
DIRECT SUMS OF CHOW MOTIVES AND ROST NILPOTENCE

STEFAN GILLE

Abstract. We examine ’stronger’ versions of the Rost nilpotence principle,

which hold in almost all cases where Rost nilpotence is known, and show that

a direct sum of motives for which these stronger principles hold also satisfy it.

0. Introduction

Let k be a field, R a commutative ring (with 1), and Chow(k,R) the category of
Chow motives over k with coefficients in R. One says that Rost nilpotence holds for
a motive M in Chow(k,R) if for all field extensions E ⊇ k the kernel, here denoted
IRE/k(M), of the restriction morphism

EndChow(k,R)(M) −→ EndChow(E,R)(E ×kM)

is a nil ideal. This property has been proven for motives of smooth projective
quadrics by Rost [13] and independently with different methods by Vishik [15]. Its
main application is Rost’s decomposition of the splitting quadric of a symbol in
Milnor K-theory modulo 2, which in turn is crucial for Voevodsky’s [17] proof of
the Milnor conjecture.

Later Rost nilpotence has been verified for other smooth projective schemes
including surfaces and projective homogeneous varieties. It is believed to hold for
all Chow motives, but right now a proof of this conjecture seems to be out of reach.
We observe however, that if Rost nilpotence is invariant under blow-ups then it
holds for all motives. In fact, let X ⊆ PNk be a smooth projective k-scheme and
Y its blow-up in PNk . Then by Manin’s blow-up fomula [11, §9, Cor.] we know
that X ⊗ Z(1), where Z(1) is the Tate-motive, is a direct summand of Y , and so
if Rost nilpotence holds for Y it holds for X. On the other hand, Rost nilpotence
is trivially true for projective spaces. Hence if it is invariant under blow-ups the
smooth projective variety X also satisfies Rost nilpotence.

These considerations lead to the following basic problem:

Let M,N be motives in Chow(k,R) satisfying Rost nilpotence. Does then Rost
nilpotence hold for the direct sum M ⊕N as well?

In case the Köthe conjecture is true then the answer to this question is ’yes’, see
Remark 2.6. However most ring theorists seem to believe that Köthe’s conjecture
is wrong as pointed out by Rowen in his book on ring theory [14, top of page 210].
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On the other hand, a rather elementary computation reveals that the answer to
above question is ’yes’ if one assumes that the kernel ideals IRE/k(M) and IRE/k(N)

are not only nil but nilpotent ideals for all field extensions E ⊇ k, see our Theo-
rem 2.4. We say in this case that strong Rost nilpotence holds for M and N .

We show here however that if the coefficient ring is noetherian a weaker property
is enough to assure that direct sums satisfy Rost nilpotence if all summands do so: A
motive M in Chow(k,R) satisfies Rost nilpotence with bounded exponent if for every
field extension E ⊇ k there exists an integer N ≥ 1 (depending on E), such that
xN = 0 for all x ∈ IRE/k(M). This implies that IRE/k(M) is a PI-algebra (without 1)

over R, and we use then PI-theory to verify that given another motive N satisfying
Rost nilpotence with bounded exponent then the direct sum M ⊕N has the same
property.

In the last section we show that for almost (?) all examples where ’usual’ Rost
nilpotence is known actually strong Rost nilpotence holds.

Acknowledgement. A special thanks to Sasha Vishik for many valuable discus-
sions about Rost nilpotence. The author further thanks Ofer Gabber for pointing
out that it is not necessary to assume ’geometrically split’ in Theorem 2.9.

1. Chow motives

1.1. We briefly recall the definition of the category of Chow motives referring to
Fulton’s book [6, Chap. 16] and Manin [11] for details and more information.

We fix a ground field k (of any characteristic) and denote by k̄ its algebraic
closure. For a k-scheme X we denote by k(x) the residue field of x ∈ X and
by k(X) the function field if X is integral. Given a field extension E ⊃ k we
set XE := E ×k X. We denote by CHi(X) the Chow group (modulo rational
equivalence) of dimension i cycles of X.

Let PSmk be the category of smooth and projective k-schemes. Given two such
schemes X,Y , a correspondence of degree 0 between X and Y is an element α in
l⊕
i=1

CHdimXi(Xi × Y ), where X1, . . . , Xl are the connected components of X. We

write then α : X  Y . Given α : X  Y and β : Y  Z with both Y and Z
irreducible their composition is defined as

β ◦ α := pXZ ∗
(
p∗XY (α) · p∗Y Z(β)

)
,

where pXY , pXZ , and pY Z are the respective projections from X ×k Y ×k Z to
X×kY , X×kZ, and Y ×kZ. This product is associative and the class of the image
of the diagonal morphism acts as identity. Hence we have an additive category of
correspondences of degree 0 over k, denoted Corr0(k), whose objects are the smooth
projective k-schemes and morphisms are correspondences of degree 0.

1.2. The idempotent completion of Corr0(k) is the category of (effective) Chow
motives over k, denoted Chow(k). The objects of Chow(k) are pairs (X, p), where p :
X  X is a correspondence of degree 0 satisfying p ◦ p = p, i.e. p is an idempotent
morphism in Corr0(k), and the morphisms are given by

Homk

(
(X, p), (Y, q)

)
:= q ◦MorCorr0(k)(X,Y ) ◦ p ⊆ MorCorr0(k)(X,Y ) .
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If X is a smooth projective k-scheme we denote by the same symbol X its mo-
tive in Chow(k). We also set Endk(X, p) := Homk((X, p), (X, p)). The cartesian
product induces a ’tensor product’ on Chow(k), denoted (X, p)⊗ (Y, q).

There is a covariant functor PSmk −→ Chow(k), which is the identity on objects
and sends a morphism f : X −→ Y to the class of its graph Γf .

The Tate-motive and its (positive) twists are denoted by Z(i) := (Z(1))⊗i, i ∈
N∪ {0}, and if X is a smooth projective k-scheme we set X(i) := X ⊗Z(i). Recall
that the Tate motive is the complement of the motive of the point in the projective
line: P1

k ' Z ⊕ Z(1) in Chow(k). A motive is called split if it is a direct sum of
twists of Tate motives, and geometrically split if this is the case over the algebraic
closure of the base field. Examples of geometrically split motives are the motives
of projective quadrics, or more generally of projective homogeneous varieties, see
Köck [10], and the motives of geometrically rational surfaces.

Replacing CHi(− ) by CHi(− )R := R ⊗Z CHi(− ) for a commutative ring R
(with 1) we get Chow motives with coefficients, denoted Chow(k,R). In this case
we denote the homomorphism and endomorphism groups by Homk((X, p), (Y, q))R
and Endk(X, p)R, respectively. The Tate motives and its twists will then be denoted
by R and R(i), and we set X(i) = X ⊗R(i) for i ≥ 0.

We fix in the following a commutative coefficient ring R with 1.

1.3. Let E ⊇ k be a field extension. Then X 7→ XE and α 7→ αE induces a
restriction morphism

resE/k : Homk(M,N)R −→ HomE(ME , NE)R

for M,N ∈ Chow(k,R). This defines a contravariant functor Chow(k,R) −→
Chow(E,R), called restriction, mapping a motive M in Chow(k,R) onto ME ∈
Chow(E,R).

As in the introduction we denote the kernel of

resE/k : Endk(M)R −→ EndE(ME)R

by IRE/k(M) for all M ∈ Chow(k,R) and all field extensions E ⊇ k.

2. Rost nilpotence

2.1. Definitions. Let k be a field, R a commutative ring, and M ∈ Chow(k,R).

(a) We say that Rost nilpotence (respectively Rost nilpotence with bounded ex-
ponent) holds M in Chow(k,R) if for all field extensions E ⊇ k the kernel
IRE/k(M) of resE/k is a nil ideal (respectively a nil ideal with bounded

exponent).

(b) We say that strong Rost nilpotence holds for M in Chow(k,R) if for every
field extension E ⊇ k the ideal IRE/k(M) is nilpotent.

2.2. Remark. If Endk(M)R is Z-torsion free, e.g. if R is a field of characteristic 0,
or if M is a split motive and R = Z, then IRE/k(M) is trivial. This follows since

for a purely transcendental extension E/k the base change morphism CHi(Y ) −→
CHi(YE) is an isomorphism, see e.g. [5, Prop. 2.1.8], and for E/k a finite extension
the kernel of CHi(Y ) −→ CHi(YE) is annihilated by the degree [E : k].
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Most proofs of Rost nilpotence rely on a lemma due to Rost [13, Prop. 1], which
we recall here in a seemingly more general version. However this is what is actually
proven in loc.cit. as we explain now.

2.3. Rost’s Lemma. Let X and Y be smooth and projective k-schemes with Y
connected, and α0, . . . , αd ∈ Endk(X)R, where d = dimY . Assume that

(αi k(y))∗
(

CHi(k(y)×k X)R
)

= 0

for all y ∈ Y and 0 ≤ i ≤ dimX. Then

(α0 ◦ α1 ◦ . . . ◦ αd−1 ◦ αd)∗
(

CHj(Y ×k X)R
)

= 0

for all 0 ≤ j ≤ dimX + dimY . In particular, if X = Y we have

α0 ◦ α1 ◦ . . . ◦ αd−1 ◦ αd = 0 .

Proof. Let π : Y ×k X −→ Y be the projection onto the first factor. Define for
0 ≤ j ≤ dimX + dimY a filtration on the Chow group CHj(Y ×k X)R by setting
F−1 CHj(Y ×k X)R = 0 and letting Fp CHj(Y ×k X)R be the subgroup generated
by the classes of j-dimensional subvarieties V of Y ×k X with dimπ(V ) ≤ p for
0 ≤ p ≤ d = dimY .

Now Rost [13, Proof of Prop. 1], or Brosnan [1] for a more geometric argument,
show that if α ∈ Endk(X)R satisfies

αk(y) ∗
(

CHi(k(y)×k X)R
)

= 0

for all y ∈ Y and all 0 ≤ i ≤ dimX then we have

α∗
(
Fp CHj(Y ×k X)R

)
⊆ Fp−1 CHj(Y ×k X)R

for all d ≥ p ≥ 0. Hence the assumption on the αi’s implies that

α0 ∗

(
α1 ∗

(
. . . αd ∗(CHj(Y ×k X)R) . . .

) )
⊆ F−1 CHj(Y ×k X)R = 0

as claimed. �

The stronger version of Rost nilpotence is ’additive’. More precisely, we have
the following fact.

2.4. Theorem. Let M1, . . . ,Md be motives in Chow(k,R) satisfying strong Rost

nilpotence. Then the direct sum
d⊕
i=1

Mi satisfies strong Rost nilpotence.

Proof. By induction it is enough to show this for d = 2. Let for this M,N ∈
Chow(k,R) satisfy strong Rost nilpotence, and E ⊇ k a field extension. We set
for brevity of notation IM := IRE/k(M) and IN := IRE/k(N). Let further B and C

be the kernels of resE/k : Homk(N,M)R −→ HomE(NE ,ME)R and of resE/k :
Homk(M,N)R −→ HomE(ME , NE)R, respectively.

Identifying

Endk(M ⊕N)R '

(
Endk(M)R Homk(N,M)R

Homk(M,N)R Endk(N)R

)
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we have

IRE/k(M ⊕N) =

( IM B

C IN

)
⊆

(
Endk(M)R Homk(N,M)R

Homk(M,N)R Endk(N)R

)
,

and so the following assertion proves the theorem.

Claim. We have( IM B

C IN

)2l

⊆

 IlM +BIlNC IlMB +BIlN + Il−1
M BIl−1

N

CIlM + IlNC + Il−1
N CIl−1

M CIlMB + IlN


for all l ≥ 2.

We prove this by induction. Let first l = 1. Then( IM B

C IN

)
·

( IM B

C IN

)
=

( I2
M +BC IMB +BIN

CIM + INC CB + I2
N

)
,

and so we get( IM B

C IN

)4

=

( I2
M +BC IMB +BIN

CIM + INC CB + I2
N

)2

⊆

( I2
M +BI2

NC I2
MB +BI2

N + IMBIN

CI2
M + I2

NC + INCIM CI2
MB + I2

N

)
.

Let now l ≥ 2. Then by the induction assumption we have( IM B

C IN

)2l+1

⊆

 IlM +BIlNC IlMB +BIlN + Il−1
M BIl−1

N

CIlM + IlNC + Il−1
N CIl−1

M CIlMB + IlN

2

,

and a short computation, where we use that BIrNC ⊆ IM and CIrMB ⊆ IN for all
integers r ≥ 0, as well as that INC,CIM ⊆ C and IMB,BIN ⊆ B, shows that the
latter is contained in Il+1

M +BIl+1
N C Il+1

M B +BIl+1
N + IlMBIlN

CIl+1
M + Il+1

N C + IlNCIlM CIl+1
M B + Il+1

N

 .

�

By the blow-up formula the theorem implies:

2.5. Corollary. Let Y be a smooth closed subscheme of X ∈ PSmk of pure codi-
mension r, and Z the blow-up of X along Y . Then in Chow(k,R) strong Rost
nilpotence holds for Z if and only if it holds for X and Y .
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Proof. By the blow-up formula, see Manin [11, §9, Cor.] or [6, Chap. 6], we have

Z ' X ⊕
r−1⊕
i=1

Y (i)

in Chow(k,R) and so the corollary follows from Theorem 2.4 above. �

2.6. Remark. If Köthe’s conjecture is true (for all rings) ’usual’ Rost nilpotence
is additive as well. In fact, using the notation of the proof of Theorem 2.4 above
we have

IRE/k(M ⊕N) =

( IM 0

C 0

)
+

(
0 B

0 IN

)
.

Both left ideals

( IM 0

C 0

)
and

(
0 B

0 IN

)
are nil and so by (an equivalent form

of) Köthe’s conjecture, see e.g. [14, 2.6.35 (ii)] their sum IRE/k(M ⊕ N) is nil as

well.

2.7. Assume now that R is a noetherian ring. In this case a weaker version of
Rost nilpotence, namely Rost nilpotence with bounded exponent, is enough for
additivity.

Let M,N be motives in Chow(k,R), which satisfy Rost nilpotence with bounded
exponent, and E ⊇ k a field extension. Let further r = r(E) and s = s(E)
be integers ≥ 1, such that xr+1 = 0 and ys+1 = 0 for all x ∈ IRE/k(M) and

y ∈ IRE/k(N), respectively. In particular, this means that the R-algebras (without 1)

IRE/k(M) and IRE/k(N) are PI-algebras.

We aim to show that then IRE/k(M⊕N) is also nil ideal with bounded nilpotence

index, i.e. there is t ≥ 1, such that αt = 0 for all α in IRE/k(M ⊕N).

Given α ∈ IRE/k(M ⊕N) we can write

α =

(
x b

c y

)
(1)

with x ∈ IRE/k(M), y ∈ IRE/k(N), and b ∈ Homk(N,M)R and c ∈ Homk(M,N)R
satisfying bE = cE = 0.

We let IM be the Z-subalgebra (without 1!) of IRE/k(M) generated by the

elements x, x2, . . . , xr, bc, byc, by2c, . . . , bysc and IN be the Z-subalgebra (with-
out 1!) of IRE/k(N) generated by the elements y, y2, . . . , ys, cb, cxb, cx2b, . . . , cxrb.

Both IM and IN are finitely generated sub algebras of the PI-algebras IRE/k(M)

and IRE/k(N), respectively, and therefore by [12, Chap. VI, Thm. 2.13] there exist

integers u, v ≥ 0, such that IuM = 0 and IvN = 0 (here we use that R is a noetherian
ring). The integers u and v do not depend on x, y, b, and c but only on (a) the
number of generators of IM and IN , respectively, (b) the identities of IRE/k(M) and

IRE/k(N), respectively, as well as (c) the nilpotence exponents r and s, respectively.

(Hence in the end on r and s only.)
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We define now two abelian groups. Let for this b, c be as in (1). The first abelian
group, denoted B, is the subgroup of Homk(N,M)R generated by the elements b,
fb, bg, and fbg, where f ∈ IM and g ∈ IN , and the second one, denoted C, is the
subgroup of Homk(M,N)R generated by the elements c, cf , gc, and gcf , where
(again) f ∈ IM and g ∈ IN .

2.8. Sublemma. We have BC ⊆ IM , CB ∈ IN , and for h ≥ 1 an integer:

(i) CIhMB ⊆ CIMB ⊆ IN ; and

(ii) BIhNC ⊆ BINC ⊆ IM .

Proof. We observe first that an element of IM is a sum of elements of the form

xi1 · (

m1∏
l=1

byi1lc) · xi2 · (

m2∏
l=1

byi2lc) · . . . · (

mm∏
l=1

byimlc) · xim+1 , (2)

where m,ml ≥ 1 are integers and il and ihl are integers ≥ 0. Analogous an element
of IN is a sum of elements of the form

yj1 · (

n1∏
l=1

cxj1lb) · yj2 · (

n2∏
l=1

cxj2lb) · . . . · (

nn∏
l=1

cxjnlb) · yin+1 , (3)

where n, nl ≥ 1 are integers and jl and jhl are integers ≥ 0.

If now a ∈ IM is of the form (2) then c · a · b is an element of the form (3) and so
in IN , and analogous if d ∈ IN is an element of the form (3) then b · d · c is of the
form (2) and so in IM . From these two observations the sublemma follows. �

We come back to the element α in IRE/k(M ⊕N), see (1). We have

α2 =

(
x b

c y

)2

=

(
x2 + bc xb+ by

cx+ yc cb+ y2

)
,

from which we conclude that

α4 ∈

(
I2
M +BI2

NC I2
MB +BI2

N + IMBIN
CI2

M + I2
NC + INCIM CI2

MB + I2
N

)
.

As in the proof of Theorem 2.4 it follows now by induction on l ≥ 2 that

α2l

∈

(
IlM +BIlNC IlMB +BIlN + Il−1

M BIl−1
N

CIlM + IlNC + Il−1
N CIl−1

M CIlMB + IlN

)
,

and therefore if l ≥ 1 + max{u, v} we have α2l

= 0. By another induction on the
number of summands this gives the next result.

2.9. Theorem. Let R be a noetherian ring and M1, . . . ,Md be motives in the
category Chow(k,R) satisfying Rost nilpotence with bounded exponent. Then Rost

nilpotence with bounded exponent holds also for the direct sum
d⊕
i=1

Mi.

2.10. Remarks. Let k and R be as above.

(a) If M is geometrically split then IRE/k(M) is nil, nil with bounded exponent,

respectively nilpotent for all field extensions E ⊇ k if and only if IR
k̄/k

(M)

is so.
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(b) The endomorphism ring over the algebraic closure of a geometrically split
motive M in Chow(k,R) is a product of matrix rings over the coefficient
ring and so a PI-algebra. Hence if a geometrically split motive satisfies Rost
nilpotence with bounded exponent its endomorphism ring is a PI-algebra
over R, which is moreover integral of bounded degree over R. In particular,
the endomorphism ring Endk(M)R is locally finite if R is noetherian by [12,
Chap. VI, Cor. 2.8 (1)].

We close this section with a technical lemma needed in the next one.

2.11. Lemma. Let R be a noetherian ring. Assume that strong Rost nilpo-
tence holds for the geometrically split motive M in Chow(k), and that Rost nilpo-
tence holds for M in Chow(k,R). Then strong Rost nilpotence holds for M in
Chow(k,R).

Proof. By Remarks 2.10 (a) above it is enough to show that IR
k̄/k

(M) is a nilpotent

ideal.

By assumption we have IZ
k̄/k

(M)t = 0 for some t ≥ 1 and there is a short exact
sequence

0 −→ IZk̄/k(M) −→ Endk(M)
ι−→ Endk(M) −→ 0 ,

where Endk(M) ⊆ Endk̄(Mk̄) denotes the image of resk̄/k : Endk(M) −→ Endk̄(Mk̄).
Tensoring above exact sequence with R we get an exact sequence

R⊗Z IZk̄/k(M) −→ R⊗Z Endk(M)
idR ⊗ ι−−−−−→ R⊗Z Endk(M) −→ 0 , (4)

and consequently the kernel of idR⊗ ι is a nilpotent ideal. We are reduced to prove
that the kernel of

idR⊗j : R⊗Z Endk(M) −→ R⊗Z Endk̄(Mk̄)

is a nilpotent ideal, where j denotes the inclusion Endk(M) ↪→ Endk̄(Mk̄).

Since M is geometrically split the ring Endk̄(Mk̄) is a free abelian group of finite

rank and so the subgroup Endk(M) is free abelian of finite rank as well. Hence

R ⊗Z Endk(M) is a free R-module of finite rank and therefore a noetherian R-
algebra. Hence by Levitzki’s theorem, see e.g. [14, Thm. 2.6.23], it is enough to show
that the kernel of idR⊗j is a nil ideal. To see this let α ∈ Ker(idR⊗j). We have
by the exact sequence (4) that α = (idR⊗ ι)(β) for some β in the endomorphism
ring Endk(M)R = R⊗Z Endk(M).

But β is in the kernel of the restriction homomorphism

R⊗Z Endk(M) −→ R⊗Z Endk̄(Mk̄) ,

and so nilpotent by our assumption. It follows that α is nilpotent as well. �

3. Examples

3.1. Projective homogenous varieties. Let X be a projective homogenous
variety over k. In [3], see also Brosnan [2], it is shown that Rost nilpotence with
bounded exponent holds for the motive of X in Chow(k,R) (any coefficient ring R).
But the argument there shows that in fact strong Rost nilpotence holds for X. For
the sake of completeness we recall the details.
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Note that since the motive of X is geometrically split it is enough to show that
the ideal IR

k̄/k
(X) is nilpotent, see Remark 2.10 (i).

By the main result of loc.cit. we have

X '
l⊕
i=1

Yi(ni) (5)

in Chow(k,R) for anisotropic projective homogeneous varieties Yi of dimension
strictly less than dimX if l ≥ 2, and integers ni ≥ 0. We claim by descending
induction on d that IR

k̄/k
(X) is a nilpotent ideal with nilpotence exponent only

depending on dimX and the number of summands in (5).

If l is maximal then X is split and so a sum of twists of Tate motives. Otherwise
let y ∈ Yi for some 1 ≤ i ≤ l in above decomposition (5). Then Yi,k(y) is isotropic
and therefore splits by the main theorem of loc.cit. into a direct sum of at least two
twists of motives of projective homogeneous varieties. The induction assumption
gives then

IR
k(y)/k(y)

(Xk(y))
t = 0 ,

where k(y) is an algebraic closure of the residue field k(y), for some integer t ≥ 0
which depends only on dimX and the number of summands in the motivic de-
composition of Xk(y) into twists of motives of projective homogeneous varieties. In
particular, we can find ti > 0 which works for all y ∈ Yi.

Then Rost’s Lemma 2.3 implies

IRk̄/k(X)
ti·(1+dimYi)
∗

(
CHj(Yi ×X)R

)
= 0

for all 0 ≤ j ≤ dimX + dimYi.

Setting now ` := max
1≤i≤d

[
ti · (1 + dimYi)

]
we get IR

k̄/k
(X)` = 0 by (5).

3.2. Geometrically rational surfaces. Let S be a geometrically rational surface
over k. We claim that strong Rost nilpotence holds for S in Chow(k,R) for R either
the ring of integers Z, or integers modulo m ≥ 2, denoted Z/m. Note that the
motive of S is geometrically split.

We assume first that R = Z. By the Hochschild-Serre spectral sequence we know
that Pic(Sk(s)) ' CH1(Sk(s)) is torsion free for all s ∈ S and the same holds for

CH2(Sk(s)) since S is geometrically integral. Hence if α is in IZ
k̄/k

(S) then αk(s)

acts trivial on both CH1(Sk(s)) and CH2(Sk(s)) for all s ∈ S. Hence to apply Rost’s

lemma we are left to study the action of αk(s) on CH0(Sk(s)) for all α ∈ IZ
k̄/k

(S)

and all s ∈ S.

To this end we denote for a field extension E ⊇ k by A0(SE) the kernel of
the degree map deg : CH0(SE) −→ Z. By the main result of Coombes [4] the
surface S is rational over the separable closure ksep of k and so its motive is split
in Chow(ksep). Hence there exists for a field extension E ⊇ k a Galois extension
L ⊇ E, such that (αE)L = 0. If S(E) 6= ∅ the subgroup A0(SE) is the torsion part
of CH0(SE).

This implies that given α ∈ IZ
k̄/k

(S) we have αk(s) ∗
(

CH0(Sk(s))
)
⊆ A0(Sk(s)).

and by [7, Cor. 4.9] (see [8, Sect. 2.4] if the base field is not perfect), we have
αk(s) ∗

(
A0(Sk(s))

)
= 0.
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Given now α, β ∈ IZ
k̄/k

(S) then (α ◦ β)k(s) ∗
(

CH0(Sk(s))
)

= 0 and so by Rost’s

Lemma 2.3 we have

α1 ◦ α2 ◦ α3 ◦ α4 ◦ α5 ◦ α6 = 0

for all α1, . . . , α6 ∈ IZk̄/k(S). Hence IZ
k̄/k

(S)6 = 0.

Let now R = Z/m for some integer m ≥ 2. In [8, Thm. 15] it is shown that Rost
nilpotence holds for S in Chow(k,Z/m). Hence by Lemma 2.11 above we get that
strong Rost nilpotence holds for S in Chow(k,Z/m).

3.3. Surfaces. Assume that char k = 0 and R = Z. Let S be a k-surface. We
claim that strong Rost nilpotence holds for S in Chow(k). Again the proof is only
a slight modification of the verification of Rost nilpotence for surfaces in [8, Sect.
2.5]. We briefly sketch the details.

Let for this E ⊇ k a field extension and αi ∈ IE/k(S), i = 1, 2, 3. We have a
tower of fields E ⊇ F ⊇ k with F a purely transcendental extension of k and E an
algebraic extension of F . Since resE/k : Endk(S) −→ EndF (SF ) is an isomorphism,
see e.g. [5, Prop. 2.1.8], replacing k by F we can assume that E ⊇ k is algebraic.

Let s ∈ S. Since αi E(s) = 0 and char k = 0 there is a Galois extension L ⊇ k(s),
such that αi L = 0 for all 1 ≤ i ≤ 3. It follows from [8, Thm. 4] that we have then

(α1 ◦ α2 ◦ α3)k(s) = 0 .

Taking into account Rost’s Lemma 2.3 this implies

α1 ◦ α2 ◦ . . . ◦ α8 ◦ α9 = 0

for all α1, . . . , α9 ∈ IE/k(S), and so IE/k(S)9 = 0.

3.4. Threefolds. We continue assuming R = Z.

Let X be a threefold over k, i.e. a smooth projective and integral k-scheme of
dimension three, where k is a field of characteristic 0. The arguments in [9] show
that strong Rost nilpotence holds for X in Chow(k) if and only if some power of the
ideal IE/k(X) acts trivial on CH0(Xk(X)) for all field extensions E ⊇ k We leave
the details to the reader.

3.5. Varieties whose motives split generically. Let k be again an arbitrary
field and X a smooth projective and integral k-scheme. We say that the motive
of X is generically split in Chow(k,R) if it is split in Chow(k(X), R). Vishik and
Zainoulline [16] have shown that for such schemes Rost nilpotence holds (any coeffi-
cient ring R). But their argument shows that actually strong Rost nilpotence holds
in this case. In [16, Proof of Lem 3.2], instead of considering only one element φ
in the kernel of resU/X one takes d elements ρ1, . . . , ρd, and sets φi := π∗

i,i+1(ρi).
Following then word by word the rest of the proof gives ρ1 ◦ . . . ◦ ρd = 0, and so
(Ker(resU/X))d = 0. This implies in particular the following remarkable fact:

Theorem (Vishik-Zainoulline). Let X be an integral scheme in PSmk. Then
IRk(X)/k(X) is a nilpotent ideal for all coefficient rings R.
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Études Sci. 98 (2003), 59–104.

E-mail address: gille@ualberta.ca

Department of Mathematical and Statistical Sciences, University of Alberta, Ed-
monton T6G 2G1, Canada


