}) \cap \Xi = \alpha\); we can even require \(\Omega \setminus Z_\alpha\) to be \(\sigma\)-compact so that \(Z_\alpha = \mathbb{Z}(f_\alpha)\) for some \(f_\alpha \in C_0(\Omega)\). Thus we see that
\[Z_\alpha \in \bigcap_{\beta \in \mathfrak{c}, \beta \neq \alpha} P_\beta \setminus P_\alpha \quad \text{and} \quad f_\alpha \in \bigcap_{\beta \in \mathfrak{c}, \beta \neq \alpha} P_\beta \setminus P_\alpha. \]

Finally, we shall prove that each \(P_\alpha\) (and hence each \(P_\alpha\)) is supported at \(p\) (\(\alpha \in \mathfrak{c}\)). Indeed, in the case where \(p\) is the point at infinity of \(\Omega\), for each \(x \in \Omega\), there exists \(N \in \mathfrak{c}\) such that \(x \notin N\). We can then find \(Z \in \mathbb{Z}[\Omega]\) such that \(x \notin Z\) and that \((Z \cup \{p\}) \cap \Xi = N\). Thus \(Z \in P_\alpha\) and \(x \notin Z\). So \(P_\alpha\) is support at infinity. On the other hand, in the case where \(p \in \Omega\), let \(Z \in \mathfrak{c}\) be arbitrary. Then \(Z \cap \Xi\) is closed in \(\Xi\), and so it is in \(\mathbb{Z}[\Xi]\). Since \(\{p\} \in \mathbb{Z}[\Xi] \setminus Q_\alpha\), we deduce that \(Z \cap \Xi \in Q_\alpha\). Hence, \(p \in Z\), and thus \(P_\alpha\) is supported at \(p\). □

Combining the above with the result in [5], we have the following.

Corollary 3.10. Assuming the Continuum Hypothesis. Let \(\Omega\) be a locally compact metrizable space.

(i) Suppose that \(\partial^{(\infty)}(\Omega^\mathfrak{c}) \neq \emptyset\). Then there exists a homomorphism from \(C_0(\Omega)\) into a Banach algebra whose continuity ideal is not the intersection of any countable family of prime ideals.

(ii) Suppose that the infinity point belongs to \(\partial^{(\infty)}(\Omega^\mathfrak{c})\). Then there exists a homomorphism \(C_0(\Omega)\) into a radical Banach algebra whose kernel is not the intersection of any countable family of prime ideals. □

Corollary 3.11. Let \(p \in \mathbb{R}^\mathfrak{c}\). There exists a family \((P_\alpha : \alpha \in \mathfrak{c})\) of prime \(z\)-ideals in \(C_0(\mathbb{R})\), each ideal is supported at \(p\), with the following properties:

- If \(f \in P_\alpha\) for some \(\alpha_0 \in \mathfrak{c}\), then \(f \in P_\alpha\) for all but finitely many \(\alpha \in \mathfrak{c}\);
- \(\bigcap_{\alpha \neq \alpha_0} P_\alpha \subsetneq P_{\alpha_0}\) for each \(\alpha_0 \in \mathfrak{c}\). □

There are many countable compact metrizable spaces \(\Omega\) with \(\partial^{(\infty)}\Omega \neq \emptyset\). We note as a specific example the following countable compact subset of \([0, 1]\):

\[\Delta = \{0\} \cup \left\{ \sum_{i=1}^{k} 2^{-n_i} : k, n_1, n_2, \ldots, n_k \in \mathbb{N} \text{ and } k \leq n_1 < \cdots < n_k \right\}. \]

Corollary 3.12. There exists a family \((P_\alpha : \alpha \in \mathfrak{c})\) of non-modular prime \(z\)-ideals in \(C_0(\Delta \setminus \{0\})\) with the following properties:

- If \(f \in P_{\alpha_0}\) for some \(\alpha_0 \in \mathfrak{c}\), then \(f \in P_\alpha\) for all but finitely many \(\alpha \in \mathfrak{c}\);
- \(\bigcap_{\alpha \neq \alpha_0} P_\alpha \subsetneq P_{\alpha_0}\) for each \(\alpha_0 \in \mathfrak{c}\). □

4. Well-ordered Decreasing Chains of Prime Ideals and Prime \(z\)-Filters

Let \(\Omega\) be a metrizable locally compact space. If \(\partial^{(n)}\Omega^\mathfrak{c} = \emptyset\) for some \(n \in \mathbb{N}\), then it can be seen that every chain of prime \(z\)-ideals in \(C_0(\Omega)\) or prime \(z\)-filters on \(\Omega\) has length at most \(n\). Hence, in this section we shall suppose that \(\partial^{(\infty)}\Omega^\mathfrak{c} \neq \emptyset\).
In the following, Ξ is the compact subset of $(\mathbb{N}^p)^\mathbb{N}$ defined in the previous section. Also, our convention is that $\max\emptyset$ is smaller and $\min\emptyset$ is bigger than everything, and that $\bigcap_{\alpha \in \emptyset} N_\alpha$ is the whole space (i.e. Ξ in the next lemma) and $\bigcup_{\alpha \in \emptyset} N_\alpha = \emptyset$.

Lemma 4.1. There exists a family $(N_\alpha)_{\alpha \in \mathfrak{c}}$ of zero sets on Ξ satisfying that, for every $\gamma \in \mathfrak{c}$ and disjoint finite subsets F and G of \mathfrak{c}, we can find a finite subset H of \mathfrak{c} with the properties that $\gamma \leq \min H$ and that

$$\bigcap_{\beta \in G} N_\beta \setminus \left(\bigcup_{\alpha \in F} N_\alpha \right) \supset \bigcap_{\beta \in G \cup H} N_\beta.$$

Proof. Recall from the previous section that there exists a family $(E_\alpha : \alpha \in \kappa)$ of infinite subsets of \mathbb{N} satisfying:

(a) $E_\alpha \cap E_\beta$ is finite for each $\alpha \neq \beta \in \kappa$, and

(b) the cardinality of $\{\alpha \in \mathfrak{c} : n \in E_\alpha\}$ is \mathfrak{c} ($n \in \mathbb{N}$).

Similar to Lemma 3.8, we define, for each $\alpha \in \mathfrak{c}$,

$$N_\alpha = \{(j_1, j_2, \ldots) \in \Xi : j_n = \infty (n \in E_\alpha)\}.$$

Let G be a finite subset of κ and let $\alpha, \gamma \in \mathfrak{c}$. Then, there exists $l \in E_\alpha \setminus \bigcup_{\beta \in G} E_\beta$. Since the cardinality of $\{\beta : \beta < \gamma\}$ is less than \mathfrak{c}, by (b) above, we can find a finite subset H of \mathfrak{c} such that $\gamma \leq \min H$ and that

$$\{1, \ldots, l\} \subset \bigcup_{\beta \in G \cup H} E_\beta.$$

Then, similar to Lemma 3.8, we see that

$$\bigcap_{\beta \in G \setminus N_\alpha} \supset \bigcap_{\beta \in G \cup H} N_\beta.$$

The general case follows by induction. \hfill \Box

Theorem 4.2. Let Ω be a metrizable locally compact space, and let $p \in \partial(\mathfrak{c}, \Omega)$. Then there exists a well-ordered decreasing chain $(Q_\alpha : \alpha \in \mathfrak{c})$ of prime z-filters on Ω each supported at p.

Furthermore, by setting $Q_\alpha = C_0(\Omega) \cap \mathbb{Z}^{-1}[Q_\alpha]$, we obtain a well-ordered decreasing chain $(Q_\alpha : \alpha \in \mathfrak{c})$ of prime z-ideals in $C_0(\Omega)$ each supported at p.

Proof. Similar to Theorem 3.9, we shall identify Ξ with a closed subset of $\Omega^\mathfrak{c}$ such that $(\mathfrak{c}, \infty, \ldots)$ is identified with p; in the case where $p \in \Omega$, we can further assume that $\Xi \subset \Omega$ (cf. Lemmas 3.7).

Let $(N_\alpha : \alpha \in \mathfrak{c})$ be the family of zero sets on Ξ as constructed in Lemma 4.1. For each $\alpha \in \mathfrak{c}$, choose $Z_\alpha = \mathbb{Z}(f_\alpha)$ for some $f_\alpha \in C_0(\Omega)$ such that $(Z_\alpha \cup \{p\}) \cap \Xi = N_\alpha$. Also, define

$$\mathcal{F}_\alpha = \left\{ Z \in \mathbb{Z}[\Omega] : Z \cup \{p\} \supset \bigcap_{i=1}^n N_{\beta_i} \text{ for some } \alpha \leq \beta_1, \ldots, \beta_n \in \mathfrak{c} \right\}.$$

Then (\mathcal{F}_α) is a decreasing \mathfrak{c}-sequence of z-filters on Ω; $Z_\alpha \in \mathcal{F}_\alpha$ but $Z_\alpha \notin \mathcal{F}_\beta$ ($\alpha < \beta \in \mathfrak{c}$).

Set

$$\mathcal{D}_\alpha = \{ Z \in \mathbb{Z}[\Omega] : (Z \cup \{p\}) \cap \Xi = \{p\} \}.$$

Then \mathcal{D}_α is closed under taking finite union. Also, since $\mathcal{D}_\alpha \cap \mathcal{F}_0 = \emptyset$, there exists a prime z-filter Q_0 on Ω containing \mathcal{F}_0 such that $Q_0 \cap \mathcal{D}_\alpha = \emptyset$. Let $\gamma \in \mathfrak{c}$. Suppose
that we have already constructed a well-ordered decreasing chain \((Q_\alpha : \alpha < \gamma)\) of prime \(z\)-filters on \(\Omega\) such that \(\mathcal{F}_\alpha \subset Q_\alpha\) \((\alpha < \gamma)\). If \(\gamma\) is a limit ordinal, set \(Q_\gamma = \bigcap_{\alpha < \gamma} Q_\alpha\). Consider now the case where \(\gamma = \alpha + 1\) for some \(\alpha\). Set
\[D_\gamma = \{Z \cup Z_\alpha : Z \in \mathbb{Z}[\Omega] \setminus Q_\alpha\}.
\]
Then \(D_\gamma\) is closed under taking finite union. Also, we have \(\mathcal{F}_\gamma \cap D_\gamma = \emptyset\); since otherwise, there exist \(Z \in \mathbb{Z}[\Omega] \setminus Q_\alpha\) and a finite subset \(G\) of \(\gamma\) such that \(\gamma \leq \min G\) and that
\[Z \cup Z_\alpha \cup \{p\} \supseteq \bigcap_{\beta \in G} N_\beta\]
which implies that
\[Z \cup \{p\} \supseteq \bigcap_{\beta \in G} N_\beta \setminus N_\alpha \supseteq \bigcap_{\beta \in H} N_\beta\]
for some finite subset \(H\) of \(\epsilon\) with \(\gamma \leq \min H\), by Lemma 4.1, or \(Z \in \mathcal{F}_\gamma\) \(\subset Q_\alpha\) a contradiction. Therefore, there exists a prime \(z\)-filter \(Q_\gamma\) such that \(\mathcal{F}_\gamma \subset Q_\gamma\) and \(Q_\gamma \cap D_\gamma = \emptyset\). We see that, in this case, \(Q_\gamma \not\subseteq Q_\alpha\) and \(Z_\alpha \not\in Q_\gamma\). Thus, in both cases, the construction can be continued inductively.

Setting \(Q_\alpha = C_0(\Omega) \cap \mathbb{Z}^{-1}[Q_\alpha]\). Then \(f_* \not\in Q_0\) for \(f_* \in C_0(\Omega)\) such that \(Z(f) \in D_*\), and, for each \(\gamma = \alpha + 1 \in \epsilon\), we have \(f_\alpha \in Q_\alpha \setminus Q_\gamma\). It follows that the chain \((Q_\alpha : \alpha \in \epsilon)\) is decreasing.

The statement on support point follows from the fact that \(\bigcap_{\alpha \in \epsilon} N_\alpha = \{p\}\). \(\square\)

It was proved in [3, Theorem 13.2] that starting from any non-minimal prime \(z\)-filter containing a countable zero set on \(\mathbb{R}\) there exists a well-ordered decreasing full \(\omega_1\)-sequence of prime \(z\)-filters such that each prime \(z\)-filter contains a countable zero set. However, besides that \(\omega_1 < \epsilon\) in the absence of the Continuum Hypothesis, the union of those countable zero sets are not countable, and thus that \(\omega_1\)-sequence says nothing about uncountable chains of prime \(z\)-filters on countable spaces.

Corollary 4.3. Let \(\Delta\) be any countable compact subset of \(\mathbb{R}\) such that \(\partial^{(\infty)} \Delta \neq \emptyset\). There exists a well-ordered decreasing chain of order type \(\epsilon\) of prime \(z\)-filters on \(\mathbb{R}\) such that each prime \(z\)-filter contains \(\Delta\). \(\square\)

We now look for longer chains. We shall need to restrict to uncountable locally compact Polish spaces. Note that for any well-ordered decreasing chain of order type \(\kappa\) of prime \(z\)-filters on \(\Omega\) or prime ideals in \(C_0(\Omega)\), where \(\Omega\) is in addition \(\sigma\)-compact, \(\kappa\) must have cardinality at most \(\epsilon\).

Lemma 4.4. Let \(\kappa\) be an ordinal of cardinality \(\epsilon\). There exists a family \((N_\alpha)_{\alpha \in \kappa}\) of zero sets on \((\mathbb{N}^\omega)^\mathbb{R}\) such that for every disjoint finite subsets \(F\) and \(G\) of \(\kappa\), we have
\[\bigcap_{\alpha \in F} N_\alpha \setminus \left(\bigcup_{\beta \in G} N_\beta \right) = \bigcap_{\alpha \in F} N_\alpha.
\]

Proof. Similar to (but simpler than) that of Lemma 4.1. \(\square\)

Theorem 4.5. Let \(\Omega\) be an uncountable locally compact Polish space. Let \(\kappa\) be an ordinal of cardinality \(\epsilon\). Then there exists a well-ordered decreasing chain \((Q_\alpha : \alpha \in \kappa)\) of prime \(z\)-filters on \(\Omega\).

Furthermore, by setting \(Q_\alpha = C_0(\Omega) \cap \mathbb{Z}^{-1}[Q_\alpha]\), we obtain a well-ordered decreasing chain \((Q_\alpha : \alpha \in \kappa)\) of prime \(z\)-ideals in \(C_0(\Omega)\).

Proof. Every uncountable Polish space contains a closed subsets homeomorphic to the Cantor space \(\{0, 1\}^\mathbb{N}\), which in turn contains a copy of \((\mathbb{N}^\omega)^\mathbb{R}\). Thus, we shall
There exists a well-ordered decreasing chain of order type (i) follows from the theorem and [3, Theorem 12.8], and (ii) follows from (i).

The remaining of the proof is similar to that of Theorem 4.2, but applying Lemma 4.4 instead of Lemma 4.1.

Corollary 4.6. Let κ be any ordinal of cardinality c. Then:

(i) There exists a well-ordered decreasing chain of order type κ of prime z-filters on \mathbb{R} starting from any non-minimal prime z-filter.

(ii) There exists a well-ordered decreasing chain of order type κ of prime z-ideals in $C_0(\mathbb{R})$ starting from any non-minimal prime z-ideals.

Proof. (i) follows from the theorem and [3, Theorem 12.8], and (ii) follows from (i) and the fact that every zero set on \mathbb{R} is the zero set of a function in $C_0(\mathbb{R})$.

5. **Well-ordered increasing chains of prime ideals and prime z-filters**

Let Ω be a metrizable locally compact space. Similar to the previous section we shall only consider the case where $\partial^{(\infty)}\Omega^\circ \neq \emptyset$. Recall that there are many countable compact space satisfying this condition. First we shall prove a general construction.

Definition 5.1. Let κ be any ordinal, and let $(Z_\alpha : \alpha \in \kappa)$ be a family of zero sets on Ω. A zero set Z is said to have property (A) (with respect to the family $(Z_\alpha : \alpha \in \kappa)$) if for every (possibly empty) finite subset F of κ and every $\beta \in \kappa$ with $\max F < \beta$ then

$$Z \cap \bigcap_{\alpha \in F} Z_\alpha \not\subset Z_\beta.$$

A zero set Z is said to have property (B) (with respect to the family $(Z_\alpha : \alpha \in \kappa)$) if whenever $Z = \bigcup_{i=1}^n Z_i$ for some $Z_1, \ldots, Z_n \in Z[\Omega]$ then there exists $1 \leq k \leq n$ such that Z_k has property (A).

Lemma 5.2. Let κ be any ordinal, and let $(Z_\alpha : \alpha \in \kappa)$ be a family of zero sets on Ω. Suppose that F is a z-filter on Ω such that every element of F has property (B) with respect to $(Z_\alpha : \alpha \in \kappa)$. Then there exists a well-ordered increasing chain $(Q_\alpha : \alpha \in \kappa)$ of prime z-filters containing F such that $Z_\alpha \not\in Q_\alpha$ but $Z_\alpha \in Q_\beta$ ($\alpha < \beta \in \kappa$).

Proof. Let D be the collection of all zero sets not having property (B). Then obviously D is closed under finite union and $(Z_\alpha : \alpha \in \kappa) \subset D$. Since $F \cap D = \emptyset$, there exists a prime z-filter Q_0 such that $F \subset Q_0$ and $Q_0 \cap D = \emptyset$. We then define Q_α to be the z-filter generated by Q_0 and $\{Z_\gamma : \gamma < \alpha\}$. It follows that Q_α is a prime z-filter, $Q_\alpha \subset Q_\beta$ and $Z_\alpha \in Q_\beta$ ($\alpha < \beta \in \kappa$). We need to show that $Z_\alpha \not\in Q_\alpha$ ($\alpha \in \kappa$) (and thus (Q_α) is increasing). Assume towards a contradiction that $Z_\alpha \in Q_\alpha$ for some $\alpha \in \kappa$. Then, there exist $N \in Q_0$ and a finite subset F of $\{\gamma : \gamma < \alpha\}$ such that

$$Z_\alpha \supset N \cap \bigcap_{\gamma \in F} Z_\gamma.$$

This implies that $N \in D$ a contradiction.
Lemma 5.3. There exists a family \((N_\alpha)_{\alpha \in \mathfrak c}\) of zero sets on \(\Xi\) satisfying that \(\Xi\) has property (B) with respect to \((N_\alpha : \alpha \in \mathfrak c)\).

Proof. Let \((E_\alpha : \alpha \in \mathfrak c)\) and \((N_\alpha : \alpha \in \mathfrak c)\) be defined as in Lemma 4.1.

We shall prove a little stronger statement. Assume towards a contradiction that there exists \(Z_1, \ldots, Z_n \in \mathbb Z[\Xi]\) such that \(\Xi = \bigcup_{i=1}^n Z_i\) and that, for each \(1 \leq i \leq n\), there exist finite subsets \(F_i\) and \(G_i\) of \(\kappa\) with \(\max F_i < \min G_i\) such that

\[
Z_i \cap \bigcap_{\alpha \in F_i} N_\alpha \subset \bigcup_{\beta \in G_i} N_\beta.
\]

Without loss of generality, we can suppose that

\[
\max F_1 \leq \max F_2 \leq \ldots \leq F_n.
\]

Fix \(\gamma \in \mathfrak c\) such that \(\gamma > \max G_i\) \((1 \leq i \leq n)\). We shall prove by induction that there exist finite subsets \(H_i\) of \(\mathfrak c\) with \(\gamma \leq \min H_i\) such that

\[
\bigcap_{i=1}^{k-1} \bigcap_{\alpha \in F_i \cup H_i} N_\alpha \subset \bigcup_{i=k}^n Z_i \quad (1 \leq k \leq n + 1).
\]

This is obviously true when \(k = 1\) since both sides are \(\Xi\). Suppose that the above is true for some \(k < n\). Then we see that

\[
\bigcap_{i=1}^k \bigcap_{\alpha \in F_i \cup H_i} N_\alpha \cap \bigcap_{i=k+1}^n \bigcup_{\alpha \in F_k \cup H_k} N_\alpha \\
\subset \bigcup_{\beta \in G_k} N_\beta \subset \bigcup_{i=k+1}^n Z_i.
\]

Because

\[
G_k \cap \left(\bigcup_{i=1}^k F_i \cup \bigcup_{i=1}^k H_i \right) = \emptyset,
\]

by Lemma 4.1, there exists a finite subset \(H_k\) of \(\mathfrak c\) such that \(\min H_k > \gamma\) and that

\[
\bigcap_{i=1}^k \bigcap_{\alpha \in F_i \cup H_i} N_\alpha \subset \bigcap_{i=k+1}^{k-1} \bigcap_{\alpha \in F_k \cup H_k} N_\alpha \\
\subset \bigcup_{\alpha \in F_k \cup H_k} N_\alpha \subset \bigcup_{i=k+1}^n Z_i.
\]

Thus, the induction can be continued, and so, for \(k = n + 1\), we have

\[
\bigcap_{i=1}^n N_\alpha \subset \emptyset;
\]

this is a contradiction. \(\square\)

Theorem 5.4. Let \(\Omega\) be a metrizable locally compact space, and let \(p \in \partial^{(\infty)}\Omega^0\). Then there exists a well-ordered increasing chain \((Q_\alpha : \alpha \in \mathfrak c)\) of prime \(z\)-filters on \(\Omega\) each supported at \(p\).

Furthermore, by setting \(Q_\alpha = C_0(\Omega) \cap \mathbb Z^{-1}[Q_\alpha]\), we obtain a well-ordered increasing chain \((Q_\alpha : \alpha \in \mathfrak c)\) of prime \(z\)-ideals in \(C_0(\Omega)\) each supported at \(p\).

Proof. Similar to Theorem 3.9, we shall identify \(\Xi\) with a closed subset of \(\Omega^0\) such that \((\infty, \infty, \ldots)\) is identified with \(p\); in the case where \(p \in \Omega\), we can further assume that \(\Xi \subset \Omega\) (cf. Lemmas 3.7).

Let \((N_\alpha : \alpha \in \mathfrak c)\) be the family of zero sets on \(\Xi\) as constructed in Lemma 5.3. For each \(\alpha \in \mathfrak c\), choose \(Z_\alpha = \mathbb Z(f_\alpha)\) for some \(f_\alpha \in C_0(\Omega)\) such that \((Z_\alpha \cup \{p\}) \cap \Xi = N_\alpha\). It follows that \(\Omega\) has property (B) with respect to \((Z_\alpha : \alpha \in \mathfrak c)\). Thus, by Lemma
5.2 where $\mathcal{F} = \{\Omega\}$, there exists a well-ordered increasing chain $(Q_\alpha : \alpha \in \kappa)$ of prime z-filters such that $Z_\alpha \notin Q_\alpha$ but $Z_\alpha \in Q_\beta$ ($\alpha < \beta \in \kappa$).

The rest is similar to Theorem 4.2. □

Corollary 5.5. Let Δ be any countable compact subset of \mathbb{R} such that $\partial^{(\infty)} \Delta \neq \emptyset$. There exists a well-ordered increasing chain of order type κ of prime z-filters on \mathbb{R} such that each prime z-filter contains Δ. □

For longer chains, as in §4, we need to restrict to uncountable locally compact Polish spaces. Again, in the case where Ω is in addition σ-compact, it will restrict the ordinal κ under consideration to have cardinality at most κ.

Lemma 5.6. Let κ be an ordinal of cardinality κ. There exists a family $(N_\alpha)_{\alpha \in \kappa}$ of zero sets on $(\mathbb{N}^\omega)^\mathbb{R}$ such that $(\mathbb{N}^\omega)^\mathbb{R}$ has property (B) with respect to $(N_\alpha : \alpha \in \kappa)$.

Proof. Similar to Lemma 5.3, here we apply Lemma 4.4 instead of Lemma 4.1. □

Theorem 5.7. Let Ω be an uncountable locally compact Polish space. Let κ be an ordinal of cardinality κ. Then there exists a well-ordered increasing chain $(Q_\alpha : \alpha \in \kappa)$ of prime z-filters on Ω.

Furthermore, by setting $Q_\alpha = C_0(\Omega) \cap Z^{-1}[Q_\alpha]$, we obtain a well-ordered increasing chain $(Q_\alpha : \alpha \in \kappa)$ of prime z-ideals in $C_0(\Omega)$.

Proof. Similar to previous proofs. □

Corollary 5.8. Let κ be any ordinal of cardinality κ. Then there exists a well-ordered increasing chain of order type κ of prime z-filters on \mathbb{R}. □

Acknowledgement

The author would like to thank Professor Anthony To-Ming Lau for his much support and encouragement during this research.

References

