
CODETERMINANTS AND q-SCHUR ALGEBRAS

GERALD CLIFF AND ANNA STOKKE

Abstract. We study codeterminants in the q-Schur algebra Sq(n, r) and prove
that the standard ones form a basis of Sq(n, r), using a quantized version of
the Désarménien matrix. We find elements of the form FS1λET in Lusztig’s
modified enveloping algebra of gl(n), which, up to powers of q, map to the basis
of standard codeterminants, where FS ∈ U− and ET ∈ U+ are explicitly given
products of root vectors, depending on Young tableaux S and T .

1. Introduction

Let K be an infinite field, and let n and r be positive integers. The classi-
cal Schur algebra S(n, r) can be defined as the dual A(n, r)∗ of the K-space of
homogeneous polynomials of degree r in n2 variables xij, 1 ≤ i, j ≤ n. Since
A(n, r) is a coalgebra, S(n, r) is an associative algebra. The space A(n, r) has a
basis of monomials {xI,J}, and the corresponding dual basis {ξI,J} is a basis of
S(n, r). J. A. Green [7] defined another basis of S(n, r), consisting of standard
codeterminants, each of which is a certain product ξI,JξJ,K . Green used these
codeterminants to give combinatorial proofs of results about Schur algebras, for
example that they are quasi-hereditary.

We wish to do the same for the q-Schur algebra Sq(n, r). This was defined
by Parshall-Wang [14] by replacing the commutative polynomial ring in the n2

variables xij by Manin’s coordinate ring of quantum Aq(n) matrices. Then Aq(n, r)
is the r-th homogeneous part of Aq(n), and Sq(n, r) is defined to be the dual
Aq(n, r)∗. We define quantized codeterminants, following Green’s approach as
much as possible. Green needed the Désarménien matrix, which has a quantized
version due to Stokke [16].

The q-Schur algebra was also defined by Beilinson-Lusztig-Macpherson [1] us-
ing structure constants which arise from the consideration of flags in vector spaces
over a field of q elements, and also by Dipper-James [2], [3] as the commuting
ring of a suitable generalized permutation module for the Iwahori-Hecke algebra
(of type A.) Using these versions of the q-Schur algebra, R. M. Green [9] defined
quantized codeterminants, and proved a straightening formula for them, gener-
alizing work of Woodcock [18] for the classical Schur algebra. Our approach for
defining codeterminants is much closer to that taken by J.A. Green in the classi-
cal setting. We pair off standard codeterminants with standard bideterminants in
Aq(n, r). We give a Carter-Lusztig basis for the q-Weyl module in terms of these
codeterminants in Section 6.

This research was supported in part by grants from the Natural Sciences and Engineering
Research Council of Canada.
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In [1] (see also [5]) it is shown that the q-Schur algebra is a homomorphic image
θ(U̇q) of a modified quantized enveloping algebra U̇q. This U̇q can be obtained
from the quantized enveloping algebra Uq of the general linear group, using the
triangular decomposition Uq = U−U0U+ of Uq, replacing U0 by a direct sum of
infinitely many one-dimensional algebras, generated by idempotents 1λ, one for
each weight λ. We show that the standard codeterminants, up to powers of q,
have the form θ̇(FS1λET ) where FS ∈ U− and ET ∈ U+ are explicitly given
products of root vectors, depending on Young tableaux S and T .

2. Young tableaux

A partition of a fixed positive integer r is a k-tuple of positive integers λ =
(λ1, λ2, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk and

∑k
i=1 λi = r. The Young diagram

of shape λ consists of r boxes arranged in k left-justified rows with the i-th row
consisting of λi boxes. One obtains a λ-tableau T by filling the Young diagram
of shape λ with entries from a set {1, 2, . . . , n}, n a positive integer. Throughout
the article, n and r will be fixed, with λ a partition of r and λ-tableaux having
entries in {1, 2, . . . , n}.

Let T be a λ-tableau. Then T is called standard if the entries in T are weakly
increasing across the rows and strictly increasing down the columns. Note that
our standard tableaux are called semistandard, for example in [12]. Let χi(T )
denote the number of entries equal to i that appear in T . Then the tuple χ(T ) =
(χ1(T ), χ2(T ), . . . , χn(T )) is called the content of T . The row sequence of T is
obtained by reading off the entries of T across the rows, working from left to right
and top to bottom; this sequence shall be denoted IR(T ). The column sequence
of T is obtained by reading off the entries of T down the columns, again from top
to bottom and from left to right; we denote this sequence by IC(T ).

Let T (λ) denote the λ-tableau in which the i-th row consists entirely of is and
let IR(T (λ)) = I(λ) and IC(T (λ)) = IC(λ). We will often write T = TI where
I = IC(T ).

Let I(n, r) = {I = (i1, i2, . . . , ir) | ij ∈ {1, . . . , n}, 1 ≤ j ≤ r}. The symmetric
group Sr acts on I(n, r) as place permutations;

Iσ = (i1σ, i2σ, . . . , irσ), I = (i1, i2, . . . , ir) ∈ I(n, r), σ ∈ Sr.

This gives an action on the set of λ-tableaux by TIσ = TIσ. Define the λ-tableau
T λ by IR(T λ) = (1, 2, . . . , r). Let C(λ) be the subgroup of Sr given by the permu-
tations that leave the columns of T λ invariant. Similarly, R(λ) is the subgroup of
Sr that consists of all permutations that leave the columns of T λ invariant.

Example. Let λ = (3, 2). Then I(λ) = (1, 1, 1, 2, 2) and IC(λ) = (1, 2, 1, 2, 1);

T λ = 1 2 3
4 5

.

The tableau T = 1 1 3
2 4

is an example of a standard λ-tableau. We have IC(T ) =

(1, 2, 1, 4, 3) and IR(T ) = (1, 1, 3, 2, 4). When we write T = TI for this T , we mean
I = (1, 2, 1, 4, 3).



CODETERMINANTS AND q-SCHUR ALGEBRAS 3

3. The q-Schur algebra and quantum codeterminants

Let K be a field, and let q be a non-zero element of K. Following Parshall-Wang
[14], Taft-Towber [17], Manin [15], the coordinate ring of quantum matrices, which
we denote by Aq(n), is defined to be the K-algebra generated by n2 variables xij,
1 ≤ i, j ≤ n, subject to the relations

(1)

xilxik = qxikxil 1 ≤ k < l ≤ n
xjkxik = qxikxjk 1 ≤ i < j ≤ n
xilxjk = xjkxil 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n
xikxjl − xjlxik = (q−1 − q)xilxjk 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

The algebra Aq(n) is a co-algebra, with comultiplication given by

∆(xij) =
n∑

k=1

xik ⊗ xkj.

Given I = (i1, i2, . . . , ir), J = (j1, j2, . . . , jr) ∈ I(n, r), define

xI,J = xi1,j1 · · ·xir,jr .

Let Aq(n, r) be the K-subspace of Aq(n) generated by monomials xI,J , I, J ∈
I(n, r). Then Aq(n, r) is a subcoalgebra of Aq(n), and we define the q-Schur
algebra Sq(n, r) to be the dual Aq(n, r)∗. Then Sq(n, r) is an associative algebra.

Let V be the K-vector space Kn. For historical purposes, we will give the
connection between the Parshall-Wang and the Dipper-James versions of the q-
Schur algebra. Following Jimbo (see also [14] 11.3) V ⊗r is a module for the Hecke
algebra Hq(r), and it is shown in [14], Theorem 11.3.1, that

Sq(n, r) ∼= EndHq(r)(V
⊗r).

It then follows as in Du [6] that Sq(n, r) is isomorphic to the q−2-Schur algebra as
defined by Dipper and James [3].

Let

I2(n, r) = {(I, J) ∈ I(n, r)×I(n, r) | i1 ≤ i2 ≤ · · · ≤ ir and jk ≤ jk+1 if ik = ik+1}.
The set B = {xI,J | (I, J) ∈ I2(n, r)} forms a basis for Aq(n, r) (see, for instance
[4, section 1.1] although the relations used there differ from ours.) The Schur
algebra Sq(n, r) has the basis {ξI,J | (I, J) ∈ I2(n, r)} dual to the basis B of
Aq(n, r). Thus, if (A, B), (I, J) ∈ I2(n, r), then ξI,J(xA,B) = 1 if xA,B = xI,J and
ξI,J(xA,B) = 0 otherwise. For arbitrary (P, Q) ∈ I(n, r)× I(n, r), define

ξP,Q =
∑

(I,J)∈I2(n,r)

αI,JξI,J

where
xP,Q =

∑
(I,J)∈I2(n,r)

αI,JxI,J .

Note that for (I, J), (A, B) ∈ I(n, r)× I(n, r), we have

ξI,J(xA,B) = 0 unless I = Aσ and J = Bτ for σ, τ ∈ Sr,



4 GERALD CLIFF AND ANNA STOKKE

but, unlike in the classical case, it is not necessary that σ = τ .
For elements I and J of I(n, r), we define I < J if I is less than J in the

lexicographic order. For pairs (A, B), (I, J) where A, B, I, J ∈ I(n, r) , we define
(A, B) < (I, J) if A < I or A = I and B < J .

The symmetric group acts on the set of pairs (I, J), where I, J ∈ I(n, r), by
(I, J)σ = (Iσ, Jσ). For any such pair (I, J), the minimal element in the Sr-orbit
containing (I, J) is denoted (I, J)0; this (I, J)0 is in I2(n, r).

The quantum determinant D of the n× n matrix X = (xij) is defined by

D =
∑
σ∈Sn

(−q)−l(σ)xσ(1)1xσ(2)2 · · ·xσ(n)n

where l is the standard length function on the symmetric group Sn.
Let I, J ∈ I(n, r) where I is increasing. Define the quantum minor D(I, J) by

D(I, J) =
∑
σ∈Sr

(−q)−`(σ)xIσ,J .

Let S and T be λ-tableaux with S column increasing. Let S(i) be the sequence
given by the entries in the i-th column of S, with similar notation T (i) for T . The
quantum bideterminant Xλ

I,J , where I = IC(S), J = IC(T ), is defined to be the
product

Xλ
I,J = D(S(1), T (1))D(S(2), T (2)) · · ·D(S(k), T (k)) =

∑
σ∈C(λ)

(−q)−`(σ)xIσ,J

where k is the number of columns of S (and of T ). From [17, Proposition 2.1], we
have D(I, J) = 0 if J has repeated entries, so if T = TJ has repeated entries in a
column then Xλ

I,J = 0. Also in [17, Proposition 2.1], it is proved that D(I, Jτ) =

(−q)−`(τ)D(I, J), for τ ∈ Sr, from which it follows that

(2) Xλ
I,Jτ = (−q)−`(τ)XI,J for τ ∈ C(λ).

Define Λ+(n, r) to be the set of partitions of r into at most n parts. Let Iλ =
{I ∈ I(n, r) | TI is standard} and let

S = {(λ, I, J) | λ ∈ Λ+(n, r), I, J ∈ Iλ}.
The following theorem is due to Huang, Zhang [11].

Theorem 1. The set {Xλ
I,J | (λ, I, J) ∈ S} forms a basis for Aq(n, r).

Since Sq(n, r) is the dual of Aq(n, r), we have a natural pairing

〈 , 〉 : Aq(n, r)× Sq(n, r) → K

where 〈xA,B, ξI,J〉 = ξI,J(xA,B). We also have the transpose operator tr : Aq(n) →
Aq(n) defined by tr(xI,J) = xJ,I . This is a K-linear map since it preserves the
relations (1). It yields a transpose operator on Sq(n, r) defined by 〈P, tr(ξI,J)〉 =
〈tr(P ), ξI,J〉.

For the next result, if I and J are in I(n, r), we let x(I,J) denote xI,J .

Lemma 2. Suppose that (A, B) ∈ I2(n, r). Then xB,A = x(B,A)0.
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Proof. This is certainly true if (B, A) ∈ I2(n, r), so suppose that (B, A) /∈ I2(n, r).
One possibility is that the entries of B are not increasing. Suppose that the i-th
entry bi of B is greater than bi+1. We cannot have ai = ai+1, since if we did, then
(A, B) /∈ I2(n, r). Since the entries of A are weakly increasing, then ai < ai+1.
Then the third equation of (1) gives

xbi,ai
xbi+1,ai+1

= xbi+1,ai+1
xbi,ai

and xai,bi
xai+1,bi+1

= xai+1,bi+1
xai,bi

.

Let B′ and A′ be the sequences obtained from B and A (respectively) by switching
the entries in positions i and i + 1. So we have xB′,A′ = xB,A. Then (B′, A′) <
(B, A), and xA′,B′ = xA,B so by induction, we have

xB′,A′ = x(B,A)0 .

It follows that xB,A = x(B,A)0 .
A second possibility, if (B, A) /∈ I2(n, r), is that for some i, bi = bi+1 and

ai > ai+1. This is not possible, since the entries of A are weakly increasing. This
proves the lemma. �

Lemma 3. For A, B ∈ I(n, r), (I, J) ∈ I2(n, r), we have

〈xA,B, ξI,J〉 = 〈xB,A, ξJ,I〉.

Proof. It follows from the previous lemma that if (I, J) ∈ I2(n, r), then ξJ,I =
ξ(J,I)0 . Write

xA,B =
∑

(P,Q)∈I2(n,r)

cP,QxP,Q.

Since the transpose map is linear, the previous lemma implies that

〈xB,A, ξJ,I〉 =

〈 ∑
(P,Q)∈I2(n,r)

cP,Qx(Q,P )0 , ξ(J,I)0

〉
= cI,J = 〈xA,B, ξI,J〉.

�

For λ-tableaux S and T we let A = IR(S) and B = IR(T ) and define the
quantum codeterminant Y λ

A,B by

Y λ
A,B = ξA,I(λ)ξI(λ),B.

Note that, when associating a quantum bideterminant to a pair of tableaux we
read down the columns while when associating a quantum codeterminant to a pair
of tableaux we read across the rows. This ensures that a given codeterminant is
a product of a basis element in Sq(n, r) and the transpose of a basis element in
Sq(n, r).

Example. Let λ = (2, 1), S = 1 2
3

and T = 1 1
2

. Associated to these

tableaux we have a bideterminant Xλ
(1,3,2),(1,2,1) and a codeterminant Y λ

(1,2,3),(1,1,2) =
ξ(1,2,3),(1,1,2)ξ(1,1,2),(1,1,2).

We will require the following proposition in Section 5.
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Proposition 4. Let S be a column increasing λ-tableau with I = IC(S) and let
J ∈ I(n, r). Then if A, B ∈ I(n, r) we have〈

Xλ
I,J , Y λ

A,B

〉
=

〈
Xλ

I,IC(λ), ξA,I(λ)

〉 〈
Xλ

IC(λ),J , ξI(λ),B

〉
.

Proof. Multiplication in the q-Schur algebra is defined using the comultiplication
∆ in Aq(n, r), so〈

Xλ
I,J , Y λ

A,B

〉
= 〈

∑
σ∈C(λ)

(−q)−`(σ)xIσ,J , Y λ
A,B〉

=
∑

σ∈C(λ)

(−q)−`(σ)
〈
xIσ,J , ξA,I(λ)ξI(λ),B

〉
=

∑
σ∈C(λ)

∑
S∈I(n,r)

(−q)−`(σ)
〈
xIσ,S, ξA,I(λ)

〉 〈
xS,J , ξI(λ),B

〉
=

∑
S∈I(n,r)

〈 ∑
σ∈C(λ)

(−q)−`(σ)xIσ,S, ξA,I(λ)

〉〈
xS,J , ξI(λ),B

〉
Denote the double sum on the previous line by S. Suppose that

〈
xS,J , ξI(λ),B

〉
6= 0.

Then S = I(λ)α for some permutation α ∈ Sr. Since I(λ) = IC(λ)β for some
β ∈ Sr, we have S = IC(λ)τ for some τ ∈ Sr.

We shall show that if τ /∈ C(λ)R(λ) then∑
σ∈C(λ)

(−q)−`(σ)xIσ,IC(λ)τ = 0.

If τ /∈ C(λ)R(λ) then, since all entries in each row of T (λ) are equal, τ must move
some element of T (λ) to a different column. Consider the left-most column, say
column i, of T (λ) which is not kept invariant by τ . If the length of this column
is j, then the elements of this column are 1, 2, . . . , j. Since the first i− 1 columns
are invariant under τ , and since the columns to the right of the i-th column are
not longer than the i-th column, then after applying τ there must be a repeated
entry in column i of T (λ)τ , and so∑

σ∈C(λ)

(−q)−`(σ)xIσ,IC(λ)τ = 0,

as claimed.
Hence, in the double sum S, we need only sum over those S in I(n, r) such that

S = IC(λ)τ with τ ∈ C(λ)R(λ). Since the elements in each row of T (λ) are all
the same, R(λ) has no effect on IC(λ), and since the elements of each column of
T (λ) are all different, distinct elements τ ∈ C(λ) give distinct S = IC(λ)τ . Then

S =
∑

τ∈C(λ)

∑
σ∈C(λ)

(−q)−`(σ)
〈
xIσ,IC(λ)τ , ξA,I(λ)

〉 〈
xIC(λ)τ,J , ξI(λ),B

〉
By (2),∑

σ∈C(λ)

(−q)−`(σ)xIσ,IC(λ)τ = (−q)−`(τ)
∑

σ∈C(λ)

(−q)−`(σ)xIσ,IC(λ), for τ ∈ C(λ).
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Therefore

S =
∑

σ∈C(λ)

∑
τ∈C(λ)

(−q)−`(σ)−`(τ)
〈
xIσ,IC(λ), ξA,I(λ)

〉 〈
xIC(λ)τ,J , ξI(λ),B

〉
.

This is equal to 〈
Xλ

I,IC(λ), ξA,I(λ)

〉 〈
Xλ

IC(λ),J , ξI(λ),B

〉
.

�

4. The quantum hyperalgebra and the quantum Désarménien
matrix

In this section we recall the definition of the quantum Désarménien matrix from
[16] as well as some relevant results from [12].

Let q be an indeterminate, A = Z[q, q−1] the ring of Laurent polynomials in q,
and Q(q) the field of quotients of A. Let UQ(q) denote the quantum enveloping
algebra of gl(n), which has generators Ei, Fi, Kj, K−1

j with 1 ≤ i < n, 1 ≤ j ≤ n
and relations given, for example, in [12, Section 3.]

Define Ki,i+1 = KiK
−1
i+1 . We have a comultiplication ∆ : UQ(q) → UQ(q) ⊗ UQ(q)

defined by

(3) ∆(Ei) = 1⊗Ei+Ei⊗Ki,i+1, ∆(Fi) = K−1
i,i+1⊗Fi+Fi⊗1, ∆(Ki) = Ki⊗Ki.

We then have an algebra homomorphism ∆r−1 : UQ(q) → U⊗r
Q(q) that satisfies

∆r−1(Ei) = 1⊗· · ·⊗1⊗Ei+1⊗· · ·⊗1⊗Ei⊗Ki,i+1+ · · ·+Ei⊗Ki,i+1⊗· · ·⊗Ki,i+1,

∆r−1(Fi) = Fi⊗1⊗· · ·⊗1+K−1
i,i+1⊗Fi⊗· · ·⊗1+ · · ·+⊗K−1

i,i+1⊗· · ·⊗K−1
i,i+1⊗Fi.

To define Lusztig’s integral form, let a be a non-negative integer and define

[a]! =
a∏

k=1

qk − q−k

q − q−1
and

(
Kj

a

)
=

a∏
s=1

q−s+1Kj − qs−1K−1
j

qs − q−s
.

For X ∈ UQ(q) and a ∈ N, we have the divided power X(a) =
Xa

[a]!
. Let UA denote

the Hopf A-subalgebra of UQ(q) generated by the the elements

E
(a)
i , F

(a)
i , Kj, K

−1
j ,

(
Kj

a

)
, a ∈ N, 1 ≤ i < n, 1 ≤ j ≤ n.

The quantum hyperalgebra UK is defined by base change; UK = UA ⊗A K. Note
that K is an A-algebra by defining q ∈ A to act on K by multiplication by some
unit t ∈ K. When we write u ∈ UK , we are referring to the image of u in UK via
the map φ : UA → UK defined by φ(u) = u⊗ 1.

Let AA(n) be the A-algebra generated by the variables xij, 1 ≤ i, j ≤ n subject
to the relations (1). Then Aq(n) = AA(n) ⊗A K. The following action makes
AA(n) a UA-module:

(4) Eixkl = δi+1,lxki, Fixkl = δilxk,i+1, Kixkl = qδilxkl, K−1
i xkl = q−δilxkl

and Ei(PQ) = P (EiQ) + (EiP )(Ki,i+1Q), Fi(PQ) = (K−1
i,i+1P )(FiQ) + (FiP )Q,

Ki(PQ) = (KiP )(KiQ) where P, Q ∈ AA(n).
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Furthermore, for a fixed λ, the A-span of the quantum bideterminants of the
form Xλ

IC(λ),J , where J ∈ I(n, r), is a UA-invariant submodule of AA(n), denoted

by ∇A(λ). The Aq(n)-module obtained by base change, denoted ∇q(λ), is called
the q-Schur module. Note that in [16] and [12], Xλ

IC(λ),J is denoted by [TJ ]. From

[10], for instance, we have the following.

Theorem 5. The set {Xλ
IC(λ),J | J ∈ Iλ} forms a K-basis for ∇q(λ).

Let |i− j| ≥ 1 and define Eij, Fij ∈ UK recursively as follows:

Ei = Ei,i+1, Eij = EiEi+1,j−q−1Ei+1,jEi, Fi = Fi,i+1, Fij = Fi+1,jFi−q−1FiFi+1,j.

From [13, Proposition 41.1.3], it follows that if a is a positive integer, then E
(a)
ij

and F
(a)
ij belong to UA, and hence by base change, to UK .

To a standard λ-tableau T with k ≤ n rows, define elements ET , FT ∈ UK by

ET =
∏

1≤i<k, i<j≤n

E
(γij)
ij = E

(γk−1,k)

k−1,k · · ·E(γ2k)
2k · · ·E(γ23)

23 E
(γ1k)
1k · · ·E(γ13)

13 E
(γ12)
12 ,

FT =
∏

1≤i<k, i<j≤n

F
(γij)
ij = F

(γ12)
12 F

(γ13)
13 · · ·F (γ1k)

1k F
(γ23)
23 · · ·F (γ2k)

2k · · ·F (γk−1,k)

k−1,k ,

where γij is the number of entries equal to j in row i of T , and k is the number of
columns in T .

Definition 6. Given a standard λ-tableau T and a column increasing λ-tableau
S, with J = IC(S), define Ωq(S, T ) = c where c is the coefficient of Xλ

IC(λ),IC(λ)

in the expansion of ET Xλ
IC(λ),J into a linear combination of the basis elements in

Theorem 5.

Given λ-tableaux TI and TJ , we say TI < TJ if I < J with respect to the
lexicographic order on I(n, r).

Definition 7. The quantum Désarménien matrix is the matrix

Ωq = [Ωq(TI , TJ)]I,J∈Iλ
.

We have the following theorem from [16, Theorem 4.10].

Theorem 8. Let TI and TJ be column increasing λ-tableaux with TJ standard. If
Ωq(TI , TJ) 6= 0 then I ≤ J .

For a λ-tableau T , let tij denote the entry in the i-th row and j-th column of
T . Define

s(T ) =| {((i, tia), (j, tjb)) | i > j, a < b, tia = tjb} | .
Thus, s(T ) is the number of pairs (ia, jb) where tia = tjb and tia sits in a row
below tjb and in a column to the left of tjb.

Example. If T = 2 5 5
5 6

, then s(T ) = 2.

The following theorem, [12, Theorem 5.12], states that the entries of the quan-
tum Désarménien matrix can be found using the q-Schur algebra.
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Theorem 9. Let TI and TJ be column increasing λ-tableaux with TJ standard. If
TI and TJ have the same content then

Ωq(TI , TJ) = q−s(TJ )〈Xλ
IC(λ),I , ξI(λ),IR(TJ )〉.

In the proof of Theorem 12 we will also use the following Lemma [12, Lemma
5.8].

Lemma 10. Let TJ be a standard λ-tableau. Then

〈Xλ
IC(λ),J , ξI(λ),IR(TJ )〉 = qs(TJ ).

Example. Let λ = (3, 2) and T = 2 5 5
5 6

as above. Then

〈Xλ
(1,2,1,2,1),(2,5,5,6,5), ξ(1,1,1,2,2),(2,5,5,5,6)〉 = q2.

5. A basis of codeterminants for Sq(n, r)

Partially order Λ+(n, r) as follows:

λ E µ if λ1 + λ2 + · · ·+ λp ≤ µ1 + µ2 + · · ·+ µp for all p ∈ {1, 2, . . . , n}.
Here, if λ is a partition of r into k < n parts, we let λp = 0 for p > k (similarly
for µ). Recall that S = {(λ, I, J) | λ ∈ Λ+(n, r) and TI , TJ are standard}.

Definition 11. For (λ, I, J), (µ, A, B) ∈ S, define (λ, I, J) < (µ, A,B) if λ E µ or
λ = µ and (I > A or I = A and J > B).

Keep in mind that the codeterminants come from reading across rows of stan-
dard tableaux. In the following definition, for A ∈ I(n, r), let A′ = IR(TA). In
other words, if A = IC(T ), we let A′ = IR(T ).

Define a matrix Dq as

Dq =
(
〈Xλ

I,J , Y µ
A′,B′〉

)
(λ,I,J),(µ,A,B)∈S .

Theorem 12. The matrix Dq is upper triangular, using the order in Definition
11, with nonzero entries on the diagonal.

Proof. We first consider the diagonal entries of Dq. Let (λ, I, J) ∈ S. Using Propo-
sition 4, we have 〈Xλ

I,J , Y λ
I′,J ′〉 = 〈Xλ

I,IC(λ), ξI′,I(λ)〉〈Xλ
IC(λ),J , ξI(λ),J ′〉. But by Lem-

mas 3 and 10, 〈Xλ
I,IC(λ), ξI′,I(λ)〉 = 〈Xλ

IC(λ),I , ξI(λ),I′〉 = qs(TI) and 〈XIC(λ),J , ξI(λ),J ′〉 =

qs(TJ ). Thus 〈Xλ
I,J , Y λ

I′,J ′〉 = qs(TI)+s(TJ ) 6= 0.
Now suppose that (λ, I, J), (µ, A,B) ∈ S with (λ, I, J) < (µ, A,B). Suppose

first that λ = µ. Using Proposition 1 and Theorem 9,

〈Xλ
I,J , Y λ

A′,B′〉 = 〈Xλ
I,IC(λ), ξA′,I(λ)〉〈Xλ

IC(λ),J ′ , ξI(λ),B′〉
= qs(TA)Ωq(TI , TA)qs(TB)Ωq(TJ , TB).

But, since (λ, I, J) < (λ, A, B), either I > A or I = A and J > B. In the former
case, Ωq(TI , TA) = 0 by Theorem 8, and in the latter case, Ωq(TJ , TB) = 0. Thus
〈Xλ

I,J , Y λ
A′,B′〉 = 0.
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Suppose that λ C µ and let p be the smallest positive integer with µ1 + µ2 +
· · ·+ µp > λ1 + λ2 + · · ·+ λp. As in the proof of Proposition 4, we have

〈Xλ
I,J , Y µ

A′,B′〉 =
∑

σ∈C(λ)

∑
S∈I(n,r)

(−q)−`(σ)〈xIσ,S, ξA′,I(µ)〉〈xS,J , ξI(µ),B′〉

which is equal to
∑

S∈I(n,r)〈Xλ
I,S, ξA′,I(µ)〉〈xS,J , ξI(µ),B′〉. If 〈Xλ

I,J , Y µ
A′,B′〉 6= 0 then,

for some S ∈ I(n, r), we have 〈Xλ
I,S, ξA′,I(µ)〉 6= 0. Since

Xλ
I,S =

∑
σ∈C(λ)

(−q)−`(σ)xIσ,S,

then I(µ) = Sα where α ∈ Sr. Thus S contains µi entries equal to i for 1 ≤ i ≤ n.
We have µi = λi for 1 ≤ i ≤ p − 1, but µp > λp. Thus TS contains an i in each
of the λi columns for 1 ≤ i ≤ p − 1 and since µp > λp, this forces at least two
entries equal to p in the same column of TS. It follows that Xλ

I,S = 0 and so

〈Xλ
I,S, ξA′,I(µ)〉 = 0 and, consequently, 〈Xλ

I,J , Y µ
A′,B′〉 = 0. �

Note that, unlike in the classical case, the entries on the diagonal of the matrix
Dq may not necessarily be equal to one; they are, in fact, of the form qk, k ≥ 0.
The following Corollary follows easily from Theorem 12, as in [7].

Corollary 13. The set {Y µ
A,B | (µ, A,B) ∈ S} forms a basis for Sq(n, r).

Proof. Let B = {Xλ
I,J | (λ, I, J) ∈ S} be the basis for Aq(n, r) listed in Theorem 1

and let B′ = {gλ
I,J | (λ, I, J)} be the basis of Sq(n, r) that is dual to B. Since Dq is

an invertible matrix and Y µ
A,B =

∑
(λ,I,J)∈S〈Xλ

I,J , Y µ
A,B〉gλ

I,J , for each (µ, A,B) ∈ S,

the set {Y µ
A,B | (µ, A,B) ∈ S} is indeed a basis for Sq(n, r). �

6. Codeterminants and quantized enveloping algebras

In this section, we show that each of the factors ξI,I(λ) and ξI(λ),J in one of our
codeterminants is equal, up to a power of q, to the product of the homomorphic
image of FS in the quantized hyperalgebra (respectively ET ) and a particular
idempotent in Sq(n, r). Here I = IR(S) and J = IR(T ), where S and T are λ-
tableaux, and FS and ET are as defined in Section 4. We use these results to give
a quantum version of J. Green’s description of the Carter-Lusztig basis theorem
[8, Theorem 5.3b] at the end of the section. As well, the results in this section
lay the groundwork for the main result in Section 7 which gives the expression
of our basis elements as homomorphic images of explicit elements in the modified
enveloping algebra.

The n-dimensional vector space VQ(q) with basis v1, . . . , vn is a UQ(q)-module via

Eivk = δi+1,kvi, Fivk = δikvi+1, Kjvk = qδjkvk, K−1
j vk = q−δjkvk,

where 1 ≤ i < n, 1 ≤ j, k ≤ n. Let VA be the UA-submodule of VQ(q) generated by
v1, . . . , vn. The r-th tensor power, V ⊗r

A , is a UA-module via

u(vi1 ⊗ vi2 ⊗ · · · ⊗ vir) = ∆r−1(u)(vi1 ⊗ · · · ⊗ vir),

where ∆ is defined in (3). Let V ⊗r denote the UK-module obtained by base change.
For I = (i1, i2, . . . , ir) ∈ I(n, r), we let vI = vi1 ⊗ vi2 ⊗ · · · ⊗ vir .
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As well, V ⊗r is an Sq(n, r)-module via

ξvJ =
∑

K∈I(n,r)

〈xK,J , ξ〉vK , ξ ∈ Sq(n, r), vJ ∈ V ⊗r.

If vJ ∈ V ⊗r, and u ∈ UK let uvJ =
∑

I∈I(n,r) cI,J(u)vI . We define a map θ : UK →
Sq(n, r) by

〈xI,J , θ(u)〉 = cI,J(u).

We will require the following two facts about the map θ.

(5) θ(u)vI = uvI , u ∈ UK , vI ∈ V ⊗r,

(6) θ(u1u2) = θ(u1)θ(u2), u1, u2 ∈ UK .

The first statement above follows from the definition of θ and the second is proved
in [12, Lemma 5.1].

For the next lemma, if I = (i1, . . . , ir), J = (j1, . . . , jr) ∈ I(n, r), define S1(I, J)
to be the number of pairs (ia, ib) for which ia = ib, ia sits left of ib and the
corresponding entries ja, jb in J satisfy ja > jb. Define S2(I, J) = S1(J, I) to be
the number of pairs (ja, jb) for which ja = jb, ja sits left of jb and the corresponding
entries ia and ib in I are such that ia > ib. Let ε(I, J) = S1(I, J) + S2(I, J). The
following lemma is a consequence of the relations (1). (A version of this is also
given in [4, Lemma 1.1.4], who use somewhat different relations.)

Lemma 14. Let I, J ∈ I(n, r). Then

xI,J = qε(I,J)x(I,J)0 + terms involving xS,T ,

where (S, T )0 = (S, T ), (S, T ) > (I, J)0, and (S, T ) is not in the Sr-orbit of (I, J).

We have the following consequences.

(7) If (I, J) ∈ I2(n, r) and 〈xP,Q, ξI,J〉 6= 0 then (P, Q)0 ≤ (I, J).

(8) If (I, J) ∈ I2(n, r) then 〈xI,Q, ξI,J〉 = 0 unless (I, J) ∼ (I, Q).

Note that (8) follows from the fact that, in this case, I is weakly increasing
so xI,Q = qε(I,Q)xI,Qσ where Iσ = I. We will also require the following lemma
[12, Lemma 5.3] in the proof of Lemma 16.

Lemma 15. Suppose that Q = (. . . , x, . . . , y, . . .) and P = (. . . , i, . . . , x, . . .),
where i < x < y ≤ j and the x and y displayed in Q are in the same positions as
the i and x displayed in P . Then the coefficient of vP in EijvQ is 0.

Lemma 16. Suppose that T is standard, and let J = IR(T ). Then

ξI(λ),I(λ)θ(ET ) = cξI(λ),J

for some c ∈ Q(q).
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Proof. The proof is by induction on the number of entries in T which are different
than the entries in T (λ). If T = T (λ) then ET is the identity, and ξI(λ),I(λ)θ(ET ) =
ξI(λ),I(λ).

Suppose that T 6= T (λ), and suppose that the entries in the first row of T are
not all 1. (The argument is similar if the the first difference between T and T (λ)
occurs in a lower row than the first.) Suppose that the first entry of T in the first
row that is not equal to 1 is j, and let T ′ be the tableau obtained by changing
this j to a 1. Then ET = aET ′E1j for some a ∈ Q(q). Let J ′ be the sequence with
J ′ = IR(T ′). By induction we assume that

ξI(λ),I(λ)θ(ET ′) = dξI(λ),J ′ , where d ∈ Q(q).

Write ξI(λ),I(λ)θ(ET ) as a linear combination of basis elements:

ξI(λ),I(λ)θ(ET ) =
∑

(I(λ),Q)∈I2(n,r)

aQξI(λ),Q, aQ ∈ Q(q).

Then

aQ = 〈xI(λ),Q, ξI(λ),I(λ)θ(ET )〉 =
∑

K∈I(n,r)

〈xI(λ),K , ξI(λ),I(λ)〉〈xK,Q, θ(ET )〉.

By (8), 〈xI(λ),K , ξI(λ),I(λ)〉 = 0 unless (I(λ), I(λ)) ∼ (I(λ), K), in which case K =
I(λ). Thus aQ = 〈xI(λ),Q, θ(ET )〉, which is the coefficient of vI(λ) in ET vQ.

Suppose that aQ 6= 0. We shall show that Q = J ; if so, then ξI(λ),I(λ)θ(ET ) =
aQξI(λ),J as desired. Suppose that Q = IR(S). Since (I(λ), Q) is in I2(n, r), the
rows of S are weakly increasing. We have

ξI(λ),I(λ)ET vQ = ξI(λ),I(λ)θ(ET )vQ

= dξI(λ),J ′θ(E1j)vQ

= dξI(λ),J ′E1jvQ.

Suppose that E1jvQ =
∑

R cRvR, where each cR ∈ Q(q). Then

dξI(λ),J ′E1jvQ =
∑

R

dcRξI(λ),J ′vR.

Suppose, for some R, that

cRξI(λ),J ′vR = cR

∑
K∈I(n,r)

〈xK,R, ξI(λ),J ′〉vK 6= 0.

Then by (7), (K, R)0 ≤ (I(λ), J ′). Since (I(λ), J ′) is smallest in its orbit, (K, R)0 =
(I(λ), J ′). Thus K = I(λ)σ and, in particular, R = J ′σ for some σ ∈ R(λ). So
after applying E1j to vQ, we get a linear combination of terms, one of which is
vJ ′σ. Thus Q has one more j than J ′, and one less 1. One possibility is that Q is
the same as J ′σ except that a j has been replaced by a 1. Another possibility, if
j > 2, is that when applying E1j to Q, a y in Q is changed to an x, and an x in
Q is changed to a 1, where 1 < x < y ≤ j. Here J ′σ, and Q have the form

J ′σ = (1, . . . , 1, . . . , x, . . .)
Q = (1, . . . , x, . . . , y, . . .)
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But from Lemma 15, in the latter case the coefficient of vJ ′σ in EijvQ is 0. Since
we are assuming that cRξI(λ),J ′vR 6= 0, it follows that Q is the same as J ′σ after
replacing a j by a 1.

Since T ′ has no 1’s below the first row, and σ ∈ R(λ), the j in Q which is
changed to a 1 in J ′σ occurs in the first row of S. Since the first row of S is
weakly increasing, J ′σ and Q have the form

J ′σ = (1, . . . , j, j, . . . , 1, . . . , j, . . .)
Q = (1, . . . , j, j, . . . , j, . . . , j, . . .).

Now the first λ1 entries of J ′ are weakly increasing, so σ must switch the 1 among
the middle of the j’s to the front of J ′. So J ′ looks like Q except that the first j
in Q is changed to a 1 in J ′. Since Q is identical to J ′ except that the first j in Q
has been changed to a 1, it follows that Q = J , and the proof is complete. �

Lemma 17. Let T be standard with J = IC(T ). Then
〈
xIC(λ), θ(ET )

〉
= 1.

Proof. In [12, Proposition 5.1], it is proved that the K-linear map φ : V ⊗r → ∇q(λ)
defined by φ(vI) = Xλ

IC(λ),I is a UK-epimorphism. In [16, Theorem 4.8], it is proved

that ETJ
Xλ

IC(λ),J = Xλ
IC(λ),IC(λ).

Suppose that ETJ
vJ =

∑
I aIvI . Then Xλ

IC(λ),IC(λ) = ETJ
Xλ

IC(λ),J = φ(ETJ
vJ) =

φ(
∑

I aIvI) =
∑

aIφ(vI) =
∑

aIX
λ
IC(λ),I . Thus aIC(λ) = 1. �

Theorem 18. Let T be standard with J = IC(T ) and J ′ = IR(T ). Then

ξI(λ),I(λ)θ(ET ) = q−s(T )ξI(λ),J ′ .

Proof. From Lemma 16, we have ξI(λ),I(λ)θ(ET ) = cξI(λ),J ′ . Thus

〈xIC(λ),J , ξI(λ),I(λ)θ(ET )〉 = 〈xIC(λ),J , cξI(λ),J ′〉.
The left hand side of this equation is equal to

〈xIC(λ),J , ξI(λ),I(λ)θ(ET )〉 =
∑
K

〈xIC(λ),K , ξI(λ),I(λ)〉〈xK,J , θ(ET )〉.

By (7), 〈xIC(λ),K , ξI(λ),I(λ)〉 = 0 unless (IC(λ), K)0 ≤ (I(λ), I(λ)). Since the pair
(I(λ), I(λ)) is smallest in its orbit, (IC(λ), K)0 = (I(λ), I(λ)). Thus K = IC(λ)
and

〈xIC(λ),J , ξI(λ),I(λ)θ(ET )〉 = 〈xIC(λ),IC(λ), ξI(λ),I(λ)〉〈xIC(λ),J , θ(ET )〉
= qε(IC(λ),IC(λ))〈xIC(λ),J , θ(ET )〉 by Lemma 14
= 〈xIC(λ),J , θ(ET )〉 = 1, by Lemma 17.

It follows that 〈xIC(λ),J , cξI(λ),J ′〉 = 1.
Now (IC(λ), J) and (I(λ), J ′) belong to the same orbit and (I(λ), J ′) is the

smallest in this orbit so (IC(λ), J)0 = (I(λ), J ′). Thus, by Lemma 14,

〈xIC(λ),J , ξI(λ),J ′〉 = 〈qε(IC(λ),J)x(IC(λ),J)0 , ξI(λ),J ′〉
= 〈qε(IC(λ),J)xI(λ),J ′ , ξI(λ),J ′〉
= qε(IC(λ),J).

In [12, Lemma 5.8] it was proved that ε(IC(λ), J) = s(T ). Indeed, S1(IC(λ), J)
is equal to the number of pairs (ia, ib) in IC(λ) for which a < b, ia = ib and ja > jb.
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But, if ia = ib, this means that the corresponding entries ja and jb are in the same
row. Since ja sits left of jb and T is standard, ja ≤ jb, from which it follows that
S1(IC(λ), J) = 0. Now, S2(IC(λ), J) is equal to the number of pairs (ja, jb) in J
with a < b, ja = jb and ia > ib. If a < b, then ja sits in a column to the left of jb.
If ia > ib, then ja sits in a row below jb. Thus S2(IC(λ), J) = s(T ) = ε(IC(λ), J).
It follows that c = q−s(T ). �

Given I = (i1, i2, . . . , ir) ∈ I(n, r), define β(I) to be the number of pairs (a, b)
for which a < b and ia 6= ib. For example, if I = (1, 4, 1, 3, 3), then β(I) = 8. In
[16], we defined a bilinear form ( , ) : V ⊗r × V ⊗r → Q(q) by

(vI , vJ) = qβ(I)δIJ .

We have an antiautomorphism τ : UK → UK defined by

τ(Ei) = Fi, τ(Fi) = Ei, τ(Ki) = Ki.

In [16, Theorem 5.2] it was shown that the form above is a UK-contravariant form;
that is

(uv, w) = (v, τ(u)w), u ∈ UK , v, w ∈ V ⊗r.

Since (fijv, w) = (v, eijw) for 1 ≤ i, j < n and v, w ∈ V , we have

(FT v, w) = (v, ET w), v, w ∈ V ⊗r, T standard.

Given a standard λ-tableau T with k rows, define ri(T ) to be the number of
pairs (a, b) in row i of T in which a is in a box to the left of b and a 6= b (since T

is standard, it must be that a < b). Define r(T ) =
∑k

i=1 ri(T ).

Example. If T = 1 2 3 3
4 5

then r(T ) = 6.

Theorem 19. Let S be a standard λ-tableau with I ′ = IR(S). Then θ(FS)ξI(λ),I(λ) =

q−r(S)ξI′,I(λ).

Proof. In Theorem 18, we proved that ξI(λ),I(λ)θ(ES) = q−s(S)ξI(λ),I′ . Thus, if

ξI(λ),I(λ)θ(ES) =
∑

(I(λ),Q)∈I2(n,r)

bI(λ),QξI(λ),Q,

then bI(λ),Q = 0 unless Q = I ′. In other words, if (I(λ), Q) ∈ I2(n, r), then the
coefficient of vI(λ) in ESvQ is zero unless Q = I ′. Furthermore, the coefficient of

vI(λ) in ESvI′ is q−s(S).
For every (A, B) ∈ I2(n, r) such that B ∼ I(λ), there exists Q ∈ I(n, r) with

(I(λ), Q) ∈ I2(n, r) such that (A, B) = (Q, I(λ))0. Thus, by Lemma 2,

θ(FS)ξI(λ),I(λ) =
∑

(I(λ),Q)∈I2(n,r)

aQ,I(λ)ξ(Q,I(λ))0 =
∑

(I(λ),Q)∈I2(n,r)

aQ,I(λ)ξQ,I(λ),

where aQ,I(λ) is the coefficient of vQ in FSvI(λ). For any Q with (I(λ), Q) ∈ I2(n, r),
we have

(FSvI(λ), vQ) = (aQ,I(λ)vQ, vQ) = qβ(Q)aQ,I(λ).

On the other hand,
(FSvI(λ), vQ) = (vI(λ), ESvQ).
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Thus
qβ(Q)aQ,I(λ) = (vI(λ), ESvQ).

As mentioned earlier, if Q 6= I ′, then the coefficient of vI(λ) in ESvQ is zero so,
from the above equation, we have aQ,I(λ) = 0 unless Q = I ′.

If Q = I ′, then

qβ(I′)aI′,I(λ) = (vI(λ), ESvI′) = (vI(λ), q
−s(S)vI(λ)) = qβ(I(λ))q−s(S),

so that aI′,I(λ) = qβ(I(λ))−s(S)−β(I′).
The number β(I ′) is equal to the number of pairs (a, b) in S, a 6= b, with a and

b in the same row but a sitting to the left of b plus the number of pairs (a, b) in S
with a 6= b and b in a row below a. Since β(I(λ)) counts all pairs (a, b) in S with
b in a row below a, including those pairs where a = b, we have

β(I(λ)) = β(I ′) + s(S)− r(S).

Thus aI′,I(λ) = q−r(S) and, indeed, θ(FS)ξI(λ),I(λ) = q−r(S)ξI′,I(λ). �

Define zλ =
∑

σ∈C(λ)(−q)−`(σ)vIC(λ)σ ∈ V ⊗r
A , where `(σ) denotes the length

of the permutation σ. Let ∆(λ)A denote the UA-submodule of V ⊗r
A generated

by zλ. The q-Weyl module for the hyperalgebra UK is defined by base change;
∆q(λ) = ∆(λ)A ⊗K.

In [16, §5], a quantum version of the Carter-Lusztig basis theorem was given.
In particular, it was proved that the set

{FT zλ | T is standard}
is a K-basis for ∆q(λ).

Let

Jλ = {J ∈ I(n, r) | J = IR(T ) where T is a standard λ-tableau}
and, if J = IR(T ), define r(J) = r(T ), where r(T ) is as defined above Theorem 19.
Theorem 19 allows us to give the quantum version of the Carter-Lusztig basis in
terms of elements in the q-Schur algebra. The following corollary is the quantum
version of [8, Theorem 5.3b].

Corollary 20. The set
{ξJ,I(λ)zλ | J ∈ Jλ}

is a K-basis for ∆q(λ).

Proof. First note that ξI(λ),I(λ)zλ = zλ. Indeed, if σ ∈ C(λ), then

ξI(λ),I(λ)vIC(λ)σ =
∑
M

〈xIC(λ),M , ξI(λ),I(λ)〉vM

and 〈xIC(λ),M , ξI(λ),I(λ)〉 = 0 unless (IC(λ)σ, M)0 ≤ (I(λ), I(λ)). Since (I(λ), I(λ))
is smallest in its orbit, (IC(λ)σ, M)0 = (I(λ), I(λ)). Thus M = IC(λ)σ and so
ξI(λ),I(λ)vIC(λ)σ = vIC(λ)σ.

Now, if T is standard with J = IR(T ), then

FT zλ = θ(FT )zλ = θ(FT )ξI(λ),I(λ)zλ = q−r(J)ξJ,I(λ)zλ,

and the Corollary now follows. �
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7. Codeterminants and modified quantized enveloping algebras

Doty [5] observes that the q-Schur algebra Sq(n, r) is isomorphic to a homomor-

phic image of Lusztig’s modified quantized enveloping algebra U̇ . (A version of
this was proved earlier in [1], who did not use the notation U̇ .) The Q(q)-algebra
U̇ [13, Chap. 23] is obtained from the triangular decomposition UQ(q) = U−U0U+

by replacing U0 by a direct sum of infinitely many 1-dimensional algebras, each
generated by an idempotent 1λ, one for each weight λ.

Weights λ can be identified with compositions of r into at most n parts, that
is, λ = (λ1, . . . , λn) where each λi is a non-negative integer, and

∑
i λi = r. The

weight λ is dominant precisely when λ is a partition, that is, λ1 ≥ λ2 ≥ · · · ≥ λn.
For a weight λ, we have the sequence I(λ) which consists of λ1 1’s, then λ2 2’s,
etc. This agrees with our earlier version of I(λ), defined when λ is a partition.

Lemma 21. For a composition λ, the element ξI(λ),I(λ) is an idempotent.

Proof. Take (I, J) ∈ I2(n, r). We have

〈xI,J , ξI(λ),I(λ)ξI(λ),I(λ)〉 =
∑
K

〈xI,K , ξI(λ),I(λ)〉〈xK,J , ξI(λ),I(λ)〉.

Note that since (I, J) ∈ I2(n, r), then 〈xI,K , ξI(λ),I(λ)〉 6= 0 only when I = I(λ),
and then only when K = I(λ), and similarly 〈xK,J , ξI(λ),I(λ)〉 6= 0 only when
K = J = I(λ). So 〈xI,J , ξI(λ),I(λ)ξI(λ),I(λ)〉 = 0 unless I = J = I(λ) and
〈xI(λ),I(λ), ξI(λ),I(λ)ξI(λ),I(λ)〉 = 1. Therefore ξI(λ),I(λ)ξI(λ),I(λ) = ξI(λ),I(λ). �

From [13, Chap. 23], the elements of U̇ can be written as x−1λx
+, and also as

y+1λy
−, where x−, y− ∈ U−, x+, y+ ∈ U+. Relations for these elements are given

in Section 23.1.3 of [13].

Lusztig [13] also defines an A-form U̇A of U̇ , generated by E
(a)
i , F

(a)
i , and the

idempotents 1λ. As in [13, Chap. 31], for a field K containing a non-zero element
q,

U̇K = K ⊗A U̇A.

For an element u of ∈ U̇A, we also denote by u the element 1⊗ u ∈ U̇K .
We give the homomorphism θ̇ : U̇K → Sq(n, r) explicitly as follows:

θ̇(x−1λx
+) = θ(x−)ξI(λ),I(λ)θ(x

+), x− ∈ U−
K , x+ ∈ U+

K .

That this is a homomorphism follows from the fact that θ is a homomorphism,
from the previous Lemma, and from Lusztig’s relations.

We now have

Theorem 22. Let λ be a partition and let S, T be standard λ-tableaux. Let I =
IR(S) and J = JR(T ). Then the codeterminant ξI,I(λ)ξI(λ),J is given by

ξI,I(λ)ξI(λ),J = qr(S)+s(T )θ̇(FS1λET ).

Proof. This follows from Theorems 18 and 19. �
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