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Character fields and Schur indices of irreducible Weil characters

G. Cliff, D. McNeilly, F. Szechtman

Introduction.

Let O be the ring of integers of a local field, with maximal ideal m. The residue
field Fq = O/m is assumed to have odd characteristic p > 0. Given a positive integer l,
consider the ring R = O/ml.

Let Sp(2n,R) denote the symplectic group associated to a free R-module V of rank 2n
endowed with a non-degenerate alternating form. Each linear character λ of the additive
group R gives rise to a Weil character Ωλ of Sp(2n,R). A description of Ωλ and its
irreducible constituents can be found in [CMS1]. We here investigate the Weil character
and its irreducible constituents in further depth.

Let ψ be any non-trivial irreducible character of Sp(2n,R) entering Ωλ. Denote the
rational character field and Schur index of ψ by Q(ψ) and mQ(ψ), respectively. We show

Q(ψ) =

{

Q, if q is a square;

Q
(

√

(−1)(p−1)/2p
)

, if q is not a square.

Furthermore,

mQ(ψ) =

{

1, if ι ∈ kerψ;
1, if ι 6∈ kerψ and q ≡ 3 mod 4;
2, if ι 6∈ kerψ and q ≡ 1 mod 4.

These formulae extend the corresponding results for the field case R = Fq. In the latter
case, the character field Q(ψ) is already implicitly described in [Ge], while the Schur
index mQ(ψ) was first determined by Gow, as a combination of [Go1] and [Go2]. A more
elementary calculation of mQ(ψ) can be found in [Sz].

The paper is divided into two parts. In the first, we investigate the rational character
field of the Weil character Ωλ. We work in the greater generality adopted in the pa-
pers [CMS1] and [CMS2], assuming only that R is a finite, commutative, local ring of odd
characteristic, and V is a faithful R-module endowed with a non-degenerate alternating
form. Furthermore, λ can be assumed to be primitive, in the sense that its kernel does not
contain a non-zero R-ideal. For ease of exposition, it is also assumed that the symplectic
group Sp(V ) is perfect.

Our first result is a character formula for Ωλ (when R is not a field). Using this
formula, the character values of certain symplectic transvections are observed to be closely
related to quadratic Gauss sums defined over the residue class field. These character
values are then used to show that there are precisely two Weil characters of primitive type,
as well as determine Q(Ωλ). The character field calculations are then extended to the
characters Ω±

λ afforded by the ±1 eigenspaces of the central involution ι of Sp(V ) which
acts on V by multiplication by −1, as well as the characters Ωλ,Top and Ω±

λ,Top, where
Top is the “top” layer of the ambient Weil module, as defined in [CMS2]. In the course of
doing so, we generalize an earlier result of Howe [H] on the values of the Weil character.
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The module V is said to admit a Witt decomposition if V = M ⊕N where M and N
are totally isotropic submodules. In the presence of a Witt decomposition, we attack the
problem of realizing Ω±

λ over an extension of Q of minimal degree using a procedure due to
Speiser [Sp]. The results obtained readily extend to the irreducible characters of Ω±

λ,Top,
and lead to calculations of their Frobenius-Schur indicators and rational Schur indices.

In contrast to Top, the “bottom” layer Bot of the ambient Weil module, as also defined
in [CMS2], is in general beyond our control. In the final section of the paper, we restrict
ourselves to the case in which R is principal and V is free. In this more amenable setting, it
was shown in our earlier paper [CMS1] that Bot affords a Weil representation of primitive
type for Sp(2n,O/ml−2) (provided l ≥ 2), so our calculation of the character fields and
Schur indices of the non-trivial irreducible constituents follows by induction.

Preliminary Remarks.

Let R be a finite, local, commutative ring of odd characteristic. Its maximal ideal
shall be denoted m. Let Fq = R/m be the residue class field of R. We observe that the
characteristic of R is a power pe of the characteristic p of Fq. Let ζ be a fixed primitive pe-
th root of unity, and set F = Q(ζ). By definition of the characteristic, F is the Brauer
field of the additive group R+.

A complex linear character λ of the additive group R+ is said to be primitive if its
kernel contains no non-trivial R-ideals. We assume throughout that R+ admits a primitive
complex linear character λ. Given r ∈ R, we shall denote by λ[r] the linear character

λ[r](s) = λ(rs), s ∈ R. (1)

Note that if r′ is an additional element of R then

λ[rr′] = λ[r][r′].

Lemma 1. If ψ is a complex linear character of R+ then ψ = λ[r] for a unique r ∈ R.
Furthermore, λ[r] is primitive if and only if r ∈ R∗.

Proof : If λ[r] = λ[s] then the ideal generated by r − s lies in the kernel of λ. Primitivity
of λ thus forces r = s. Observing |R| = |IrrR+| < ∞, it follows that the map

r 7→ λ[r], r ∈ R,

is a bijection of R with IrrR+, which proves the first statement.
Let r ∈ R∗. If i is an R-ideal lying in the kernel of λ[r], the definition (1) shows r−1i

lies in the kernel of λ. Primitivity of λ allows us to deduce r−1i = 0, whence i = 0. On
the other hand, if r ∈ m then annR(r) is a non-trivial ideal which lies in the kernel of λ[r].
This completes the proof of the lemma.

Let 〈 , 〉 be a non-degenerate alternating R-bilinear form on a finite R-module V .
We assume V admits an element x such that 〈x, V 〉 = R, and fix y ∈ Y such that

〈x, y〉 = 1. (2)
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Such an element x is said to be primitive. We recall a number of groups associated to
the pair (V, 〈 , 〉). The first is the Heisenberg group H(V ), which is realized as the group
on R× V with multiplication

(r, v)(s, w) = (r + s+ 〈v, w〉 , v + w), r, s ∈ R, v, w ∈ V.

The second is the symplectic group Sp(V ), the subgroup of GL(V ) which leaves the
form 〈 , 〉 invariant.

The third group that is of interest is the group GSp(V ) of symplectic similitudes. It
is the subgroup of GL(V ) consisting of operators f for which there exists a unit r of R,
depending on f , such that for all v and w in V ,

〈fv, fw〉 = r 〈v, w〉 . (3)

We note that the scalar r appearing in (3) is uniquely determined by f . Indeed, if one
takes v = x and w = y then (2) and (3) combine to yield

r = r 〈x, y〉 = 〈fx, fy〉 .

Writing r = k(f), it is not difficult to see that the map k : GSp(V ) → R∗ is a homomor-
phism of groups. We observe that the kernel of k is precisely the symplectic group Sp(V );
in particular Sp(V ) is a normal subgroup of GSp(V ).

The Actions of the Symplectic Similitudes.

The group of symplectic similitudes acts naturally on the Heisenberg group as a group
of automorphisms : if f ∈ GSp(V ) and h = (r, v) ∈ H(V ) then we define

fh = f(r, v) = (k(f)r, fv). (4)

This action extends the usual action of the symplectic group on H(V ). GSp(V ) also acts
on its normal subgroup Sp(V ) via conjugation.

The actions of GSp(V ) on H(V ) and Sp(V ) induce (right) actions of the first group
on the representations and characters of the latter two groups. We investigate the effect
of these actions on Schrödinger and Weil representations and their characters. Fix a
Schrödinger representation Sλ of type λ and an associated Weil representation Wλ; their
characters will be denoted χλ and Ωλ respectively.

Since V ⊥ = 0, the character χλ is given by the following formula [CMS2, Defini-
tion 3.1].

χλ(r, v) =

{
√

|V |λ(r), if v = 0;
0, otherwise.

(5)

Proposition 2. If f ∈ GSp(V ) then Sfλ is a Schrödinger representation of type λ[k(f)].

Proof : The representation Sfλ affords the character χfλ. In light of the definition (4) of
the action of GSp(V ) on H(V ) and the formula (5) for the Schrödinger character χλ, an
elementary calculation shows

χfλ = χλ[k(f)].
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This completes the proof of the proposition.

Corollary 3. The representation W f
λ is Weil of type λ[k(f)].

Proof : Let g ∈ Sp(V ) and h ∈ H(V ). Observing fgf−1 is an element of Sp(V ), we
calculate

Sfλ (gh) = Sλ
(

fgh
)

= Sλ

(

(fgf−1)fh
)

= Wλ

(

fgf−1
)

Sλ
(

fh
)

Wλ

(

fgf−1
)−1

(by definition of the Weil representation)

= W f
λ (g)Sfλ(h)(W f

λ (g))−1.

In light of Proposition 2, the preceding calculation and the definition of the Weil representa-
tion [CMS2, Definition 3.4] allow us to deduce W f

λ is a Weil representation of type λ[k(f)].
This completes the proof of the corollary.

For ease of exposition, we adopt the following

Hypothesis : Sp(V ) is perfect.

This is indeed the case if V is free, provided the rank of V is greater than 2 or the
order q of the residue class is greater than 3. The hypothesis ensures that there is a unique
Weil character Ωλ for each primitive character λ of R+. Corollary 3 thus leads to the
following

Theorem 4. If t ∈ R∗ then Ωλ = Ωλ[t2].

Proof : Applying Corollary 3 with f = t · 1, so k(f) = t2, and taking characters yields (via
uniqueness of the Weil character)

Ωλ[t2] = Ωfλ.

On the other hand, f clearly centralizes Sp(V ), so

Ωfλ = Ωλ.

This completes the proof of the theorem.

A Character Formula.

In this section, it shall be assumed that the maximal ideal m is non-zero. In [CMS2],
the Weil representation of Sp(V ) was constructed using the following procedure. Fix a
non-zero totally isotropic Sp(V )-invariant submodule U and let U⊥ be the orthogonal
module. We note that U⊥ is Sp(V )-invariant. Choose a Schrödinger representation S ′

λ

of H(U⊥) and fix an associated Weil representation W ′
λ of Sp(U⊥). Using the definition

of the Weil representation W ′
λ, an elementary calculation shows the map

(r, u, g) 7→ S′
λ(r, u)W

′
λ(g|U⊥), r ∈ R, u ∈ U⊥, g ∈ Sp(V ),
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is a representation W ′
λ of the semidirect product H(U⊥) o Sp(V ), so we may form the

induced representation

Wλ = ind
H(V )oSp(V )

H(U⊥)oSp(V )
W ′
λ.

The restriction of Wλ to H(V ) is Schrödinger of type λ, hence Wλ restricts to a Weil
representation Wλ of Sp(V ).

The preceding realization of the Weil representation Wλ allows us to calculate its
character Ωλ in terms of the character of W ′

λ. Indeed, let g0 ∈ Sp(V ). If (r, v, g) ∈
H(V ) o Sp(V ), an elementary calculation gives

(0, 0, g0)
(r,v,g) = (−r,−g−1v, g−1)(0, 0, g0)(r, v, g)

= (〈g0v, v〉 , g−1(g0v − v), g−1g0g)

It follows that (0, 0, g0)
(r,v,g) ∈ H(U⊥)oSp(V ) if and only if g−1(g0v−v) ∈ U⊥. Since U⊥

is Sp(V )-invariant, we conclude (0, 0, g0)
(r,v,g) ∈ H(U⊥)oSp(V ) if and only if g0v−v ∈ U⊥.

Appealing to the elementary theory of induced representations [CR1, §10A], the ob-
servation of the previous paragraph yields

Ωλ(g0) =
1

|H(U⊥) o Sp(V )|
∑

(r,v,g)

v∈(g0−1)−1(U⊥)

trW ′
λ(〈g0v, v〉 , g−1(g0v − v), g−1g0g). (6)

We next observe

(〈g0v, v〉 , g−1(g0v − v), g−1g0g) = (0, 0, g−1)(〈g0v, v〉 , g0v − v, g0)(0, 0, g).

If v ∈ (g0 − 1)−1(U⊥) then each of the group elements appearing in the last expression
belongs to H(U⊥) o Sp(V ). Since W ′

λ is a representation of H(U⊥) o Sp(V ), we conclude

trW ′
λ(〈g0v, v〉 , g0v − v, g0) = trW ′

λ(〈g0v, v〉 , g−1(g0v − v), g−1g0g),

for all g ∈ Sp(V ). Substituting in the expression (6), we obtain

Ωλ(g0) =
1

|H(U⊥) o Sp(V )|
∑

(r,v,g)

v∈(g0−1)−1(U⊥)

trW ′
λ(〈g0v, v〉 , g0v − v, g0)

=
|R| |Sp(V )|

|H(U⊥) o Sp(V )|
∑

v∈(g0−1)−1(U⊥)

trW ′
λ(〈g0v, v〉 , g0v − v, g0).

Since |R| |Sp(V )| /
∣

∣H(U⊥) o Sp(V )
∣

∣ = 1/
∣

∣U⊥∣

∣, the definition of the representation W ′
λ

yields the following
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Proposition 5. The character Ωλ afforded by the Weil representation Wλ = resSp(V ) Wλ

is given by

Ωλ(g) =
1

|U⊥|
∑

v∈(g−1)−1(U⊥)

trS′
λ(〈gv, v〉 , gv − v)W ′

λ(g|U⊥).

Some Character Values.

For the remainder of the paper, it shall be convenient to view Fq as a subset of R.
This can be done canonically as follows. The natural homomorphism of R onto Fq induces
a surjective homomorphism of the group R∗ onto F

∗
q . Since the kernel of the latter map is

U1 = {r ∈ R : r ≡ 1 mod m},

the Sylow p-subgroup of R∗, we deduce F
∗
q is canonically isomorphic to the p′-part of R∗.

Adjunction of 0 to the latter set yields a multiplicatively closed subset of R which we
identify with Fq. With this convention we have

R∗ = F
∗
q × U1. (7)

The fact R admits a primitive complex linear character λ ensures that the ring R has
a unique simple R-ideal s. Indeed, this is obvious if R is a field, and the case m 6= 0 is
handled by [CMS1, Lemma 5.1].

We recall that if r ∈ R and v ∈ V then the transformation

τr,v : w 7→ w + r 〈w, v〉w, w ∈ V,

belongs to Sp(V ). The maps τr,v are called symplectic transvections.

Lemma 6. Let x ∈ V be primitive and s ∈ s be non-zero. The symplectic transvection τs,x
then satisfies

Ωλ(τs,x) =

√

|V |
q

∑

r∈Fq

λ(−r2s). (8)

Proof : If R is a field then s = R, hence Lemma 6 is a consequence of Gérardin’s character
formula [Ge, Theorem 4.9.1(c)]. Alternatively, the result also follows from the explicit
realization of the Weil representation presented in [Sz, Proposition 2]. In the case m 6= 0,
which shall be assumed for the remainder of the proof, the verification of (8) can be
accomplished via Proposition 5. In what follows, let U be a fixed non-zero Sp(V )-invariant
totally isotropic submodule of V . We earlier observed that U⊥ was Sp(V )-invariant. It is
furthermore non-zero, since U ⊆ U⊥, and proper, since 〈 , 〉 is non-degenerate.

Fixing y ∈ V such that 〈x, y〉 = 1, each v ∈ V has a unique decompositon

v = w + ry
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with r = 〈x, v〉 ∈ R and w = v − ry ∈ x⊥. With this notation, one has

τs,xv = v − rsx.

Since s ∈ s, the preceding identity allows us to deduce that

V (m) = {v ∈ V : 〈V, v〉 ⊆ m}

is pointwise fixed by τs,x and (τs,x − 1)(V ) ⊆ sV . Observing sV ⊆ U⊥ ⊆ V (m) [CMS2,
Lemma 5.6], it follows that τs,x|U⊥ is the identity operator and (τs,x − 1)−1(U⊥) = V . In
light of the equality

〈τs,xv, v〉 = −r2s,

Proposition 5 yields

Ωλ(τs,x) =
1

|U⊥|
∑

v∈V
trS′

λ(−r2s,−rsx)

=

∣

∣x⊥
∣

∣

|U⊥|
∑

r∈R
trS′

λ(−r2s,−rsx)

We now appeal to the definition of the Schrödinger character [CMS2, Definition 3.1].
In light of [loc. cit., Lemma 5.6], each −rsx ∈ sV ⊆ U , whence

trS′
λ(−r2s,−rsx) =

√

[U⊥ : U ]λ(−r2s).

Furthermore, if we write r = r0 + r1, where r0 ∈ Fq and r1 ∈ m, then

−r2s = −(r20 + 2r0r1 + r21)s = −r20s,

since s is annihilated by m. We conclude

Ωλ(τs,x) =

∣

∣x⊥
∣

∣ |m|
√

[U⊥ : U ]

|U⊥|
∑

r0∈Fq

λ(−r20s).

The factor multiplying the sum can be simplified. It is a consequence of [CMS2, Lemma 2.1]
that [V : U⊥] = |U |, and so

|V | = [V : U⊥][U⊥ : U ] |U | = [U⊥ : U ] |U |2 =

∣

∣U⊥∣

∣

2

[U⊥ : U ]
.

Since
∣

∣x⊥
∣

∣ = |V | / |R|, we deduce

∣

∣x⊥
∣

∣ |m|
√

[U⊥ : U ]

|U⊥| =

√

|V |
q

,
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where q is the order of the residue class field. Our expression for Ωλ(τs,x) may thus be
rewritten as

Ωλ(τs,x) =

√

|V |
q

∑

r0∈Fq

λ(−r20s).

The proof of Lemma 6 is thus completed when we replace the index of summation r0 by r.
Consider the sum appearing on the right-hand side of (8). Since λ is primitive and s ∈

s, the map
r 7→ λ(−rs), r ∈ Fq,

is a non-trivial complex linear character of the additive group F
+
q . If we introduce the

Legendre symbol
(

a
Fq

)

of the finite field Fq [C],

∑

r∈Fq

λ(−r2s) =
∑

r∈F∗
q

(

r

Fq

)

λ(−rs)

is a quadratic Gauss sum on the field Fq. Lemma 6 and the elementary theory of Gauss
sums [W, §6.1] thus allow the deduction of the following result.

Lemma 7. Let x ∈ V be primitive and s ∈ s non-zero.
(i) Ωλ(τs,x) = ±

√

(−1)(q−1)/2 |V | /q.
(ii) If r ∈ F

∗
q then

Ωλ[r](τs,x) =

(

r

Fq

)

Ωλ(τs,x).

Theorem 8. Let λ and ψ be primitive complex linear characters of R+. The Weil
characters Ωλ and Ωψ of Sp(V ) are equal if and only if there exists an r in (R∗)2 such
that ψ = λ[r]. In particular, there are precisely two Weil characters of Sp(V ) of primitive
type, namely Ωλ and Ωλ[ε] where ε is a generator of F

∗
q .

Proof : Because of (7),
(R∗)2 = (F∗

q)
2 × U1, (9)

since F ∗
q is cyclic, U1 is a p-group, and p is odd. It follows that R∗/(R∗)2 has order 2, with

R∗ = (R∗)2 ∪ ε(R∗)2.

From Lemma 1, there exists r ∈ R∗ such that ψ = λ[r]. If r ∈ (R∗)2 then Theorem 4
asserts Ωψ = Ωλ. If r 6∈ (R∗)2 then ε−1r ∈ (R∗)2, hence

Ωψ = Ωλ[r] = Ωλ[ε][ε−1r] = Ωλ[ε],

the last identity following from Theorem 4 applied to the primitive character λ[ε].
On the other hand, if s is a non-zero element of s then Lemma 7(ii) gives

Ωλ[ε](τs,x) =

(

ε

Fq

)

Ωλ(τs,x) = −Ωλ(τs,x).
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Part (i) of the same lemma asserts that both character values are non-zero, hence Ωλ 6=
Ωλ[ε] = Ωψ. This completes the proof of the theorem.

The Action of Galois.

As shown in [CMS1], both the Schrödinger representation Sλ and the Weil repre-
sentation Wλ may be realized over F . For this section, we view Sλ and Wλ as matrix
representation defined over F .

Given σ ∈ Gal(F/Q), let σSλ and σWλ be the representations obtained via the action
of σ on the matrix entries of Sλ and Wλ respectively. For t ∈ (Z/peZ)

∗
, let σ(t) ∈

Gal(F/Q) be the automorphism defined by

σ(t)(ζ) = ζt.

Proposition 9. The representation σ(t)Sλ is Schrödinger of type λ[t].

Proof : We first observe that σ(t)λ = λ[t]. Indeed, if r ∈ R then, since λ(r) is a pe-th root
of unity,

σ(t)λ(r) = (λ(r))t = λ(rt) = λ[t](r).

Since σ(t)Sλ affords the character σ(t)χλ, the preceding observation combines with the
formula (5) to yield σ(t)χλ = χλ[t]. This completes the proof of the lemma.

Corollary 10. The representation σ(t)Wλ is Weil of type λ[t].

Proof : The action of σ(t) is readily seen to be a ring homomorphism of the ambient
matrix algebra. Therefore, assuming h ∈ H(V ) and g ∈ Sp(V ), the definition of the Weil
representation gives

σ(t)Sλ (gh) = σ(t)
(

Wλ(g)Sλ(h)Wλ(g)
−1

)

= σ(t)Wλ(g)
σ(t)Sλ(h)

(

σ(t)Wλ(g)
)−1

.

In virtue of Proposition 9, the definition of the Weil representation allows us to con-
clude σ(t)Wλ is as claimed. This completes the proof of the corollary.

The Character Fields of the Weil Representations.

In this section, we determine the character fields of the Weil representations of prim-
itive type. We first recall that q is the order of the residue class field of R. Moreover, by
definition of characteristic, Z/peZ is a subring of R, and hence (Z/peZ)∗ is a subgroup
of R∗.

Lemma 11. The group of units of Z/peZ is a subgroup of (R∗)2 if and only if q is square.

Proof : We first observe
(Z/peZ)∗ = F

∗
p × U1(Z/p

eZ),

where U1(Z/p
eZ) = U1 ∩ Z/peZ. In light of the decomposition (9) of (R∗)2, the lemma is

seen to be a consequence of the following elementary fact from the theory of finite fields :

Assuming p is odd, F
∗
p ⊆

(

F
∗
q

)2
if and only if q is a square.
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Theorem 12. If λ is a primitive character of R+ then

Q(Ωλ) =

{

Q, if q is a square;

Q
(

√

(−1)(p−1)/2p
)

, if q is not a square.

Proof : Corollary 10 ensures that Weil characters are permuted by Gal(F/Q), with

σ(t)Ωλ = Ωλ[t], t ∈ (Z/peZ)∗.

We first consider the case q is a square. Given t ∈ (Z/peZ)∗, Lemma 11 allows us to
write t = r2 for some element r of R∗. Therefore,

σ(t)Ωλ = Ωλ[t] = Ωλ[r2] = Ωλ,

the last equality following from Theorem 4. Since t was arbitrary, we deduce Gal(F/Q)
fixes Ωλ, whence Q(Ωλ) = Q.

If q is not a square, the preceding argument still shows that Ωλ is fixed by

{σ(t2) : t ∈ (Z/peZ)∗} = Gal

(

F/Q

(

√

(−1)(p−1)/2p

))

.

On the other hand, let ε be a generator of F
∗
p ⊆ Z/peZ∗. As q is not a square, Lemma 11

shows ε 6∈ (R∗)2, whence Theorem 8 allows us to conclude

σ(ε)Ωλ = Ωλ[ε] 6= Ωλ.

Therefore, the character field of Ωλ is a subfield of Q
(

√

(−1)(p−1)/2p
)

that properly

contains Q. The identity Q(Ωλ) = Q
(

√

(−1)(p−1)/2p
)

is thus a consequence of the fact

that the latter field is a quadratic extension of Q. This completes the proof of the theorem.

Character Fields of Submodules of the Weil Representation.

Theorem 12 can be extended to certain canonical subrepresentations of Wλ. Recall
that the transformation

ι(v) = −v, v ∈ V, (10)

is a central involution of Sp(V ). If X is the ambient space affording Wλ, let X+ and X−

be respectively the +1 and −1-eigenspaces of the operator Wλ(ι). Since ι is central, X+

and X− are Sp(V )-submodules of X; the associated representations shall be denoted W+
λ

and W−
λ , and their characters Ω+

λ and Ω−
λ .

Let g ∈ Sp(V ). By construction,

W+
λ (ιg) = W+

λ (g) and W−
λ (ιg) = −W−

λ (g),

whence
Ω+
λ (ιg) = Ω+

λ (g) and Ω−
λ (ιg) = −Ω−

λ (g).

Since Ωλ = Ω+
λ + Ω−

λ , the preceding identities allow the deduction of the following result.
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Lemma 13. If g ∈ Sp(V ) then

Ω±
λ (g) =

Ωλ(g) ± Ωλ(ιg)

2
.

It is an immediate consequence of the preceding lemma that the character fields Q(Ω+
λ )

and Q(Ω−
λ ) are subfields of Q(Ωλ). We will presently show that all three fields are equal.

For this, the following generalization of [H, Proposition 2(ii)] is required.

Theorem 14. Let λ be a primitive linear character of R+. If g ∈ G then

|Ωλ(g)|2 = |ker (g − 1)| .

Proof : Let F be the field of definition of X. [CMS1, Theorem 4.5] asserts that EndF (X)
is Sp(V )-isomorphic to the permutation module V̂ associated with the Sp(V )-set V , hence
both modules afford the same character χ. The decomposition

EndF (X) = X ⊗F X∗,

where X∗ = HomF (X,F ), shows χ = |Ωλ|2. On the other hand the description of χ as a
permutation character gives

χ(g) = |ker (g − 1)| , g ∈ Sp(V )

A comparison of the two expressions for χ completes the proof of the theorem.

Corollary 15. If x is a primitive element of X and s ∈ s \ {0} then

Ωλ(ιτs,x) = ±1.

Proof : If v ∈ ker (ιτs,x − 1) then an elementary calculation shows

v =
1

2
s 〈x, v〉x ∈ ker τs,x,

whence
v = ιτs,x(v) = 0.

Thus ker (ιτs,x − 1) is trivial, and so Theorem 14 allows us to conclude

|Ωλ(ιτs,x)|2 = 1. (11)

If we recall Ωλ(ιτs,x) is an integer of the quadratic extension Q
(

√

(−1)(p−1)/2p
)

, the

preceding identity immediately implies Ωλ(ιτs,x) ∈ {±1} if p > 3.
In the case p = 3, the fact Q(

√
−3) contains roots of unity different from ±1 has to

be taken into account. If q is a square, Theorem 12 implies Ωλ(ιτs,x) is rational, so the
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required result is an immediate consequence of (11). If q is an odd power of 3, apriori (11)
only allows us to deduce

Ωλ(ιτs,x) = η,

for some sixth root of unity η. It remains to show η = ±1.
From Lemma 7(i),

Ωλ(τs,x) = ±
√

|V |
3q

√
−3.

Lemma 13 thus yields

2Ω+
λ (τs,x) = ±

√

|V |
3q

√
−3 + η

= η

[

1 + η1

√

|V |
3q

√
−3

]

,

where η1 = ±η−1 is another sixth root of unity. Applying the norm map N = NQ(
√
−3)/Q,

the preceding equation allows us to deduce

4N
(

Ω+
λ (τs,x)

)

= 1 + (η1 − η1)

√

|V |
3q

√
−3 +

|V |
q
.

Since Ω+
λ (τs,x) is an integer of Q(

√
−3), 4N(Ω+

λ (τs,x)) is an even rational integer. On the
other hand, both 1 and |V | /q are odd rational integers, the latter being a power of 3, and
thus

(η1 − η1)

√

|V |
3q

√
−3

is necessarily an even rational integer. Since η1 is a sixth root of unity, this is only possible
if η1 = ±1, whence η = ±η1 = ±1, as required. This completes the proof of the corollary.

Theorem 16. If λ be a primitive linear character of R+ then

Q(Ω+
λ ) = Q(Ω−

λ ) =

{

Q, if q is a square;

Q
(

√

(−1)(p−1)/2p
)

, if q is not a square.

Proof : As noted earlier, Lemma 13 ensures that Q(Ω±
λ ) are subfields of Q(Ωλ). If q is

square then the result is an immediate consequence of the description of Q(Ωλ) provided
by Theorem 12.

If q is not a square, pick s ∈ s \ {0}. Since |V | is a square, Lemma 7 (i) ensures

Ωλ(τs,x) ∈ Q

(

√

(−1)(p−1)/2p

)

\ Q.

12



On the other hand, Corollary 15 ensures Ωλ(ιτs,x) is rational. Hence, Lemma 13 allows us
to conclude

Ω±
λ (τs,x) =

Ωλ(τs,x) ± Ωλ(ιτs,x)

2
∈ Q

(

√

(−1)(p−1)/2p

)

\ Q.

This completes the proof of the theorem.

Theorem 12 can also be extended to the top layer Top and its irreducible components.
We first recall the definition of Top [CMS2, §5]. Let s be the simple ideal of R and set

Γ(sV ) = {g ∈ Sp(V ) : g ≡ 1 mod sV }.

Γ(sV ) is a normal subgroup of Sp(V ), and hence

Bot = invΓ(sV )X (12)

is an Sp(V )-submodule of X. The fact V admits a primitive element x ensures Bot is a
proper submodule. The top layer of the module X is by definition the quotient module

Top = X/Bot. (13)

As was the case of the Weil module, one has a decomposition

Top = Top+ ⊕ Top−

where Top+ and Top− are respectively the +1 and −1-eigenspaces of the operator on Top
associated with ι. We recall [CMS2, Theorem 5.8] that Top± are irreducible Sp(V )-modules
and each occurs with multiplicity one in the Weil module X.

Let Ωλ,Bot and Ωλ,Top be the characters afforded by Bot and Top respectively. The
characters afforded by Top+ and Top− shall be denoted Ω+

λ,Top and Ω−
λ,Top.

Theorem 17. If λ is a primitive linear character of R+ then

Q(Ω±
λ,Top) = Q(Ωλ,Top) =

{

Q, if q is a square;

Q
(

√

(−1)(p−1)/2p
)

, if q is not a square.

Proof : If R is a field then Top = X and the result is just a restatement of Theorem 16.
We may therefore assume s is a proper R-ideal. The argument used to prove Lemma 13
can be adapted to show that

Ω±
λ,Top(g) =

Ωλ,Top(g) ± Ωλ,Top(ιg)

2
, g ∈ Sp(V ).

Furthermore, from (13),
Ωλ,Top = Ωλ − Ωλ,Bot. (14)
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The definition of Bot as the Γ(sV )-invariants of X ensures that Q(Ωλ,Bot) is a subfield
of Q(Ωλ), hence the preceding identities allows us to deduce

Q(Ω±
λ,Top) ⊆ Q(Ωλ,Top) ⊆ Q(Ωλ). (15)

If q is a square, the theorem is an immediate consequence of (15) and the description
of Q(Ωλ) provided by Theorem 12.

For the remainder of the proof we shall assume q is not a square. Let s ∈ s be
non-zero and consider the symplectic transvection τs,x, x a primitive element of V . From
Lemma 7(i),

Ωλ(τs,x) ∈ Q(Ωλ) \ Q,

while Corollary 15 yields
Ωλ(ιτs,x) ∈ Q.

Furthermore, since τs,x ∈ Γ(sV ) act trivially on Bot, we deduce

Ωλ,Bot(τs,x) = Ωλ,Bot(1) and Ωλ,Bot(ιτs,x) = Ωλ,Bot(ι)

are both rational, the last since ι is an involution. The identity (14) thus allows us to
conclude

Ωλ,Top(τs,x) ∈ Q(Ωλ) \ Q,

Ωλ,Top(ιτs,x) ∈ Q.

Therefore,

Ω±
λ,Top(τs,x) =

Ωλ,Top(τs,x) ± Ωλ,Top(ιτs,x)

2
∈ Q(Ωλ) \ Q.

In particular, the character fields Q(Ω+
λ,Top) and Q(Ω−

λ,Top) are non-trivial extensions
of Q. On the other hand, Theorem 12 asserts Q(Ωλ) is a quadratic extensions of Q, so (16)
allows us to conclude

Q(Ω±
λ,Top) = Q(Ωλ,Top) = Q(Ωλ) = Q

(

√

(−1)(p−1)/2p

)

.

This completes the proof of the theorem.

The Witt Decomposition.

We proceed to address the problem of realizing the representations W+
λ and W−

λ , as
well as those afforded by Top+ and Top−, over the most economical field. We shall do
so under the hypothesis V admits a Witt decomposition : there exists totally isotropic
submodules M and N of V such that

V = M ⊕N.

Such a decomposition exists if V is free or R is principal. In general, V may fail to admit
a Witt decomposition.
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Let X be an F -space with basis B = {αw : w ∈ N}. The Schrödinger representa-
tions Sλ[t], t ∈ R∗, can all be realized on X. Explicitly, if r ∈ R, u ∈ M and w ∈ N , then
the action of the operator Sλ[t](r, u+w) on the basis element αw′ , w′ ∈ N , is given by the
formula

Sλ[t](r, u+ w)αw′ = λ[t] (r + 〈u,w + 2w′〉)αw+w′

= λ (t(r + 〈u,w + 2w′〉))αw+w′

(16)

In what follows, Sλ[t] is taken to be the representation defined by (16). Since Sp(V ) is
assumed to be perfect, Schur’s Lemma ensures that there is a unique Weil representa-
tion Wλ[t] associated with Sλ[t].

A further consequence of the existence of a Witt decomposition is that the canonical
map k : GSp(V ) → R∗ induced by (3) is a split epimorphism. Indeed, for t ∈ R∗, let ft be
the operator on V defined by

ft(u+ w) = tu+ w, u ∈M,w ∈ N. (17)

It is readily observed that ft ∈ GSp(V ), and the map t 7→ ft is a homomorphic k-section.
The operators ft shall be used in the sequel.

The Actions of GSp(V ) and Galois Revisited.

The existence of a Witt decomposition provides a greater degree of control over the
Schrödinger representations Sλ[t] and their associated Weil representations Wλ[t]. As a re-
sult, Propositions 2 and 9 and their immediate corollaries admit the following refinements.

Proposition 18. If t ∈ R∗ then
Sft

λ = Sλ[t].

Moreover, if t ∈ (Z/peZ)∗ then
σ(t)Sλ = Sλ[t].

Proof : In light of the description (16) of the Schrödinger representations and the defini-
tion (17) of the operator ft, if r ∈ R, u ∈M , and w, w′ ∈ N then

Sft

λ (r, u+ w)αw′ = Sλ(tr, tu+ w)αw′

= λ(tr + 〈tu, w + 2w′〉)αw+w′

= λ (t(r + 〈u,w + 2w′〉))αw+w′

= Sλ[t](r, u+ w)αw′ ,

This completes the proof of the identity Sft

λ = Sλ[t].
Similarly, if t ∈ (Z/peZ)∗,

σ(t)Sλ(r, u+ w)αw′ = σ(t)(Sλ(r, u+ w)αw′)

= σ(t)(λ(r + 〈u,w + 2w′〉)αw+w′)

= σ(t)λ(r + 〈u,w + 2w′〉)αw+w′

= λ (t(r + 〈u,w + 2w′〉))αw+w′

= Sλ[t](r, u+ w)αw′ .

This verifies the identity σ(t)Sλ = Sλ[t], and thus completes the proof of the proposition.
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Corollary 19. If t ∈ R∗ then
W ft

λ = Wλ[t].

Furthermore, if t ∈ (Z/peZ)∗ then

σ(t)Wλ = Wλ[t].

Proof : Let g ∈ Sp(V ) and h ∈ H(V ). If t ∈ R∗ then the proof of Corollary 3 provides the
identity

Sft

λ (gh) = W ft

λ (g)Sft

λ (g)(W ft

λ (g))−1,

while, if t ∈ (Z/peZ)∗, that of Corollary 10 yields

σ(t)Sλ (gh) = σ(t)Wλ(g)
σ(t)Sλ(h)

(

σ(t)Wλ(g)
)−1

.

In light of the uniqueness of the Weil representation, both statements are immediate con-
sequences of Proposition 18. This completes the proof of the corollary.

The statement of the next result requires the introduction of some notation. For t ∈
R∗, let gt be the operator on V defined by

gt(u+ w) = tu+ t−1w, u ∈M,w ∈ N. (18)

We observe gt ∈ Sp(V ), and satisfies the relation

ft2 = gt(t · 1), (19)

where 1 denotes the identity operator on V .

Theorem 20. Let t ∈ R∗. If t2 ∈ (Z/peZ)∗ then, for all g ∈ Sp(V ),

σ(t2)Wλ(g) = Wλ(gt)Wλ(g)Wλ(gt)
−1. (20)

Proof : From Corollary 19,
σ(t2)Wλ(g) = Wλ[t2](g)

= W
f

t2

λ (g)

= W
gt(t·1)
λ (g),

the last equality following from (19). Since t · 1 centralizes Sp(V ),

W
gt(t·1)
λ (g) = W gt

λ (g)

= Wλ(gtgg
−1
t )

= Wλ(gt)Wλ(g)Wλ(gt)
−1,

as Wλ is a representation of Sp(V ). This completes the proof of the proposition.
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We will presently extend the conclusion of Theorem 20 to the representations W+
λ

and W−
λ . We first recall some properties of the operator Wλ(ι). From [CMS1], Wλ(ι) acts

on the basis elements αw, w ∈ N , via the formula

Wλ(ι)αw =

(−1

N

)

α−w, (21)

where
( •
N

)

is Cartier’s generalization of the Legendre symbol [Ca]. Choosing a set T of
representatives for the ι-orbits of N , the preceding formula suggests we introduce the new
basis

B′ = {(αw + α−w)/2 : w ∈ T} ∪ {(αw − α−w)/2 : w ∈ T,w 6= 0}.
We observe that the change from the basis B to the basis B′ is defined over Q. Moreover,
equation (21) ensures that B′ may be ordered so that, if P is the change of basis matrix
and g ∈ Sp(V ),

P−1Wλ(g)P =

(

W+
λ (g) 0
0 W−

λ (g)

)

.

Therefore, assuming the hypothesis of Theorem 20, conjugation of (20) by the rational
matrix P yields

(

σ(t2)W+
λ (g) 0

0 σ(t2)W−
λ (g)

)

=

(

W+
λ (gt)W

+
λ (g)W+

λ (gt)
−1 0

0 W−
λ (gt)W

−
λ (g)W−

λ (gt)
−1

)

.

This completes the proof of the following

Corollary 21. Let t ∈ R∗. If t2 ∈ (Z/peZ)∗ then, for all g ∈ Sp(V ),

σ(t2)W±
λ (g) = W±

λ (gt)W
±
λ (g)W±

λ (gt)
−1.

We close this section with some observations about the operators Wλ(gt). By defini-
tion, the summands M and N occuring in the Witt decomposition of V are left invariant
by gt, and so, using the construction of the Weil representation presented in [CMS1],
Wλ(gt) is given by the formula

Wλ(gt)αw =

(

gt
N

)

αt−1w, w ∈ N.

In particular, Wλ(gt) is a rational operator. Since the change from the basis B to B′ is ra-
tional, it follows that both W+

λ (gt) and W−
λ (gt) are also rational. Furthermore, {W+

λ (gt) :
t ∈ R∗} and {W−

λ (gt) : t ∈ R∗} are both Abelian groups.

A General Procedure.

The realization of W+
λ and W−

λ over an economical field shall be accomplished via a
procedure due to Speiser [Sp]. Let K/k be a finite Galois extension and set G = Gal(K/k).

17



Regarding GLm(K) as a (left)G-group in the obvious manner, a function δ : G→ GLm(K)
is said to be a 1-cocycle of G with values in GLm(K) if, for all σ and τ in G,

δ(στ) = δ(σ) σδ(τ).

In particular, since G fixes GLm(k) pointwise, any homomorphism of G into GLm(k) can
be viewed as a 1-cocycle. If δ is a 1-cocyle then the theory of Galois cohomology [Se,
Proposition 3, Chap. X] asserts the existence L ∈ GLm(K) such that

δ(σ) = L−1 σL, σ ∈ G. (22)

Let ρ : A → GLm(K) be a matrix representation of the group A, and suppose there
exists a 1-cocycle δ such that, for all a ∈ A and σ ∈ G,

σρ(a) = δ(σ)−1ρ(a)δ(σ).

If L ∈ GLm(K) satisfies (22) then, for a ∈ A and σ ∈ G,

σ
(

Lρ(a)L−1
)

= σL σρ(a) (σL)−1

= σL δ(σ)−1ρ(a)δ(σ)(σL)−1

= Lρ(a)L−1.

This shows that the conjugate representation LρL−1 is realized over the ground field k.

Realizability of W+
λ .

We now apply Speiser’s procedure to the representations at hand, starting with W+
λ .

Theorem 22. The representation W+
λ is realizable over its character field Q(Ωλ).

Proof : Let G = Gal(F/Q(Ωλ)). From the proof of Theorem 12, if σ ∈ G then there
exists t ∈ R∗ with t2 ∈ (Z/peZ)∗ such that

σ = σ(t2).

The preceding equation only determines t up to multiplication by ±1. On the other hand,
since g−t = ιgt, one has

W+
λ (g−t) = W+

λ (ιgt) = W+
λ (gt),

the last equality following from the fact ι acts trivially on X+. Therefore, if d+ is the
degree of W+

λ , the remarks that follow Corollary 21 allow us to conclude that

σ 7→W+
λ (gt)

−1, σ = σ(r2) ∈ G,

is a well-defined 1-cocyle of G with values in GLd+(F ) (In fact, δ is a homomorphism of G
into GLd+(Q)). Moreover, the definition of δ and Corollary 21 ensure that, for all σ ∈ G
and g ∈ Sp(V ),

σW+
λ (g) = δ(σ)−1W+

λ (g)δ(σ).

Speiser’s procedure thus allows us to conclude W+
λ can be realized over Q(Ωλ), the fixed

field of G. This completes the proof of the theorem.

Realizability of W−
λ : Case p ≡ 3 mod 4.

We now turn to the realizability of W−
λ . We consider first the case p ≡ 3 mod 4.
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Theorem 23. If p ≡ 3 mod 4 then W−
λ is realizable over Q(

√−p).

Proof : Since
∣

∣

∣
(Z/peZ)∗2

∣

∣

∣
= pe−1(p − 1)/2, the hypothesis on p ensures that (Z/peZ)∗2

has odd order. It follows that the map

r 7→ r2, r ∈ (Z/peZ)∗2
,

is an automorphism (Z/peZ)∗2
.

Let G = Gal(F/Q(
√−p)). If σ ∈ G then σ = σ(s) for some s ∈ (Z/peZ)∗2

. From the

previous paragraph, there exists a unique t ∈ (Z/peZ)∗2
such that s = t2. Therefore, if d−

is the degree of W−
λ , the remarks which follow Corollary 21 allow us to conclude that

σ 7→W−
λ (gt)

−1, σ = σ(t2), t ∈ (Z/peZ)∗2
,

is a well-defined 1-cycle δ of G with values in GLd−(F ) (In fact, δ is a homomorphism of G
into GLd−(Q)). Moreover, the definition of δ and Corollary 22 ensure that, for all σ ∈ G
and g ∈ Sp(V ),

σW−
λ (g) = δ(σ)−1W−

λ (g)δ(σ).

Speiser’s procedure thus allows us to conclude W−
λ can be realized over Q(

√−p), the fixed
field of G. This completes the proof of the theorem.

A Digression on Norms.

The realizability of W−
λ over a small field in the case p ≡ 1 mod 4 requires knowledge

of certain norm groups, which we record here. For this section, p is assumed to be a rational
prime congruent to 1 modulo 4, and i a primitive fourth root of unity. As above, F = Q(ζ)
where ζ is a primitive pe-th root of unity.

Consider the following diagram of field extensions :

F F (
√−p) = F (i) = Q(iζ)

| |
Q(

√
p) Q(

√
p,
√−p) = Q(

√
p, i)

| |
Q Q(

√−p)

From the theory of cyclotomic fields, F/Q is a cyclic extension of degree φ(pe). Observing F
and Q(

√−p) are linearly disjoint, since p ≡ 1 mod 4, elementary Galois theory ensures
F (i)/Q(

√−p) is a cyclic extension of degree φ(pe).
The extension F (i)/Q is unramified except at the non-archimedean primes 2 and p

[W, Proposition 2.3], and the archimedean prime, since F (i) is a totally complex field.
Moreover, the ramification indices of 2 and p are 2 and φ(pe) respectively. Indeed, 2 is
unramified in the extension F/Q [loc.cit.], whence its ramification index e2 must satisfy

e2 ≤ [F (i) : F ] = 2.
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Therefore, e2 = 2, since 2 ramifies in F (i)/Q. The prime p is totally ramified in the
extension F/Q, hence its ramification index ep is divisible by [F : Q]. On the other hand,
p is unramfied in the quadratic subextension Q(i)/Q,

ep ≤ [F (i) : Q(i)] = [F : Q],

the last equality following from the fact that F and Q(i) are linearly disjoint. Thus, ep =
[F : Q] = φ(pe), as claimed.

The extension F (i)/Q(
√−p) is unramified at the archimedean primes, since both F (i)

and Q(
√−p) are totally complex fields. Since p ≡ 1 mod 4, the non-archimedean primes 2

and p both ramify in the extension Q(
√−p)/Q. In light of the preceding paragraph, the

multiplicativity of the ramification index allows us to deduce that F (i)/Q(
√−p) is unram-

fied except at the non-archimedean prime (
√−p), which has ramification index φ(pe)/2.

Furthermore, since (
√−p) splits in the subextension Q(

√
p, i)/Q(

√−p), we deduce that
there are precisely two primes of F (i) which divide (

√−p), each of which have residue
degree 1.

Let p be an arbitrary prime of Q(
√−p) and q a prime of F (i) lying above p. Let K

be the completion of Q(
√−p) at p and L that of F (i) at q. If p is prime to p then, by the

preceding discussion, the local extension L/K is unramified, and so −1 ∈ NL/K(L∗). [Se,
Propositon 3(a), Chpt. V]. If p = (

√−p) then Hensel’s Lemma ensures that K contains a
primitive p− 1-th root of unity u. Since L/K has degree φ(pe)/2, it follows that

NL/K(u) = uφ(pe)/2

=
(

up
e−1

)(p−1)/2

.

Since gcd(p, p−1) = 1, up
e−1

is a primitive p−1-rst root of unity, so the preceding calcula-
tion allows us to deduce NL/K(u) = −1. We have thus shown that −1 is a norm everwhere
locally of the cyclic extension F (i)/Q(

√−p). Hasse’s Norm Theorem [N, Corollary 5.2,
Chpt. IV] thus asserts −1 is a norm of the extension F (i)/Q(

√−p).
Let p be a prime of Q(

√
p, i) which divides p. Since (

√−p) splits in the exten-
sion Q(

√
p, i)/Q(

√−p), the completion of Q(
√
p, i) at p is canonically isomorphic to that

of Q(
√−p) at (

√−p). The argument of the preceding paragraph thus shows that −1
is a local norm of F (i)/Q(

√
p, i) at the primes dividing p. Since the remaining primes

of Q(
√
p, i) are unramified in F (i), it follows that −1 is a norm everywhere locally of

the cyclic extension F (i)/Q(
√−p, i). Once again, Hasse’s Norm Theorem allows us to

conclude that −1 is a norm of the extension F (i)/Q(
√−p, i).

In summary, we have proved the following

Lemma 24. Let p ≡ 1 mod 4 be prime and e > 0. Let F = Q(ζ), ζ a primitive pe-th
root of unity, and i a primitive fourth root of unity.

(i) The norm group NF (i)/Q(
√−p)(F (i)∗) contains −1.

(ii) The norm group NF (i)/Q(
√−p,i)(F (i)∗) contains −1.
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Realizability of W−
λ : Case p ≡ 1 mod 4.

We are now ready to address the realizability of W−
λ in the case p ≡ 1 mod 4. In

contrast to our previous results, W−
λ shall be realized over an imaginary quadratic extension

of its character field. As shown below, W−
λ can not be realized over its character field.

Theorem 25. Suppose p ≡ 1 mod 4 and let q be the order of the residue class field of R.
Furthermore, let i be a primitive fourth root of unity.
(i) If q is an even power of p then W−

λ can be realized over Q(
√−p).

(ii) If q is an odd power of p then W−
λ can be realized over Q(

√−p, i).
Proof : Since p ≡ 1 mod 4, the extension F (i)/Q(Ωλ)(

√−p) is cyclic. We fix a generator σ
of G = Gal(F (i)/Q(Ωλ)(

√−p)). The restriction of σ to F is a generator of Gal(F/Q(Ωλ)),
and so the proof of Theorem 12 provides t ∈ R∗, t2 ∈ (Z/peZ)∗, such that

σ|F = σ(t2),

and

t|G| = −1.

Furthermore, if N : F (i) → Q(Ωλ)(
√−p) is the norm map, Theorem 12 and Lemma 25

ensure the existence of u in F (i) such that

N(u) = −1.

If d− is the degree of W−
λ , let δ : G→ GLd−(F (i)) be the function

δ(σa) = W−
λ (gta)−1

a−1
∏

l=0

σl(u), 1 ≤ a ≤ |G| .

A standard calculation shows that δ is a 1-cocycle of G with values in GLd−(F (i)). Fur-
thermore, if 1 ≤ a ≤ |G| and g ∈ Sp(V ), Corollary 22 provides

σa

W−
λ (g) = σ(t2a)W−

λ (g)

= W−
λ (gta)W−

λ (g)W−
λ (gta)−1

= δ(σa)−1W−
λ (g)δ(σa),

since δ(σa)Wλ(gta) is a scalar multiple of the identity operator. Speiser’s procedure allows
us to conclude that W−

λ can be realized over Q(Ωλ)(
√−p). The proof of the theorem is

completed by using the descriptions of Q(Ωλ) provided by Theorem 12.

Realizability of Top+ and Top−.

The realizability results obtained for the representations W+
λ and W−

λ readily extend
to the irreducible constituents Top+ and Top− of the top layer.
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Theorem 26. Let Top+ and Top− be the irreducible constituents of the top layer of a
Weil representation of primitive type.
(i) The module Top+ can be realized over its character field.
(ii) If p ≡ 3 mod 4 then Top− can be realized over Q(

√−p).
(iii) If p ≡ 1 mod 4 then Top− can be realized over Q(

√−p) if q is a square and Q(
√−p, i)

otherwise.

Proof : Let X be the ambient module affording the given Weil representation. Since ι is a
central element of Sp(V ), we have

Top± = X±/Bot±

where Bot± = Bot ∩ X± = invΓ(sV )X
±. Parts (ii) and (iii) of the theorem are thus

immediate consequences of Theorems 23 and 25 respectively. Part (i) follows from Theo-
rem 22 and the observation that the character fields of the representations afforded by Top+

and X+ coincide (Theorems 16 and 17). This concludes the proof of the theorem.

We now turn to the calculation of the Frobenius-Schur indicators and Schur indices
of the characters Ω±

λ,Top.

Theorem 27. The Frobenius-Schur indicators of the characters Ω+
λ,Top and Ω−

λ,Top are as
follows.
(i) If q ≡ 3 mod 4 then c(Ω±

λ,Top) = 0.

(ii) If q ≡ 1 mod 4 then c(Ω+
λ,Top) = 1.

(iii) If q ≡ 1 mod 4 then c(Ω−
λ,Top) = −1.

Proof : We recall [CR2, Theorem (73.13)] that the if µ is a irreducible complex character
of a group G then c(µ) = 0 if µ is not real-valued, c(µ) = 1 if µ is real-valued and admits
a real form, and finally c(µ) = −1 if µ is real-valued but does not admit a real form.

If q ≡ 3 mod 4 then q is necessarily an odd power of a prime p ≡ 3 mod 4. In this
case, Theorem 17 asserts that the characters Ω±

λ,Top are not real-valued, which proves (i).
If q ≡ 1 mod 4 then either p ≡ 1 mod 4 or q is a square. In either case, Theorem 17 shows
that Ω+

λ,Top and Ω−
λ,Top are real-valued. Since Theorem 26(i) shows the former character

admits a real form, (ii) follows.
For (iii), first observe −1 ∈ (R∗)2. Indeed, if p ≡ 1 mod 4 then the elementary theory

of quadratic residues provides −1 ∈ (F∗
p)

2 ⊆ (R∗)2. In the case q is a square, the required
claim follows from Lemma 11. Fix s ∈ R∗ such that s2 = −1, and let gs be the operator
defined by (18). Note that g2

s = ι.
By extension of scalars, W−

λ shall be viewed a complex representation of Sp(V ) acting
on C ⊗ X−. Let ¯ denote complex conjugation. Since the restriction of ¯ to F coincides
with σ(−1), if g ∈ Sp(V ) then Corollary 21 ensures

W−
λ (g) = σ(−1)W−

λ (g) = W−
λ (gs)W

−
λ (g)W−

λ (gs)
−1.

Recalling that the operator W−
λ (gs) is rational (cf. remarks proceding Corollary 21), the

preceding identity yields

W−
λ (g)W−

λ (gs) = W−
λ (gs)W

−
λ (g), g ∈ Sp(V ). (23)
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Let J be the operator on C ⊗X− defined by

Jα = W−
λ (gs)α, α ∈ C ⊗X−. (24)

By construction, J is conjugate linear. Furthermore, J2 = −1C⊗X− . Indeed, if α ∈ X−

then, since the operator W−
λ (gs) is rational,

J2α = W−
λ (gs)W

−
λ (gs)α

= W−
λ (gs)W

−
λ (gs)α

= W−
λ (g2

s)α

= W−
λ (ι)α = −α.

Finally, J is Sp(V )-invariant. For if g ∈ Sp(V ) and α ∈ X− then (23) provides

J
(

W−
λ (g)α

)

= W−
λ (gs)W

−
λ (g)α

= W−
λ (gs)W

−
λ (g)α

= W−
λ (g)W−

λ (gs)α = W−
λ (g)Jα.

The Sp(V )-invariance of J ensures that

invΓ(sV ) C ⊗X− = C ⊗ invΓ(sV )X
− = C ⊗Bot−

is J -stable. Thererfore, the quotient

C ⊗X−/C ⊗Bot− = C ⊗ (X−/Bot−) = C ⊗ Top−

inherits a conjugate linear Sp(V )-invariant operator whose square is equal to −1C⊗Top− .
It readily follows that EndRSp(V )(C ⊗ Top−) contains a copy of the quaternions H,

whence [CR2, (73.9)] asserts that Ω−
λ,Top does not admit a real form. This proves (iii), and

completes the proof of the theorem.

Theorem 28. The Schur indices of the characters Ω+
λ,Top and Ω−

λ,Top are as follow.

(i) mQ(Ω+
λ,Top) = 1.

(ii) If q ≡ 3 mod 4 then mQ(Ω−
λ,Top) = 1.

(iii) If q ≡ 1 mod 4 then mQ(Ω−
λ,Top) = 2.

Proof : Conclusion (i) is merely a restatement of Theorem 26(i). If q ≡ 3 mod 4 then q
is necessarily an odd power of a prime p ≡ 3 mod 4. Therefore, (ii) is an immediate
consequence of Theorem 17 and Theorem 26(ii). Finally, if q ≡ 1 mod 4 then Theorems 17
and 27(iii) shows that Top− can not be realized over its character field, whence mQ(Ω−

λ,Top)
is greater than 1. On the other hand, Theorem 17 and parts (ii) and (iii) of Theorem 26
ensure that mQ(Ω−

λ,Top) is less than or equal to 2. This verifies (iii), and completes the
proof of the theorem.
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The proof of Theorem 26 shows that Ω−
λ,Top can be realized over any field which

realizes Ω−
λ . Since both characters have the same character field, the preceding result

allows us to conclude Wλ can not be realized over its character field if p ≡ 1 mod 4.

The Principal Free Case.

We now specialize to the case in which R is a principal ring and V is free of rank 2n.
Under these hypotheses, the Weil character Ωλ of Sp(2n,R) is the sum of l + 1 distinct
irreducible constituents, where l is the nilpotency degree of the maximal ideal m. The
trivial character occurs only when l is even. The character fields and Schur indices of the
remaining irreducible constituents are given by the following result.

Theorem 29. Let Ωλ be a Weil character of Sp(2n,R) of primitive type. Let ψ be a
non-trivial irreducible constituent of Ωλ. If R is principal then

Q(ψ) =

{

Q, if q is a square;

Q
(

√

(−1)(p−1)/2p
)

, if q is not a square.

Furthermore,

mQ(ψ) =

{

1, if ι ∈ kerψ;
1, if ι 6∈ kerψ and q ≡ 3 mod 4;
2, if ι 6∈ kerψ and q ≡ 1 mod 4.

Proof : By induction on the nilpotency degree l. The result is vacuously true in the
degenerate case R = 0, since the Weil representation is trivial. If l > 0 the decomposi-
tionX = Top⊕Bot ensures that ψ is either a constituent of Ωλ,Top or Ωλ,Bot. In the former
case, ψ coincides with one of Ω+

λ,Top or Ω−
λ,Top, whence the result is merely a restatement

of Theorems 17 and 28.
If ψ occurs as a constituent of ΩBot then Bot 6= 0, whence l > 1. Therefore, by

[CMS1, Theorem 5.3], Bot is the inflation of a Weil representation of primitive type
for Sp(2n,R/ml−2). Since the maximal ideal of the principal ring R/ml−2 has nilpotency
degree l − 2 < l, the inductive hypothesis applies to ψ. This completes the proof of the
theorem.
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