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Abstract. Let R be a regular semilocal ring of dimension 4q + 1 ≥ 5, which

contains 1
2

. Let l ≥ 1 be the number of maximal ideals of R and U the punc-
tured spectrum of R, i.e. SpecR without the maximal ideals. We show that

the Witt group W(U) of U has l generators E1, . . . ,El as W(R)-algebra, which

satisfy EiEj = 0 for all 1 ≤ i, j ≤ l. If R is integral then these generators be-
come trivial over the fraction field K of R. In particular, the natural morphism

W(U) −→W(K) is not injective.

1. Introdcution

Let R be a regular semilocal ring of dimension n, which contains 1
2 . Denote by

m1, . . . ,ml, l ≥ 1, the maximal ideals of R and let κ : U ↪→ SpecR be the punctured
spectrum of R, i.e. SpecR without the maximal ideals. We assume that all maximal
ideals of R have the same height n = dimR. It has been shown by Balmer and
Walter [7] if R is local and by Balmer [4] in the semilocal case that if n 6≡ 1 mod 4
then the pullback κ∗ : W(R) −→ W(U) is an isomorphism, and if n ≡ 1 mod 4
then there is an exact sequence

0 −→ W(R)
κ∗−−→ W(U)

∂−−→ W1
J(R)(R) −→ 0 ,

where W1
J(R)(R) is Balmer’s [3] first derived Witt group of R with support in the

Jacobson radical J(R) =
l⋂
i=1

mi of R.

The aim of this note is to show the following.

Theorem A. Let R be a regular semilocal ring of dimension n = 4q+ 1 ≥ 5, which
contains 1

2 , and whose maximal ideals all have the same height. Denote by U the
punctured spectrum of R and let l ≥ 1 be the number of maximal ideals of R. Then
the Witt ring W(U) of U has l generators E1, . . . ,El as W(R)-algebra, which are
all locally trivial, i.e. their images in W(RP ) are zero for all P ∈ U , and which
satisfy the identity

EiEj = 0

for all 1 ≤ i, j ≤ l. In particular, if R is an integral domain with fraction field K
then the natural morphism W(U) −→W(K) is not injective.
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Note that an old conjecture, which is attributed to Knebusch, asserts that the
homomorphism W(R) −→ W(K) is injective if R is a regular and local ring with
fraction field K. This has been proven if R contains a field by Balmer, Walter, and
the authors [6], and recently by the authors [18] if R is geometrically regular over
a discrete valuation ring.

We consider also ε-hermitian Witt groups, ε ∈ {±1}, where we prove:

Theorem B. Let R be a complete regular local ring of odd dimension n ≥ 1, which
contains 1

2 , and (A, τ) an R-Azumaya algebra with involution of the first- or second
kind over R. Denote by U the punctured spectrum of R. Then

Wε(A|U , τ |U ) ' Wε(Ak, τk)⊕Wεε0(Ak, τk) ,

where k is the residue field of R and ε0 = (−1)
n−1
2 .

There are two main ingredients in the proof of these results. First the computation
of the Witt groups of symmetric forms over the punctured affine space due to
Balmer and the first named author [5], and second a new factorization theorem
for the transfer of coherent (hermitian) Witt groups along a regular immersion (of
rank one). The latter result, proven in Section 5, can be seen as a generalization of
the (so called) zero theorem for the transfer, a theorem which is crucial for our [18]
proof of the Gersten conjecture for hermitian Witt groups of Azumaya algebras with
involution over a local ring which is geometrically regular over a discrete valuation
ring.

The content of the paper is as follows. The main results are proven in the last
two sections after Section 5 on the factorization lemma. Sections 2 and 3 review
definitions and results of triangular-, derived-, and coherent Witt theory in an effort
to make this paper as self contained as feasible. However we refer for details and
more information about these theories to the fundamental work of Balmer [2, 3] as
well as to the articles [9, 12, 14, 18]. In Section 4 we recall results from the paper [5]
on the Witt group of the punctured affine space over a ring.

We assume throughout this work that Hom-sets of additive categories are uniquely
2-divisible, and so in particular that the global sections of schemes contain 1

2 .

2. Preliminaries I: Triangular Witt theory

2.1. Let (K,D, δ,$), or shorter (K,D, $), be a triangulated category with duality,

i.e. D is a δ-exact contravariant functor, δ ∈ {±1}, and $ : idK
'−→ D ◦ D is a

natural isomorphism, such that $DM = D($M )−1 for all M ∈ K.

A symmetric space in the triangulated category with duality (K,D, $) is defined
in the usual way as a pair (M,ϕ), where M ∈ K and ϕ : M −→ DM is a symmetric
isomorphism, i.e. ϕ is an isomorphism and we have ϕ = D(ϕ)◦$M . The Witt group
W(K,D, $) = W 0(K,D, $) is the Grothendieck group of the isomorphism classes
of symmetric spaces in (K,D, $) with the orthogonal sum as addition modulo the
subgroup of neutral spaces. The ’higher’ triangular Witt groups Wi(K,D, $), or
shorter Wi(K) if the duality structure is clear from the context, are the Witt groups
of the ith shifted triangulated category with duality

(K,D, δ,$)(i) := (K, T iD, (−1)iδ, (−1)
i(i+1)

2 $) ,
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i ∈ Z, where T denotes the translation functor of K. The elements of the latter are
represented by so called i-symmetric spaces. We denote the class of a space (M,ϕ)
in its Witt group by [M,ϕ].

2.2. Let (K1,D1, δ1, $1) be another triangulated category with duality. A duality
preserving functor (K,D, δ,$) −→ (K1,D1, δ1, $1) is a pair (F, η), where F : K −→
K1 is an exact covariant functor and η : FD

'−→ D1F a natural isomorphism, the
duality transformation, such that (a) T−11 ηX = (δ ·δ1)ηTKX for all X ∈ K, where T1
denotes the translation functor in K1, and (b) D1(η) ◦ $1 = ηD ◦ F ($). Such a
functor induces a homomorphism Wi(K) −→ Wi(K1) for all i ∈ Z, mapping the
class of the i-symmetric space (M,ϕ) onto the class of the space

(F, η)∗(M,ϕ) := (F (M), (δ1δ)
i · T i1(ηM ) ◦ F (ϕ)) .

If (G, θ) is a duality preserving functor with the same target and domain as (F, η)
we say following [10, Def. 1.2] that these are isometric if there exists an isomorphism

of functors s : F
'−→ G, which commutes with the respective translation functors

and satisfies

D1(s) ◦ θ ◦ sD = η .

We then have an isometry sM : (F, η)∗(M,ϕ)
'−→ (G, θ)∗(M,ϕ) for all i-symmetric

spaces (M,ϕ) in (K,D, δ,$).

If (F1, η1) : (K1,D1, δ1, $1) −→ (K2,D2, δ2, $2) is another duality preserving
functor then the composition with (F, η) is defined by

(F1, η1) ◦ (F, η) := (F1 ◦ F , η1 F ◦ F1(η)) .

Example. An important example of a duality preserving functor is the following.
Let as above (K,D, δ,$) be a triangulated category with duality. Then the second
power of the translation functor is duality preserving: T 2D = DT 2. We get a
duality preserving functor (T 2, id) : (K,D, δ,$) −→ (K,D, δ,$)(4), and so an

isomorphism of triangular Witt groups ρ : Wi(K)
'−→ Wi+4(K) for all i ∈ Z, the

(here so called) 4-periodicity isomorphism.

2.3. Notations and (sign-)conventions. If E is an exact category we denote
by Db(E) its bounded derived category. As usual in derived Witt theory we use
homological complexes.

Let R be a commutative ring. We use the following sign conventions for the
(total) Hom- and ⊗-complex of two bounded complexes of R-modules M• and N•.

In degree l we have

HomR(M•, N•)l =
⊕
i∈Z

HomR(M−l−i, N−i) ,

and the differential maps g ∈ HomR(M−l−i, N−i) onto g ◦dM−l−i+1 +(−1)l+1dN−i ◦g.

The tensor product of M• and N• is given in degree l by(
M• ⊗R N•)l =

⊕
i+j=l

Mi ⊗R Nj ,

and the differential maps m⊗ n ∈Mi ⊗R Nj onto dMi (m)⊗ n+ (−1)im⊗ dNj (n).
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There is a morphism of complexes M• −→ HomR(HomR(M•, N•), N•), which we
denote $N . It is in degree l the homomorphism

Ml −→
⊕
i,j

HomR(HomR(Ml+j−i, N−i), N−j)

with ij-component 0 if i 6= j and (−1)
i(i+1)

2 -times the evaluation map otherwise.

A bounded complex I• of injective R-modules is called a dualizing complex if
$I is an isomorphism of functors in the bounded derived category of complexes of
R-modules with finitely generated homology modules.

Following the conventions in [18] we understand by an R-Azumaya algebra with
involution (A, τ) an R-algebra with R-linear involution, which is an Azumaya al-
gebra (in the usual sense) over its centre, which is assumed to be either equal R,
or a quadratic étale extension of R. The involution is called of the first kind if the
centre is R, and of the second kind otherwise. An algebra with involution over a
scheme is called Azumaya algebra with involution if it is locally so.

3. Preliminaries II: Derived-, and coherent Witt theory

3.1. Let (A, τ) be an Azumaya algebra with involution over a scheme X. By an
A-module we understand a left A-module. Given a right A-module F we use the
involution τ to equip F with a left A-module structure. This left A-module is
denoted F τ

, or F only if τ is clear from the context.

Let P(A) be the category of coherent A-modules, which are locally free as OX -
modules. There are two dualities on P(A):

DA,τ := HomA(− ,A) and D
(A,τ)
OX := HomOX (− ,OX) .

We denote the associated hermitian Witt groups by Wε(A, τ) and Wε(A, τ,OX),
respectively, for ε ∈ {±1}. The derived functors of these dualities make Db(P(A))
a triangulated category with duality, whose associated Witt groups are denoted
Wi(A, τ) and Wi(A, τ,OX), respectively, and called derived hermitian Witt groups.

The reduced trace induces an isomorphism of functors DA,τ
'−→ D

(A,τ)
OX , and so we

have natural isomorphisms of usual- and derived hermitian Witt groups

Wε(A, τ)
'−−→ Wε(A, τ,OX) and Wi(A, τ)

'−−→ Wi(A, τ,OX)

for all ε ∈ {±1} and i ∈ Z, see [13, App.]. If (A, τ) = (OX , idOX ) we have

DOX ,idOX = D
(OX ,idOX )

OX , and we write W(X) instead of W1(X, idOX ), W−(X)

instead of W−1(OX , idOX ), Wi(X) instead of Wi(X, idOX ), and so on.

Let Z ⊆ X be a closed subset and Db
Z(P(A)) be the full triangulated subcate-

gory of Db(P(A)) consisting of complexes whose homology modules have support

in Z. The functors DA,τ and D
(A,τ)
OX , respectively, are also dualities on these sub-

categories. The associated derived Witt groups are called Witt groups with support
in Z, and denoted Wi

Z(A, τ) and Wi
Z(A, τ,OX), respectively.

If X = SpecR is an affine scheme and Z is defined by the ideal a ⊆ R we use
affine notations. Then A = Γ(X,A) is an R-Azumaya algebra with involution τ of
the first or second kind, and we denote the respective Witt groups by Wε(A, τ),
Wε(A, τ,R), Wi(A, τ), Wi(A, τ,R), Wi

a(A, τ), and Wi
a(A, τ,R).
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Finally we recall that by the main result of Balmer [3] there are natural isomor-
phisms

Wε(A, τ)
'−−→ W1−ε(A, τ) and Wε(A, τ,OX)

'−−→ W1−ε(A, τ,OX)

for all ε ∈ {±1}.

3.2. Let now R be a commutative noetherian ring with a dualizing complex I•,
and (A, τ) and R-Azumaya algebra with involution. Let Db

c(Mqc(A)) be the full
subcategory of the bounded derived category of all A-modules consisting of com-
plexes with finitely generated homology modules.

On Db
c(Mqc(A)) the 1-exact contravariant functor

D
(A,τ)
I := HomR(− , I•)

τ

is a duality, such that (Db
c(Mqc(A)),D

(A,τ)
I , 1, $I) is a triangulated category with

duality. The associated triangular Witt groups are called the coherent Witt groups

of (A, τ) with respect to the duality D
(A,τ)
I , and are denote by W̃

i
(A, τ, I•), i ∈ Z.

Replacing Db
c(Mqc(A)) by Db

c, a(Mqc(A)), the full subcategory of complexes
whose homology modules are annihilated by a power of the ideal a ⊂ R, we get the
coherent Witt groups with support W̃ i

a(A, τ, I•), i ∈ Z.

3.3. Let π : R −→ S be a finite morphism of rings. Then S has a dualizing complex
as well, which is given by π\(I•) := HomR(S, I•). Set (B, ν) := S ⊗R (A, τ).

The homomorphism of complexes π\(I•) −→ I•, which is given in degree l by

HomR(S, Il) −→ Il , g 7−→ (−1)
(l+1)(l+2)

2 g(1) ,

induces an isomorphism of functors π∗D
(B,ν)

π\(I)

'−→ D
(A,τ)
I π∗, which is a duality trans-

formation for the push-forward π∗. Hence we have a duality preserving functor

Trπ : (Db
c(Mqc(B)),D

(B,ν)

π\(I)
, 1, $π\(I)) −→ (Db

c(Mqc(A)),D
(A,τ)
I , 1, $I) .

3.4. Dévissage Theorem. Let a ⊆ b ⊂ R be ideals, π : R −→ R/a the quotient
morphism, and I• a dualizing complex of R. Then

Trπ : W̃ i
b/a(R/a⊗ (A, τ), π\(I•)) −→ W̃ i

b(A, τ, I•)

is an isomorphism.

Proof. In case b = a this is [12, Thm. 5.2]. The same proof with some obvious
modifications works in the more general case. �

3.5. For the rest of this section we assume that R is a Gorenstein ring of finite Krull

dimension. Let 0 −→ R
ι−→ I0

dI0−→ I−1 −→ . . . −→ I− dimR −→ 0 be an injective
resolution of the R-module R. Then I• considered as a complex concentrated in
degrees 0,−1, . . . ,−dimR is a dualizing complex of R, and ι : R −→ I•, where we
consider R as a complex concentrated in degree 0, is a quasi-isomorphism.

We denote by E(A) the category of finitely generated A-modules M , which are
reflexive as R-modules and satisfy

ExtiR(M,R) = ExtiR(HomR(M,R), R) = 0

for all i ≥ 1. The bounded derived category Db(E(A)) of E(A) is a triangulated

category with 1-exact duality D
(A,τ)
R = HomR(− , R)

τ
and bidual isomorphism $R.
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By a result of Bass [8, Thm. 8.2], cf. [9, pp 113-114] and [12, Sect. 2.11],
the natural functor Db(E(A)) −→ Db

c(Mqc(A)) is an equivalence, which becomes

duality preserving by the isomorphism of functors D
(A,τ)
R

'−→ D
(A,τ)
I induced by ι.

We denote the resulting duality preserving functor Fι. It induces an isomorphism

Wi(Db(E(A)),D
(A,τ)
R , $R)

'−−→ W̃
i
(A, τ, I•)

for all i ∈ Z, which depends on ι.

If R is regular we can replace here E(A) by the ’smaller’ category P(A).

3.6. Let f : R −→ S be a flat morphism of rings with S a Gorenstein ring of finite
Krull dimension. Set (B, ν) := S⊗R (A, τ). The (derived) pull-back f∗ := S⊗R −
maps Db(E(A)) into Db(E(B)) and is duality preserving via the natural isomorphism

of functors f∗D
(A,τ)
R

'−→ D
(B,ν)
S f∗. As the duality transformation is canonical we

denote the associated duality preserving functor by f∗ only.

3.7. Finally we recall the left pairing between (derived) symmetric spaces over R
and (coherent) hermitian spaces over (A, τ), referring to [17] for details.

Let for this (P•, ϕ) be an i-symmetric space in (Db(P(R)),DR, 1, $R). Then the
functor Db

c(Mqc(A)) −→ Db
c(Mqc(A)), M• 7→ P•⊗RM• becomes duality preserving

using the i-symmetric form ϕ on P• as follows: The natural isomorphism

P• ⊗R D
(A,τ)
I (− )

ϕ⊗id−−−−→ T iDRP• ⊗R D
(A,τ)
I (− )

'−−→ T i
(
D

(A,τ)
I (P• ⊗R − )

)
,

where the isomorphism on the right hand side is the natural one (no signs involved),
is a duality transformation. We get a duality preserving functor (P•, ϕ) ? − :

(Db
c(Mqc(A)),D

(A,τ)
I , 1, $I) −→ (Db

c(Mqc(A)), T iD
(A,τ)
I , (−1)i, (−1)

i(i+1)
2 $I) .

This is the definition of the left pairing. It maps a l-symmetric space (M•, ψ)

in (Db
c(Mqc(A)),D

(A,τ)
I , 1, $I) onto the left product (P•, ϕ) ? (M•, ψ), which is a

(i+ l)-symmetric space.

Analogously, we have the left product (P•, ϕ) ? − :

(Db(E(A)),D
(A,τ)
R , 1, $R) −→ (Db(E(A)), T iD

(A,τ)
I , (−1)i, (−1)

i(i+1)
2 $I) ,

and it is straightforward to check that there is an isometry

Fι((P•, ϕ) ? (M•, ψ)) ' (P•, ϕ) ? Fι(M•, ψ) (1)

for all l-symmetric spaces (M•, ϕ) in (Db(E(A)),D
(A,τ)
R , 1, $R).

4. The standard form on the Koszul complex and punctured spectra

4.1. Let t be an element of the ring R, and K•(t) the associated Koszul complex

R
·t−→ R, which we consider as an element of Db(P(R)) living in degrees 0 and 1.

On this complex we have the (here so called) 1-symmetric standard form:

R
·(−1) //

·t
��

R

·(−t)
��

= HomR(R,R)

R
·1 // R = HomR(R,R) .
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We denote this 1-symmetric space by Kos(R, t), or Kos(t) only if the ring R is
clear from the context. It is the negative of the cone of the symmetric morphism

R
·t−→ R = HomR(R,R) and so neutral in in the triangulated category with dual-

ity (Db
c(Mqc(R)),DR, $R), but not necessarily in the triangulated category with

duality (Db
c, Rt(Mqc(R)),DR, $R).

More general, if t = (t1, . . . , tn) is a sequence of elements of R then we set

Kos(t) = Kos(R, t) := Kos(R, t1) ? Kos(R, t2) ? . . . ? Kos(R, tn) .

This is a n-symmetric space in (Db(P(R)),DR, $R). The order of the product
matters here as Kos(x) ? Kos(y) ' −Kos(y) ? Kos(x) by [17, Sect. 3.1].

4.2. Let

Sn := Z[
1

2
][T1, . . . , Tn]

be the polynomial ring in n ≥ 1 variables over Z[ 12 ]. Following [5] we write n =
4q + r − 1 with q ≥ 0 an integer and r ∈ {−1, 0, 1, 2}.

Let further

UnZ[ 12 ] :=

n⋃
i=1

SpecSn[T−1i ] ⊂ AnZ[ 12 ]

be the punctured affine n-space over Z[ 12 ]. We denote for 1 ≤ i ≤ n by ϑi the open

embedding SpecSn[T−1i ] ↪→ UnZ[ 12 ] and let ∂n : Wr(UnZ[ 12 ]) −→ Wr+1
n∑
i=1

SnTi

(Sn) be

the connecting homomorphism in Balmer’s [2] localization sequence for the open
embedding UnZ[ 12 ] ↪→ AnZ[ 12 ].

In [5] it is shown that there exists a r-symmetric space En over UnZ[ 12 ] satisfying

Kos(Sn, T ) = ρq
(
∂n(En)

)
,

where ρ is the 4-periodicity isomorphism recalled in the example in 2.2. It is further
shown in [5, Sect. 9] that if n ≥ 2 then the class of the space En in Wr(UnZ[ 12 ])
satisfies:

(a) En ? En = 0, and

(b) ϑ∗i (En) = 0 for all 1 ≤ i ≤ n.

4.3. Lemma. Let R be a regular ring, t = (t1, . . . , tn) a sequence of elements,
which do not generate R, and a the ideal generated by t. Denote by U ⊂ SpecR
the open subscheme of P ∈ SpecR with P 6⊇ t, and write n = 4q+ r+ 1 with q ∈ Z
and r ∈ {−1, 0, 1, 2}.

Then there exists Et ∈ Wr(U), such that [Kos(R, t)] = ρq
(
∂(Et)

)
, where ∂ :

Wr(U) −→Wr+1
a (R) is the connecting homomorphism in Balmer’s [2] localization

sequence and ρ is the 4-periodicity isomorphism, see the example in 2.2.

If n ≥ 2 we have et ? et = 0 and β∗i (et) = 0, where βi is the open immersion

SpecR[t−1i ] ↪→ U for all 1 ≤ i ≤ n.

Proof. As we assume that 1
2 ∈ R we have the homomorphism of Z[ 12 ]-algebras

Sn := Z[
1

2
][T1, . . . , Tn] −→ R , Ti 7−→ ti ,
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which induces a morphism of schemes γ : SpecR −→ AnZ[ 12 ]. We denote the restric-

tion of γ to U by γ as well. This is a morphism U −→ UnZ[ 12 ].

We now set Et := γ∗(En). The first part of the lemma follows from the commu-
tative diagram

Wr(UnZ[ 12 ])
∂n //

γ∗

��

Wr+1
mn (Sn)

ρq

'
//

γ∗

��

Wn
mn(Sn)

γ∗

��
Wr(U)

∂ //Wr+1
a (R)

ρq

'
//Wn

a (R) ,

since γ∗(Kos(Sn, T1, . . . , Tn)) = Kos(R, t).

The last part follows form the analogous results for En, see 4.2, the fact that
the pull-back γ∗ commutes with the left product by [17, Thm. 3.2], and since the
diagram

W(UnZ[ 12 ])
ϑ∗i //

γ∗

��

W(Sn[T−1i ])

(γ|
SpecSn[T

−1
i

]
)∗

��
W(U)

β∗i

//W(R[t−1i ])

commutes for all 1 ≤ i ≤ n. �

5. The factorization lemma

5.1. We consider in this section the following commutative diagram of morphisms
of Gorenstein rings of finite Krull dimension:

R̃

S

π

@@

R ,

p

OO

u
oo

(2)

where u and p are assumed to be flat if R is not regular, and π is generated by a
non zero divisor t ∈ S, i.e. R̃ = S/St.

Let J• be a minimal injective resolution of the S-module S, and j : S −→ J• a
quasi-isomorphism. Since t ∈ S is not a zero divisor the complex

Ĩ• = π\(J•) := HomS(R̃, J•)

is a minimal injective resolution of R̃ (starting in degree −1). We identify here the

R̃ = S/St-module Ĩm with
{
x ∈ Jm

∣∣ t · x = 0
}

. We have Ĩ0 = {0} as J0
·t−→ J0 is

an isomorphism, whose inverse we denote by ·t−1 (by some abuse of notation).

The composition S
j−→ J0

·t−1

−−→ J0
dJ0−→ J−1 induces an embedding ι̃ : S/St =

R̃ ↪→ Ĩ−1, such that

0 −→ R̃
ι̃−→ Ĩ−1

dĨ−1−−−→ Ĩ−2 −→ . . .

is a minimal injective resolution of the R̃-module R̃, see [16, Lem. 2.4].
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5.2. In above situation let (A, τ) be an R-Azumaya algebra with involution of the

first- or second kind, and set (Ã, τ̃) := R̃ ⊗R (A, σ) and (B, ν) := S ⊗R (A, τ) =

S ⊗R̃ (Ã, τ̃).

Associated with these data we have two duality preserving functors

(F, η) , (G, θ) : (Db(E(A)),D
(A,τ)
R , 1, $R) −→ (Db

c(Mqc(B)), TD
(B,ν)
J ,−1,−$J) ,

which are defined as follows:

(a) (F, η) := Fj ◦
[
Kos(t) ? u∗(− )

]
; and

(b) (G, θ) is defined by the commutative diagram of duality preserving functors

(Db(E(A)),D
(A,τ)
R

, 1, $R)
p∗ //

(G,θ)

��

(Db(E(Ã)),D
(Ã,τ̃)

R̃
, 1, $R̃)

Fι̃

��
(Dbc(Mqc(Ã)),D

(Ã,τ̃)

T Ĩ
, 1, $T Ĩ )

sh

��
(Dbc(Mqc(B)), TD

(B,ν)
J

,−1,−$J ) (Dbc(Mqc(Ã)), TD
(Ã,τ̃)

Ĩ
,−1,−$Ĩ ) . ,

Trπ

oo

i.e. (G, θ) := Trπ ◦ sh ◦ Fι̃ ◦ p∗.
Recall here the definition of the duality preserving functor sh: The underlying

functor is the identity functor, and the duality transformation D
(Ã,τ̃)

T Ĩ

'−→ TD
(Ã,τ̃)

Ĩ

is (−1)l-times the identity in degree l, see [14, Sect. 1.2].

The quasi-isomorphism of complexes

S

·t
��

// 0

��
S

π // R̃

induces a quasi-isomorphism

sM : F (M•) = K•(t)⊗RM• −→ G(M•) = R̃⊗RM• ,

which is natural in M• ∈ Db(E(A)).

In other words, we have an isomorphism of functors s : F
'−→ G.

5.3. Theorem. The isomorphism of functors s : F
'−→ G is an isometry between

the two duality preserving functors (F, η) and (G, θ).

Proof. We compute first

`M := TD
(B,ν)
J (sM ) ◦ θM ◦ sD(A,τ)

R M
− ηM

for M• ∈ Db(E(A)). For ease of notation we set

D(N) := HomR(N,R)
τ

= D
(A,τ)
R (N)

for an A-module N , and

Di(N) := HomS(N, J−i)
ν
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for a B-module N , 0 ≤ i ≤ dimS = d. We also set MS := S ⊗R M for an
R-module M . With these notations `M is in degree l ∈ Z the homomorphism

(`M )l : D(M−l)S ⊕D(M−(l−1))S

−→
d⊕
i=0

[
Di

(
(M−(l−1)−i)S

)
⊕Di

(
(M−l−i)S

) ]
=
[
D0

(
(M−(l−1)−i)S

)
⊕D0

(
(M−l−i)S

) ]
⊕ . . . ,

which maps (s1 ⊗ f1, s2 ⊗ f2) ∈ D(M−l)S ⊕D(M−(l−1))S onto(
j[s2 ⊗ (u ◦ f2)] , −j[s1 ⊗ (u ◦ f1)] , (−1)l ι̃[π(s1)⊗ (q ◦ f1)] , 0, . . . , 0) .

We now define a chain homotopy between `M and the zero map as follows. Let
for l ∈ Z

(hM )l :
[

K•(t)⊗R D
(A,τ)
R (M•)

]
l
−→

[
TD

(B,ν)
J (S ⊗RM•)

]
l+1

,

be the homomorphism sending (s1 ⊗ f1, s2 ⊗ f2) ∈ D(M−l)S ⊕D(M−(l−1))S to

(t−1 · j[s1 ⊗ (u ◦ f1)] , 0, . . . , 0) ∈
d⊕
i=0

[
Di

(
(M−l−i)S

)
⊕Di

(
(M−(l+1)−i)S

) ]
.

To verify that this is a chain homotopy between `M and the zero map we have to
show that

(`M )l = hl−1 ◦ d
K•(t)⊗RD

(A,τ)
R (M•)

l + d
TD

(B,ν)
J (S⊗RM•)

l+1 ◦ hl (3)

for all l ∈ Z and M• ∈ Db(E(A)).

The verification of (3) is a straightforward computation using that

d
K•(t)⊗RD

(A,τ)
R (M•)

l (s1 ⊗ f1, s2 ⊗ f2)

=
(
s1 ⊗ (f1 ◦ dM−(l−1)) + ts2 ⊗ f2,−s2 ⊗ (f2 ◦ dM−(l−2))

)
and

d
TD

(B,ν)
J (S⊗RM•)

l+1 (g, 0, . . . , 0)

=
(
−g ◦ (idS ⊗dM−(l−1)) , −g ◦ ([·t]⊗ idM−l) , (−1)ldJ0 ◦g , 0, . . . , 0

)
,

as well as that by definition of ι̃ we have

ι̃
[
π(s1)⊗ (q ◦ f1)

]
= ι̃
[
π(s1)⊗ (π ◦ u ◦ f1)

]
= ι̃
(
π
[
s1 ⊗ (u ◦ f1)

])
= dJ0

(
t−1 · j

(
s1 ⊗ (u ◦ f1)

) )
.

We are done. �

5.4. Our first corollary of Theorem 5.3 is the following generalization of the zero
theorem [14, Thm. 6.3]. We keep above notation and denote for an integer h ≥
0 by Db

c(Mqc(A))(h) and Db
c(Mqc(B))(h) the subcategories of Db

c(Mqc(A)) and
Db
c(Mqc(B)), respectively, consisting of complexes whose homology modules have

support in codimension ≥ h. These are triangulated categories with (the restriction

of the) duality D
(A,τ)
I and D

(B,ν)
J , respectively. Let further ι : R −→ I• be a minimal

injective resolution.
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5.5. Generalized Zero Theorem. Let (M•, ϕ) be a i-symmetric space in the

triangulated category with duality (Db
c(Mqc(A))(h),D

(A,τ)
I , $I). Then the (i + 1)-

symmetric space

Trπ

(
sh
(
p∗(M•, ϕ)

))
is neutral in (Db

c(Mqc(B))(h),D
(B,ν)
J , 1, $J)(i+1).

Proof. We can assume that (M•, ϕ) ' Fι(N•, ψ) for some i-symmetric space (N•, ψ)

in (Db(E(A))(h),D
(A,τ)
R , 1, $R).

Since

S

·t
��

S
id // S

is a Lagrangian of Kos(t) = Kos(S, t) the canonical morphism of complexes

S ⊗RM• = u∗(N•) −→ K•(t)⊗ u∗N•

is a Lagrangian for Kos(t) ? u∗(N•, ψ). As u is flat we have u∗(M•) ∈ Db(E(B))(h),

and so Kos(t) ? u∗(N•, ψ) is neutral in (Db(E(B))(h),D
(B,ν)
S , 1, $S)(i+1). It follows

that the (i+1)-symmetric space Fj(Kos(t)?u
∗(N•, ψ) is neutral in the triangulated

category with duality (Db
c(Mqc(B))(h),D

(B,ν)
J , 1, $J)(i+1).

By Theorem 5.3 this space is isometric in (Db
c(Mqc(B))(h),D

(B,ν)
J , 1, $J)(i+1) to

Trπ

(
sh
(
p∗(M•, ϕ)

))
= Trπ

(
sh
(
Fι̃(p

∗(N•, ψ)
))

. �

5.6. In the rest of this section we assume that R is regular. Let t = (t1, . . . , tn)

be a regular sequence. We set a0 := {0} and ar :=
n∑

l=n−r+1

Rtl, and denote by

πr : R/ar−1 −→ R/ar the quotient morphism for 1 ≤ r ≤ n. We assume that the
quotient rings Rr := R/ar are regular for all 0 ≤ r ≤ n.

Let 0 −→ R
ι−→ I0

dI0−→ I−1 −→ . . . −→ I− dimR −→ 0 be a minimal injective
resolution of R, and define inductively I0• := I•, and Ir• := π]r(I

r−1
• ) for 1 ≤ r ≤ n.

We claim that there exists quasi-isomorphisms ιn : R/an −→ In• , such that the
following diagram commutes:

Wi(R/an ⊗R (A, τ), R/an)

'

(
(Trπ1 ◦ sh)◦ ... ◦(Trπn ◦ sh)

)
◦Fιn

uu
W̃ i+n

an (A, τ, I•) Wi(A, τ,R) .
Fι◦
(
Kos(R,t)?(− )

)oo

π∗n◦π
∗
n−1...◦π

∗
1

OO
(4)

We prove this by induction on n ≥ 1. The induction beginning n = 1 is a special
case of Theorem 5.3 above. For the induction step we set t1 := (t2+a1, . . . , tn+a1),
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which is a regular sequence in R1 = R/a1. We consider the following diagram:

Wi(Rn ⊗ (A, τ), Rn)

'

(
(Trπ2 ◦ sh)◦ ... ◦(Trπn ◦ sh)

)
◦Fιn

uu
W̃ i+n−1

an/a1
(R1 ⊗R (A, τ), I1•)

Trπ1
◦ sh

'

��

Wi(R1 ⊗R (A, τ), R1)
Fι1
◦
(
Kos(R1,t

1)?(− )
)oo

π∗n◦...◦π
∗
2

OO

Wi+n−1
an−1

(A, τ,R)

Fι1◦π
∗
1

OO

Fι◦
(
Kos(R,t1)?(− )

)
uu

Wi(A, τ,R)
Kos(R,t2,...,tn)?(− )

oo

π∗1

OO

W̃ i+n
an

(A, τ, I•) ,

(5)

where the quasi-isomorphisms ι1 : R1 = R/a1 −→ I1• and ιn : Rn = R/an −→ In•
are to be determined, so that the diagram commutes.

Observe first that the lower right hand side square commutes since pull-backs
are homomorphisms of the total derived Witt ring by [17, Thm. 3.4]. Now by
Theorem 5.3 there exists a finite injective resolutions ι1 : R1 −→ I1• , such that the
lower left hand side triangle commutes, and then by induction there exists such a
resolution ιn : Rn −→ In• , such that the upper right hand side triangle commutes.

We arrive at the following result which generalizes [11, Thm. 9.3].

5.7. Theorem. For all i ∈ Z the homomorphism

Wi(A, τ,R) −→ Wi+n
an (A, τ,R) , x 7−→ Kos

(
R, (t1, . . . , tn)

)
? x

is surjective, respectively an isomorphism, if and only if

π∗ : Wi(A, τ,R) −→ Wi(R/an ⊗R (A, τ), R/an)

is surjective, respectively an isomorphism, where π : R −→ R/an is the quotient
morphism, i.e. π = π1 ◦ π2 ◦ . . . ◦ πn.

In particular, if R is a complete regular local ring with maximal ideal m, and
t1, . . . , tn is a regular system of parameters then we have

(i) Wi
m(A, τ,R) = 0 if i− n is odd; and

(ii) the homomorphism

W1−ε(A, τ,R)
Kos(R,t)?−−−−−−−−−−→ W1−ε+n

m (A, τ,R)
ρl−−→ Wi

m(A, τ,R)

is an isomorphism if i = n+ 1− ε+ 4l for some l ∈ Z for all ε ∈ {±1}.
Hence in this case the homomorphism Wi

m(A, τ,R) −→Wi(A, τ,R) is the zero map
for all i ∈ Z.

Proof. The first part is a consequence of Diagram (5) above and the fact that by
the dévissage Theorem 3.4 the morphisms

Trπr ◦ sh : W̃ j
an/ar

(R/ar ⊗R (A, τ), Ir• ) −→ W̃ j+1
an/ar−1

(R/ar−1 ⊗R (A, τ), Ir−1• )
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are isomorphisms for all j ∈ Z and 1 ≤ r ≤ n.

For the second part, assertion (i) is [12, Lem. 4.8], and (ii) follows since as R is
complete the natural homomophism

Wε(A, τ) −→ Wε(R/m⊗R (A, τ))

is an isomorphism by [19, Chap. II (4.6.1)] for all ε ∈ {±1} (this uses also our
assumption that 2 is invertible in R and so also in A).

The last assertion follows from the fact that the class of Kos(t) = Kos(R, t) is
trivial in Wn(R), and since the 4-periodicity map ρ commutes with the product
by [5, App. B], i.e. we have ρ([Kos(t)] ? x) = [Kos(t)] ? ρ(x). �

6. Hermitian Witt groups of the punctured spectrum

6.1. Throughout this section R denotes a regular local ring with maximal ideal m
and residue field k, and (A, τ) an R-Azumaya algebra with involution (recall our
convention at the end of 2.3). Let κ : U := SpecR \ {m} ↪→ SpecR be the
punctured spectrum. By Balmer’s [2] localization sequence we have for ε ∈ {±1}
an exact sequence

W1−ε
m (A, τ,R) −→Wε(A, τ)

κ∗−−→Wε(A|U , τ |U )
∂−→W2−ε

m (A, τ,R) −→W2−ε(A, τ,R) .

If R is moreover complete we know by Theorem 5.7 above that κ∗ is injective and
that the connecting morphism ∂ is surjective. Hence we have a short exact sequence

0 −→ Wε(A, τ)
κ∗−−→ Wε(A|U , τ |U )

∂−−→ W2−ε
m (A, τ,R) −→ 0 (6)

for all ε ∈ {±1}. (Using the in [18] proven Gersten conjecture for hermitian Witt
groups it would be enough to assume that R is geometrically regular over a discrete
valuation ring.)

Set now

n := dimR = 4q + r + 1

with q ∈ Z and r ∈ {−1, 0, 1, 2}, and let t = (t1, . . . , tn) ⊂ R be a regular system of
parameters for R.

If n is even then 2− ε−n is odd and so by Theorem 5.7 we have if R is complete

W2−ε
m (A, τ,R) = 0 .

Hence:

Theorem. If dimR is even and R complete then the pull-back along κ : U ↪→
SpecR is an isomorphism

κ∗ : Wε(A, τ)
'−−→ Wε(A|U , τ |U ) .

for all ε ∈ {±1}.
For the rest of this section we assume that n is odd, i.e. r = 0 or r = 2. We let

Et ∈ Wr(U) be the r-symmetric space satisfying ρq(∂(Et)) = Kos(R, t) defined in
Lemma 4.3.
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6.2. Case r = 0. We consider the following diagram:

Wε(A|U , τ |U )
' //W1−ε(A|U , τ |U ,OU )

∂ //W2−ε
m (A, τ,R)

W1−ε(A, τ,R) '
ρ−q //

x7→Et?(x|U )

OO

W2−ε−(4q+1)(A, τ,R) .

y 7→Kos(t)?y

OO
(7)

Note that if R is complete the column arrow on the right hand side is an isomor-
phism by Theorem 5.7.

We claim that this diagram commutes. In fact, by [17, Thm. 2.9] we have
Et ? (x|U ) = Et ?r (x|U ), where ?r denotes the right product, since 1− ε is even. By
the right product analog of [17, Thm. 2.11] we have a commutative diagram

W(U)×W1−ε(A, τ,R)
?r //

∂×id
��

W1−ε(A, τ,R)

∂

��
W1

m(R)×W1−ε(A, τ,R)
?r

//W2−ε(A, τ,R) ,

where we denote the connecting homomorphism W(U) −→W 1
m(R) also by ∂. Hence

we have taking [17, Thm. 2.9] again into account and that the product commutes
with the 4-periodicity isomorphism by [5, App. B]:

∂(Et ? (x|U )) = ∂(Et) ? x = ρ−q(Kos(R, t)) ? x = Kos(R, t) ? ρ−q(x) ,

proving our claim.

Consequently, if R is complete the connecting homomorphism

∂ : Wε(A|U , τ |U ) −→ W2−ε(A, τ,R)

in the short exact sequence (6) is a split epimorphism, and so using that by [19,
Chap. II (4.6.1)] the homomorphism Wε(A, τ) −→ Wε(Ak, τk) is an isomorphism
in this case, where we have set (Ak, τk) := k ⊗R (A, τ), we conclude the following
result.

Theorem. If dimR ≡ 1 mod 4 and R is complete we have an isomorphism

Wε(A|U , τ |U ) ' Wε(Ak, τk)⊕Wε(Ak, τk)

for all ε ∈ {±1}.

Remarks.

(i) If R is a discrete valuation ring it is shown in [15] that (6) is exact even
if R is not complete.

(ii) The same argument shows that if R is a complete discrete valuation ring
with residue field k and fraction field K and G a finite group then

Wε(KG, νg) ' Wε(kG, νG)⊕Wε(kG, νG)

for all ε ∈ {±1}, where νG : g 7→ g−1 is the ’standard’ involution on
the group rings involved. (Use that

∑
g∈G

agg 7→ ae, e the neutral element
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of G, is an involution trace to identify the functors HomRG(− , RG)
νG

and

HomR(− , R)
νG

.)

Note that no assumption on the characteristic of K or k is made except
for not being 2.

6.3. Case r = 2. We assume now that R is complete and consider the following
diagram, whose right hand column arrow is again an isomorphism by Theorem 5.7.
It is commutative by the same reasoning as in 6.2 above:

Wε(A|U , τ |U )
' //W1−ε(A|U , τ |U ,OU )

∂ //W2−ε
m (A, τ,R)

W−1−ε(A, τ,R) '
ρ−q //

x 7→Et?(x|U )

OO

W2−ε−(4q+2+1)(A, τ,R) .

y 7→Kos(t)?y'

OO

Now by 4-periodicity and Balmer’s [3] isomorphism between usual and derived Witt
groups, see 3.1, we have W−1−ε(A, τ,R) ' W−ε(A, τ) ' W−ε(Ak, τk) (the latter
isomorphism by [19, Chap. II (4.6.1)]), and so get our computation of Wε(A|U , τ |U )
in the case r = 2.

Theorem. If dimR ≡ 3 mod 4 and R is complete we have an isomorphism

Wε(A|U , τ |U ) ' Wε(Ak, τk)⊕W−ε(Ak, τk)

for all ε ∈ {±1}

7. Symmetric Witt groups of the punctured spectrum

7.1. Let R be a regular semilocal ring with maximal ideals m1, . . . ,ml, l ≥ 1. We
assume that

1 ≤ n = dimR = htmi

for all 1 ≤ i ≤ l. Let κ : U := SpecR \ {m1, . . . ,ml} ↪→ SpecR be the punctured
spectrum of R, and κi : Ui := SpecRmi \ {miRmi} ↪→ SpecRmi the punctured
spectrum of the localized ring Rmi , i = 1, . . . , l. We denote `i : R −→ Rmi the
localization homomorphism and αi : Ui ↪→ U the morphism of schemes induced
by `i for all 1 ≤ i ≤ l.

Balmer [4, Thm. 3.3] has shown that if n 6≡ 1 mod 4 then the pull-back κ∗ :
W(R) −→ W(U) is an isomorphism, and if n = 4q + 1, where q is an integer ≥ 0,
then there is an exact sequence

0 −→ W(R)
κ∗−−→ W(U)

∂−−→ W1
J(R)(R) −→ 0 , (8)

where ∂ is the connecting homomorphism in Balmer’s [2] localization sequence

associated with the open embedding κ : U ↪→ SpecR, and J(R) =
l⋂
i=1

mi is the

Jacobson radical of R.
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The localization morphisms `i induce a W(R)-linear isomorphism

(`∗i )
l
i=1 : W1

J(R)(R)
'−−→

l⊕
i=1

W1
miRmi

(Rmi) , (9)

see Balmer and Walter [7, Sect. 7] (and [17, Sect. 3] for the W(R)-linearity).

7.2. From now on we assume that n = 4q + 1 with q ≥ 1.

We choose elements x
(i)
1 , x

(i)
2 , . . . , x

(i)
n , such that x

(i)
1mi

, x
(i)
2mi

, . . . , x
(i)
nmi is a regular

system of parameters for Rmi for all 1 ≤ i ≤ l. By the Chinese remainder theorem
there are for all 1 ≤ i ≤ l sequences of elements

t(i) = (t
(i)
1 , t

(i)
2 , . . . , t(i)n )

satisfying

t
(i)
j ≡ x

(i)
j mod m2

i and t
(i)
j ≡ 1 mod

⋂
r 6=i

mr

for all 1 ≤ j ≤ n. Then (t
(i)
1mi

, t
(i)
2mi

, . . . , t
(i)
nmi) is a regular system of parameters

for Rmi for all 1 ≤ i ≤ l, and we have t
(i)
j 6∈ mr for all 1 ≤ i 6= r ≤ l and all

1 ≤ j ≤ n. In particular, we have an open embedding

ςi : U ↪→ Vi :=

n⋃
j=1

SpecR[(t
(i)
j )−1]

for all 1 ≤ i ≤ l.

7.3. Lemma. The W(R)-module W1
miRmi

(Rmi) is generated by ρ−q(Kos(Rmi , t
(i)
mi))

for all integers 1 ≤ i ≤ l.

Proof. We fix i ∈ {1, . . . , l} and set for ease of notation t := t
(i)
mi . By Theorem 5.7

we know that every element in Wn
miRmi

(Rmi) is equal

Kos(Rmi , t) ? x

for some x ∈ W(Rmi) as W(Rmi) −→ W(R/mi) is onto. Since 1
2 ∈ Rmi ev-

ery symmetric bilinear space over Rmi has an orthogonal basis, see e.g. Baeza [1,
Chap. I, Prop. (3.4)], and so Wn

miRmi
(Rmi) is generated by the classes of forms

Kos(Rmi , t) ? < x >, x ∈ R×mi . After multiplying by a square we can assume that x
is in the image of R −→ Rmi .

Given x ∈ R with x a unit in Rmi there exists by the Chinese remainder theorem
a unit x̃ ∈ R with x̃ ≡ x mod mi. By (4) we have

Kos(Rmi , t) ? < x >= Kos(Rmi , t) ? < x̃ > .

The lemma follows from this since by [5, App. B] we have

ρ−q
(
Kos(Rmi , t) ? < x̃ >

)
= ρ−q

(
Kos(Rmi , t)

)
? < x̃ > .

�

Remark. Note that by the dévissage Theorem and 4-periodicity

W1
miRmi

(Rmi) ' Wn
miRmi

(Rmi) ' W(R/mi) 6= 0 ,

and so in particular ρ−q(Kos(Rmi , t
(i)
mi)) 6= 0.
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7.4. We give generators for the W(R)-algebra W(U). Let for this γ̃i : SpecR −→
AnZ[ 12 ] be the morphism of schemes induced by the morphism of rings

fi : Sn = Z[
1

2
][T1, . . . , Tn] −→ R , Tj 7−→ t

(i)
j ,

1 ≤ i ≤ l. By restriction to Vi the morphism γ̃i induces a morphism of schemes

γi : U
ςi−−→ Vi

(γ̃i)|Vi−−−−−→ UnZ[ 12 ]
for all 1 ≤ i ≤ l. Set

Ei := γ∗i (En) and ei := α∗i (Ei) (10)

for i = 1, . . . , l. These are symmetric spaces over U and Ui, respectively. By
Lemma 4.3 we have

(γ̃i)|Vi(En) ? (γ̃i)|Vi(En) = (γ̃i)|Vi(En ? En) = 0 ,

as well as

(ϑ
(i)
j )∗

( (
γ̃i)|Vi

)∗
(En)

)
= 0

for all 1 ≤ i ≤ l and 1 ≤ j ≤ n, where ϑ
(i)
j : SpecR[(t

(i)
j )−1] ↪→ Vi. It follows that

Ei ? Ei = 0

for all 1 ≤ i ≤ l, and
Ei|U∩SpecR[(t

(i)
j )−1]

= 0 (11)

for all 1 ≤ i ≤ l and 1 ≤ j ≤ n. The latter implies that Ei is in the image of

W0

Z
(i)
j ∩U

(U) −→ W(U)

for all 1 ≤ i ≤ l and 1 ≤ j ≤ n, where Z
(i)
j = SpecR/Rt

(i)
j ⊂ SpecR. Since

Z
(i)
j ∩ Z

(r)
s = 0 for all 1 ≤ r 6= i ≤ l and any 1 ≤ j, s ≤ n this implies that the

product Ei ? Er is trivial for all 1 ≤ i 6= r ≤ l. We have shown the following result.

7.5. Lemma. We have
Ei ? Er = 0

in W(U) for all 1 ≤ i, r ≤ l.

7.6. By construction, see the proof of Lemma 4.3, we have

∂i(ei) = ρ−q(Kos(t
(i)
mi)) 6= 0

in W1
miRmi

(Rmi) for all 1 ≤ i ≤ l, where ∂i : W(Ui) −→ W1
miRmi

(Rmi) is the

connecting homomorphism in Balmer’s [2] localization sequence associated with
the open embedding κi : Ui ↪→ SpecRmi . In particular, we have ei 6= 0 and so by
definition, see (10), also Ei 6= 0 for all 1 ≤ i ≤ l.

Lemma. We have
`∗j
(
∂(Ei)

)
= 0

for all 1 ≤ i 6= j ≤ l.

Proof. By construction the 1-symmetric space ∂(Ei) is Witt equivalent to a space
which lives on the shifted Koszul complex T−2q(K∗(t

(i))). Since t(i) 6⊂ mj for

1 ≤ i 6= j ≤ l by construction of the sequences t(s) the pull-back `∗j (K∗(t
(i))) has

trivial homology for all 1 ≤ i 6= j ≤ l. The lemma follows. �
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7.7. Theorem. The (classes of the) symmetric spaces E1, . . . ,El are non trivial
and generate W(U) as W(R)-algebra. These generators satisfy

(i) Ei ? Ej = 0 in W(U) for all 1 ≤ i, j ≤ l; and

(ii) are locally trivial, i.e. the class of the localized form Ei P is zero in W(RP )
for all 1 ≤ i ≤ l and all prime ideals P in U .

In particular, if R is an integral domain with fraction field K then

θ∗(Ei) = 0

for all 1 ≤ i ≤ l, where θ : SpecK −→ U is the generic point, and so θ∗ : W(U) −→
W(K) is not one-to-one.

Proof. To show that the spaces E1, . . . ,El are non trivial and generate W(U) as
W(R)-algebra we consider the following commutative diagram whose upper row is
exact:

0 //W(R)
κ∗ //W(U)

∂ //

(α∗i )
l
i=1

��

W1
J(R)(R)

' (`∗i )
l
i=1

��

// 0

l⊕
i=1

W(Ui)
(∂i)

l
i=1

//
l⊕
i=1

W1
miRmi

(Rmi) .

Note that the right hand column arrow of this diagram is an isomorphism by (9).

By Lemma 7.3 the 1-symmetric space ρ−q(Kos(Rm, t
(i)
mi)) generates the W(R)-

module W1
miRmi

(Rmi), and we have ρ−q(Kos(Rm, t
(i)
mi)) = ∂i(ei) for all 1 ≤ i ≤ l,

see 7.6 for the last equation. Now be the very definition ei = α∗i (Ei), see (10), and
therefore by the commutative diagram above we have

∂i(ei) = ∂i(α
∗
i (Ei)) = `∗i (∂(Ei))

for all 1 ≤ i ≤ l. Since W1
miRmi

(Rmi) 6= 0 this implies ∂(Ei) 6= 0 and so also Ei 6= 0

for all 1 ≤ i ≤ l.
On the other hand, the lemma in 7.6 tells us `∗j (∂(Ei)) = 0 for all 1 ≤ i 6= j ≤ l,

and so since the right hand column arrow in above diagram is an isomorphism we

get W1
J(R)(R) '

l∑
i=1

W(R) · ∂(Ei) as W(R)-module. Hence by the exactness of the

upper row of the diagram above E1, . . . ,El generate the W(R)-algebra W(U).

We are left to show (i) and (ii). The first assertion is Lemma 7.5, and the
second follows since for every P ∈ U the morphism SpecRP −→ U factors via

U ∩ SpecR[(t
(i)
j )−1] for some 1 ≤ i ≤ l and some 1 ≤ j ≤ n, and therefore this is a

consequence of (11). �

Remarks.

(i) By [5, App. A] the underlying vector bundles of the forms ei over Ui can not
be extended to SpecRmi and so are in particular not free for all 1 ≤ i ≤ l.
This implies that also the underlying vector bundles of the generators Ei,
1 ≤ i ≤ l, of W(U) are not free.

(ii) The proof shows also that no proper subset of {E1, . . . ,El} can gener-
ated W(U) as W(R)-algebra.
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