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Abstract. We give a basis of bideterminants for the coordinate ring K[O(n)] of the or-
thogonal group O(n, K), where K is an infinite field of characteristic not 2. The bideter-
minants are indexed by pairs of Young tableaux which are O(n)-standard in the sense of
King-Welsh. We also give an explicit filtration of K[O(n)] as an O(n, K)-bimodule, whose
factors are isormorphic to the tensor product of orthogonal analogues of left and right Schur
modules.

1. Introduction

Let K be an infinite field. It was shown by Mead [M] and by Doubilet-Rota-Stein [DRS]
that the polynomial ring K[X(i, j)] in n2 variables has a basis of bideterminants, indexed by
pairs of standard Young tableaux. DeConcini-Eisenbud-Procesi [DEP] used these bidetermi-
nants to give an explicit filtration of K[X(i, j)], as a GL(n,K)-bimodule, whose factors are
isomorphic to Lλ⊗λL where Lλ and λL, are left and right Schur modules, respectively, corre-
sponding to partitions λ into at most n parts. At characteristic 0, Lλ and λL are irreducible
polynomial representations of the general linear group GL(n,K).

We wish to investigate the situation where GL(n,K) is replaced by the orthogonal group
O(n,K). We assume that the characteristic of K is not 2. The bideterminants which are
a basis of K[X(i, j)] are not linearly independent as functions on O(n,K). We show that
the coordinate ring K[O(n)] of O(n,K) has a basis of bideterminants [S : T ] where S and
T are O(n)-standard in the sense of King-Welsh [KW]. As far as we are aware, this is the
first known explicit basis of K[O(n)]. We also find an explicit O(n,K)-bimodule filtration
of K[O(n)] with factors isomorphic to LλO ⊗ λLO, where LλO and λLO, are analogues of left
and right Schur modules, for the orthogonal group.

Our first problem is to show that the O(n)-standard bideterminants generate K[O(n)];
to do this we give a straightening algorithm. We then give our filtration of K[O(n)], from
which linear independence of the O(n)-standard bideterminants can be deduced.

We first prove these results under the assumption that the field K has characteristic 0. We
then show that there are analogues of these results where K is replaced by the ring Z[1/2],
and then by base change, for fields of odd characteristic.

In [KW] a straightening method is given for an O(n)-module (assuming K = C) denoted
Oλ which is a factor module of a submodule of V ⊗m where V is the natural O(n)-module.
(This is defined in Section 6 below, where it is shown that Oλ is isomorphic to LλO.) Straight-
ening in [KW] is done using a modification of Berele’s method [B] (see also [Don]) for the
symplectic group, using a suitable quotient of the tensor algebra. Our straightening method
is more complicated than that of [KW], as we need to use tableaux of different shapes and
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sizes. Linear independence of the basis in [KW] for Oλ is deduced from work of Proctor
[Pro].

We also give a basis of the space of homogeneous polynomial functions of a given degree
on the group of orthogonal similitudes. This will be applied in future work to the orthogonal
Schur algebra, as defined by Doty [Dot].

In the case of the symplectic group, a basis involving bideterminants was given by Oehms
[O] for the space of homogeneous polynomial functions of a given degree on the group of
symplectic similitudes. Our methods are quite different from those of Oehms.

Filtrations for the coordinate ring of the symplectic group were also considered by de
Concini [dC]. Filtrations of this sort have been studied by Donkin and by Kopppinen [K] for
connected reductive groups G. The orthogonal group is not connected, and our emphasis is
on explicit filtrations. For connected, simply connected semi-simple groups G, the coordinate
ring C[G] has a canonical basis, due to Lusztig, [L], Chapter 29. This basis is not explicitly
given.

The author would like to thank V. Chernousov, A. Pianzola, and the referee, for comments
especially concerning Section 7.

2. Preliminaries

Let n ≥ 3 be a positive integer and let m be the greatest integer ≤ n/2. Define the ordered
set I = {1 < 1 < 2 < 2 < · · · < m < m} if n is even, and I = {1 < 1 < 2 < 2 < · · · < m <
m < 0} if n is odd. Define

ı = i, 1 ≤ i ≤ m, 0 = 0.

Let {vi : i ∈ I} be the standard basis of V = Kn, and define the symmetric bilinear form
on V

(2.1)

〈∑
i∈I

xivi,
∑
i∈I

yivi

〉
=
∑
i∈I

xiyı =
m∑
i=1

(xiyı + xıyi) + x0y0

where x0 = 0 if n is even. The orthogonal group O(n,K), which we will also denote by O(n),
is defined as the subgroup of GL(n,K) which preserves the form 〈 , 〉 given in (2.1).

As usual, a partition λ of a positive integer r into k parts is given by writing r as a sum
r = λ1 + λ2 + · · · + λk of positive integers where λ1 ≥ λ2 ≥ · · · ≥ λk. We let |λ| denote r,
and we call |λ| the size of λ. A Young tableau of shape λ is a left justified array, having k
rows; the i-th row has λi entries from the set I. We will denote the i-th column of T by Ti.

The conjugate λ′ of a partition λ is the partition whose parts are the column lengths of a
tableau of shape λ.

The dominance order on partitions of r is defined by λE µ if λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi
for all i ∈ {1, . . . , k}, where λ has k parts. (For this to make sense we let µj = 0 if j is
greater than the number of parts of µ.) For example, if λ = (2, 2, 1) and µ = (4, 1), then
λE µ. We will use the following elementary result.

Remark 2.1. If T is a tableau of shape λ and the tablea+u S is obtained from T by moving
an entry from the bottom of a column to the bottom of a column to the left, then the shape
µ of S satisfies µC λ.

A Young tableau is called GL(n)-standard if it has at most n rows, and if the entries are
non-decreasing from left to right across each row and strictly increasing from top to bottom
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down each column. We will give the definition, due to [KW], of what is called an O(n)-
standard Young tableau T . For i = 1, 2, . . . ,m let αi and βi be the number of entries less
than or equal to i in the first and second columns, respectively, of T . Let T (i, j) denote the
entry in row i and column j of T . We shall call T O(n)-standard if it is GL(n)-standard, if
λ′1 + λ′2 ≤ n, and if in addition, for each i = 1, 2, . . . ,m,

(OS 1) αi + βi ≤ 2i;
(OS 2) if αi + βi = 2i with αi > βi and T (αi, 1) = i and T (βi, 2) = ı then T (αi − 1, 1) = ı;
(OS 3) if αi + βi = 2i with αi = βi (= i) and if ı, i occur in the i-th row of T , with ı in T1

and i in Tb for some b ≥ 2, then above the i in Tb there is an ı.

In cases (2) and (3), the entry i is said to be protected by the existence of ı above it.
For each pair (i, j) where i and j are in I, let X(i, j) be an indeterminate, and let

X = (X(i, j)) be the n × n matrix whose rows and columns are indexed by I, and whose
(i, j)-entry is X(i, j). Let K[X(i, j)] be the polynomial ring in the n2 indeterminates X(i, j).

The coordinate ring K[O(n)] consists of the restrictions of the functions in K[X(i, j)] to
the orthogonal group O(n). (Strictly speaking, a function in K[O(n)] should be defined
as a function on O(n) given by a polynomial in K[X(i, j)] divided by some power of the
determinant. Since det = ±1 on O(n), then 1/ det = det as functions on O(n); hence all
functions in K[O(n)] are given by polynomials.)

Suppose that S and T are tableaux of the same shape λ. Define [Si : Ti] to be the
determinant of the submatrix of X whose rows are indexed by the entries of the column Si
and whose columns are indexed by the entries of the column Ti. Define the bideterminant,
denoted [S : T ], to be the product

[S : T ] =

λ1∏
i=1

[Si : Ti].

We will sometimes use the notation
[S : T ]O

to denote the bideterminant [S : T ] considered as a function on O(n). We define the shape
of [S : T ] or of [S : T ]O to be λ, which is the common shape of S and T . We call [S : T ]O an
O(n)-standard bideterminant if both S and T are O(n)-standard.

For an n× n matrix A, let At denote the transpose of A.

Remark 2.2. The bideterminant [S : T ] evaluated at X t is equal to the bideterminant
[T : S].

For 1 ≤ k ≤ n, let

(2.2) j1, j2, . . . , jk

denote the first k elements of the ordered set I. For example, if k = 3, then j1 = 1, j2 = 1,
j3 = 2. The basic λ-tableau, denoted T λ, is the tableau having each entry in row k equal to
jk.

We define the following partial order on the set of tableaux of shape λ. If T 6= T ′, suppose
that in the right-most column in which there is a differing entry, the top-most entry i of T
which differs from an entry i′ of T ′ in the same position satisfies i < i′; then we say that
T ≺ T ′.

By a signed sum of some quantities x1, x2, . . . , xk we mean a linear combination
∑k

i=1 εixi
where each εi ∈ {−1, 1}.
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We say that i, ı occur in a 2-column tableau T if i is an entry in the first column of T and
ı is an entry in the second. To delete the pair i, ı, remove i from the first column and ı from
the second, and move up the other entries to form a tableau.

We will let #A denote the size of a finite set A.

3. GL(n)-Straightening

Writing a bideterminant as a linear combination of GL(n)-standard ones is often called
straightening. We shall describe the straightening method used by Mead [M].

Suppose that S and T are tableaux of the same shape λ having two columns, of lengths
k and ` respectively. Suppose that S is column-increasing but not GL(n)-standard. Using
Mead’s notation for the entries of the tableaux (although Mead does not use tableaux or the
term bideterminant) suppose that

[S : T ] =


i1 i′1
...

...
i` i′`
...
ik

:

a1 b1
...

...
a` b`
...
ak


Suppose that ij ≤ i′j for j < t but it > i′t.

Let H be the (k + `)× (k + `) matrix given by

H =

(
B1 C
D B2

)
where B1 is the k × k submatrix of X = (X(i, j)) whose rows and columns are indexed by
S1 and T1 respectively, B2 is the `× ` submatrix of X whose rows and columns are indexed
by S2 and T2, respectively, C is the k × ` matrix defined by

cp,q = 0 if p < t, cp,q = X(ip, bq) if p ≥ t

and D is the `× k matrix given by

dp,q = X(i′p, aq) if p ≤ t, dp,q = 0 if p > t.

Use Laplace expansion along multiple rows or columns (see, for example, [Pra, 2.4.1, p. 11]),
in two ways, as follows: expand detH by minors of the first k columns, and by minors of
`− 1 rows consisting of the first t− 1 rows along with the last `− t rows. (An example will
be given below.)

The bideterminant [S : T ] occurs as one of the terms of the first expansion; solve for [S : T ]
equal to the negative of the signed sum of the other bideterminants from the first expansion
plus the signed sum of bideterminants from the second expansion.

All the terms in the row-expansion involve bideterminants where the tableaux have 2
columns, of length k + 1, `− 1, respectively, hence of shape Cλ by Remark 2.1.

In the column expansion, each term is a product of two minors, the second of which has
rows indexed by e1, e2, . . . , ek, i

′
t+1, . . . , i

′
` where {e1, e2, . . . , ek} vary over all possible subsets

of {it, . . . , ik, i′1, . . . , i′t}. The term [U : T ] with U the lowest (in the order ≺) is the one
where {e1, e2, . . . , et} = {i′1, . . . , i′t}; this gives the bideterminant [S : T ]. All the other
bideterminants are of the form [U : T ] where U � S.

So we have the following result.
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Lemma 3.1. Let S and T be two-column tableaux of the same shape λ, where S is column
increasing but not GL(n)-standard. Then (i)

[S : T ] =
∑
U

aU [U : T ] + s

where each U occurring in the sum is a tableau of shape λ where U � S, each aU ∈ {1,−1},
and s is signed sum of bideterminants of shapes µC λ. (ii) The tableaux U in the sum, and
the signs aU depend only on S and not on T . (iii) If T = T λ, then s = 0.

Proof. We need only prove (ii) and (iii). For independence of T , the row indices in the column
expansion of detH depend only on S. For (iii), if the rows of T all have equal entries, in
the row expansion of detH, each bideterminant we get has the form [V : W ] where the first
column of V has repeated entries and so [V : W ] = 0. �

Example 3.1. Consider the bideterminant

[S : T ] =

 1 1
2 2
3

:
1 1
2 2
3

 .

Then H =


X(1, 1) X(1, 2) X(1, 3) 0 0
X(2, 1) X(2, 2) X(2, 3) X(2, 1) X(2, 2)
X(3, 1) X(3, 2) X(3, 3) X(3, 1) X(3, 2)
X(1, 1) X(1, 2) X(1, 3) X(1, 1) X(1, 2)
X(2, 1) X(2, 2) X(2, 3) X(2, 1) X(2, 2)

 .

For the expansion of detH along the first three columns, we get terms which are a product
of two minors: in the first minor, we use the first row, we omit the fourth row, since its first
three entries are the same as those of the first row, and we have a choice of two of rows 2, 3,
and 5. The second minor has the complementary rows. This gives

detH =

 1 1
2 2
3

:
1 1
2 2
3

+

 1 3
2 1
2

:
1 1
2 2
3

−
 1 2

3 1
2

:
1 1
2 2
3

 .
The row expansion is along the first row, giving three terms:

detH =


1 1
2
3
2

:

2 1
3
1
2

−


1 1
2
3
2

:

1 2
3
1
2

+


1 1
2
3
2

:

1 3
2
1
2

 .
We switch rows to give standard tableaux. Then1 1

2 2
3

:
1 1
2 2
3

 =

1 1
2 2
3

:
1 1
2 2
3

−
 1 1

2 3
2

:
1 1
2 2
3



+


1 1
2
2
3

:

1 1
2
2
3

−


1 1
2
2
3

:

1 2
1
2
3

+


1 1
2
2
3

:

1 3
1
2
2

 .
We have the following result on GL(n)-straightening.
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Theorem 3.1. Suppose that S and T are tableaux of the same shape λ. Then

[S : T ] =
∑
U

bU [U : T ] + s

where the tableaux U in the sum are GL(n)-standard, each bU ∈ K and is independent of T ,
and s is a signed sum of bideterminants of shapes µC λ.

Proof. This is proved, using Lemma 3.1, by induction on the orderC and downward induction
on ≺. �

Using Remark 2.2 there is an analogous version where the roles of S and T are inter-
changed, writing [T : S] as a linear combination of [T : U ] plus bideterminants of shape
smaller than λ in the C order. This gives the spanning part of the following well-known
result. For linear independence, which we do not need, see [M], [DRS] or [DEP].

Theorem 3.2. The bideterminants [S : T ] where both S and T are GL(n)-standard are a
basis of the ring K[X(i, j)], 1 ≤ i, j ≤ n.

In Sections 7 and 8 we will replace K with the ring Z or Z[1/2]. In the statement of
Theorem 3.1, the coefficients bU come from the coefficients aU of Lemma 3.1, and these are
±1. So we have the following.

Theorem 3.3. The bideterminants [S : T ] where both S and T are GL(n)-standard are a
basis of the ring R[X(i, j)], 1 ≤ i, j ≤ n, where R is any commutative ring.

As with Theorem 3.2 we will not need to use linear independence. We will also use the
following.

Lemma 3.2. Suppose that S and T are tableaux of the same shape λ having two columns,
where S is GL(n)-standard. Suppose that ı, i occur in S, both in the t-th row, and let S∗ be
the result of replacing this pair ı, i with i, ı. Then

[S∗ : T ] = [S : T ] +
∑
U

aU [U : T ] + s

where each U is a λ-tabeau such that S∗ ≺ U , each aU is ±1, and s is signed sum of bideter-
minants of shape µ where µ C λ. The U and aU occurring in the equation are independent
of T .

Proof. In Mead’s method, in the column expansion, the lowest U is S, and the second lowest
is S∗. �

This is illustrated in Example 3.1 above, where [S : T ] is written as a signed sum of
standard bideterminants, the first of which is [S∗ : T ] where S∗ is obtained from S by
replacing 2, 2 in the second row by 2, 2, and and the second is [U : T ] where U � S∗.

4. Main Technical Result

As functions on O(n), we have∑
i∈I

X(i, j)X(ı, k) = δjk, j, k ∈ I.

In bideterminant notation,
X(i, j)X(ı, k) = [i ı : j k].
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So we have, on O(n), ∑
i∈I

[i ı : j k] = δjk.

We will need more general versions of this. For example, suppose that S is a tableau having
2 columns, of lengths e and f , and that T is a tableau of 2 columns, of lengths e + 1 and
f + 1. It will follow from our results below that if i, ı do not occur in T for any i ∈ I, then∑

i∈I

[
i ı
S

: T

]
= 0

on O(n). More generally, if i, ı do occur in T for some i ∈ I, then∑
i∈I

[
i ı
S

: T

]
=
∑
T ′

± [S : T ′]

on O(n), where the sum is over all tableaux T ′ obtained by deleting a pair i, ı from T if i, ı
occur in T .

For a more general version of this, we will have not just one variable i in the summation,
but a variables i1, i2, . . . , ia, each of which will vary over I, except that each ij will not be
allowed to assume one of c fixed values, where 0 ≤ c < a.

Suppose that S and T are tableaux of the same shape, having two columns. Suppose that
a is a positive integer, less than or equal to the length of the second column of S (and of T ).
Suppose that C is a (possibly empty) subset of I having c elements, where c < a. Let S0 be
the tableau obtained from S by deleting its first a rows. We want to calculate the sum

(4.1) L =
∑

i1,...,ia∈I−C


i1 ı1
i2 ı2
...

...
ia ıa
S0

: T

 .
We allow repeated indices in the sum, although a bideterminant having repeated indices is,
is 0.

Suppose that d is an integer, 1 ≤ d ≤ a, and suppose that E = {i1, . . . , id} is a subset of
I such that i, ı occur in T for all i ∈ E. Let

(T,E)

be the tableau obtained by deleting the pairs i, ı from T for each i ∈ E. Let Ed denote the
set of all subsets E of I of size d such that ı, i occur in T for all i ∈ E.

We next define Sd by the equation

(4.2) Sd =
∑
E∈Ed

∑
i1<···<ia−d

ij∈C

(−1)a−d


i1 ı1
i2 ı2
...

...
ia−d ıa−d

S0

: (T,E)

 .
If for a given d, C has fewer than a − d elements, then the second sum is the empty sum,
and Sd = 0. In particular, if C is empty, then each Sd = 0 except for d = a.
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Lemma 4.1. With the above notation, the sum L in (4.1), as function on O(n), is given by

L = a!
a∑
d=1

Sd.

Before giving the proof, we have an example. Consider

∑
i1,i2,i3∈I
i1,i2,i3 6=4,5


i1 ı1
i2 ı2
i3 ı3
7 8
9

:

1 1
2 2
3 3
4 5
6

 .
Then a = 3, C = {4, 5}, c = #C = 2. First suppose that d = 1. Since a − d = 2,

there is a unique subset of C of size 2, so we replace (i1, ı1), (i2, ı2), (i3, ı3) with the two pairs
(4, 4), (5, 5). There are three subsets E1.

S1 =


4 4
5 5
7 8
9

:

2 2
3 3
4 5
6

+


4 4
5 5
7 8
9

:

1 1
3 3
4 5
6

+


4 4
5 5
7 8
9

:

1 1
2 2
4 5
6

 .
When d = 2, we replace the pairs (i1, ı1), (i2, ı2), (i3, ı3) from S with a−d = 1 pair i, ı where
i ∈ C. There are two ways to do this, since C has two elements. There are three subsets E2.
So

S2 = −
∑
i=4,5

3∑
j=1

 i ı
7 8
9

:
 j
4 5
6


When d = 3, there is only one E3, namely {1, 2, 3}. Since a− d = 0,

S3 =

[
7 8
9

:
4 5
6

]
Proof. Suppose that the entries of the two columns of T are

g1, g2, . . . , ge, h1, h2, . . . , hf , respectively.

Suppose further that the entries of the two columns of S0 are

ja+1, . . . , je, ka+1, . . . , kf respectively.

Let P be the permutations of the symbols g1, g2, . . . , ge, and Q the permutations of the
symbols h1, . . . , hf .

Then the sum L in (4.1) is given by

L =
∑

i1,...,ia∈I−C

∑
σ∈P

sgn(σ)
a∏
s=1

X
(
is, σ(gs)

) e∏
s=a+1

X
(
js, σ(gs)

)
×
∑
τ∈Q

sgn(τ)
a∏
t=1

X
(
ıt, τ(ht)

) f∏
t=a+1

X
(
kt, τ(ht)

)
.
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Define

Yσ,τ =
e∏

s=a+1

X
(
js, σ(gs)

) f∏
t=a+1

X
(
kt, τ(ht)

)
.

Then we have

L =
∑
σ∈P

∑
τ∈Q

sgn(σ)sgn(τ)
a∏
s=1

( ∑
is∈I−C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

))
Yσ,τ .

Since
∑

i∈I X(i, j)X(ı, k) = δj,k on O(n), then as functions on O(n), for each s in {1, . . . , a},

(4.3)
∑

is∈I−C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
= δσ(gs),τ(hs)

−
∑
is∈C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
.

Hence as a function on O(n), L is equal to

L′ =
∑
σ∈P

∑
τ∈Q

sgn(σ)sgn(τ)
a∏
s=1

(
δσ(gs),τ(hs)

−
∑
is∈C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

))
Yσ,τ .

To simplify the notation somewhat, fix (σ, τ) ∈ P ×Q, and let

δ(s) = δσ(gs),τ(hs)
, Z(s, is) = X

(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
.

With this notation we have, for fixed σ, τ ,
a∏
s=1

(
δσ(gs),τ(hs)

−
∑
is∈C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

))
=

a∏
s=1

(
δ(s)−

∑
is∈C

Z(s, is)

)
.

Expand the product
a∏
s=1

(
δ(s)−

∑
is∈C

Z(s, is)

)
.

To do this, for each s select a term from the factor
(
δ(s)−

∑
is∈C Z(s, is)

)
, namely δ(s) or

−Z(s, is) for some is ∈ C; multiply all the chosen terms, and sum over all possible choices
of terms. For a given choice, let D be the set of all s for which we pick δ(s) 6= 0. If s ∈ D,
since

0 6= δ(s) = δσ(gs),τ(hs)

then
σ(gs) = τ(hs).

Let D be the set of all subsets D, including the empty subset, of {1, . . . , a} such that δ(s) 6= 0
for all s ∈ D. For a given D ∈ D, let

` = `(D) = a−#D

and let D′ be the complement of D in {1, 2, . . . , a}. Then

(4.4)
a∏
s=1

(
δ(s)−

∑
is∈C

Z(s, is)

)
=
∑
D∈D

(−1)`(D)
∑

(i1,...,i`)∈C`

∏
s∈D′

Z(s, is).

Write D = D(σ, τ). Then as functions on O(n), L is equal to

L′′ =
∑
σ∈P
τ∈Q

sgn(σ)sgn(τ)
∑

D∈D(σ,τ)

(−1)`(D)
∑

(i1,...,i`)∈C`

∏
s∈D′

X(is, σ(gs))X(ıs, τ(hs))Yσ,τ .
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We want to interchange the order of the first two summations. Let P denote the set of all
subsets of {1, . . . , a}. For a given subset D of P , define

G(D) = {(σ, τ) ∈ P ×Q : σ(gs) = τ(hs) for all s ∈ D}.
If D is empty, then G(D) = P ×Q. Then

L′′ =
∑
D∈P

(−1)`(D)
∑

(σ,τ)∈G(D)

sgn(σ)sgn(τ)
∑

(i1,...,i`)∈C`

∏
s∈D′

X(is, σ(gs))X
(
ıs, τ(hs)

)
Yσ,τ .

For a given subset D of P , let

L′′(D) =
∑

(σ,τ)∈G(D)

sgn(σ)sgn(τ)
∑

(i1,...,i`)∈C`

∏
s∈D′

X(is, σ(gs))X
(
ıs, τ(hs)

)
Yσ,τ .

Hence
L′′ =

∑
D∈P

(−1)`(D)L′′(D).

Let Pd be the set of subsets of {1, . . . , a} of size d, and let

L′′d =
∑
D∈Pd

(−1)a−dL′′(D); then L′′ =
a∑
d=0

L′′d.

For a fixed D ∈ Pd, let e be a d-tuple {e1, e2, . . . , ed} of distinct elements of I. Let

P (D, e) = {σ ∈ P : σ(gs) = es, s ∈ D}, Q(D, e) = {τ ∈ Q : τ(hs) = es, s ∈ D}.
If D is empty, then e is a 0-tuple, and then P (D, e) = P , and Q(D, e) = Q. Let

L′′(D, e) =
∑

σ∈P (D,e)
τ∈Q(D,e)

sgn(σ)sgn(τ)
∑

(i1,...,i`)∈C`

∏
s∈D′

X(is, σ(gs))X(ıs, τ(hs))Yσ,τ .

Let Fd denote the set of all d-tuples of distinct elements of I; then

L′′(D) =
∑
e∈Fd

L′′(D, e).

For a given D and e, consider a fixed `-tuple (` = `(D))

i = (i1, . . . , i`) ∈ C`.

For this i let

L′′(D, e, i) =
∑

(σ,τ)∈P (D,e)×Q(D,e)

sgn(σ)sgn(τ)
∏
s∈D′

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
Yσ,τ ,

so
L′′(D, e) =

∑
i∈C`

L′′(D, e, i).

Since

Yσ,τ =
e∏

s=a+1

X
(
js, σ(gs)

) f∏
t=a+1

X
(
kt, τ(ht)

)
then L′′(D, e, i) can be factored as the product M(D, e, i)N(D, e, i) where

M(D, e, i) =
∑

σ∈P (D,e)

sgn(σ)
∏
s∈D′

X(is, σ(gs))
e∏

s=a+1

X(js, σ(gs)),
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N(D, e, i) =
∑

τ∈Q(D,e)

sgn(τ)
∏
s∈D′

X
(
ıs, τ(hs)

) f∏
s=a+1

X
(
ks, τ(hs)

)
.

Up to a sign, M(D, e, i) is the determinant of the submatrix of X whose rows are indexed
by i1, . . . , i` (where i = (i1, . . . , i`)) and ja+1, . . . , je, and whose columns are indexed by
the first column of T with the set E of entries of e deleted. Further, up to the same
sign, N(D, e, i) is the determinant of the matrix whose rows are indexed by ı1, . . . ı` and
ka+1, . . . , kf , and whose columns are indexed by the second column of T , with E deleted.
The product of the two signs is 1, so

(4.5) L′′(D, e, i) =


i1 ı1
i2 ı2
...

...
i` ı`
S0

: (T,E)

 .
This is one of the terms in equation (4.2). Note that the right side of (4.5) does not depend
on D. Since there are

(
a
d

)
subsets of {1, . . . , a} of size d, then for any d, pick some Dd ∈ Pd,

and then we have

L′′d =

(
a

d

)∑
e∈Fd

(−1)a−dL′′(Dd, e).

Also, the right side of equation (4.5) does not depend on the ordering of the d-tuple e,
just on the set E of its entries. Write L′′(D,E) = L′′(D, e). Each subset E of I of size d
gives us d! distinct d-tuples in Fd by permuting the elements. Recall that Ed is the set of all
subsets of I of size d. So we have

L′′d =

(
a

d

)
d!
∑
E∈Ed

(−1)a−dL′′(Dd, E).

If i has two equal entries, then the right side of (4.5) is 0, so L′′(D,E, i) = 0; hence we
assume that all the entries of i are distinct. We did not exclude the possiblity that D is the
empty set. If it is, then `(D) = a, so i1, . . . , i` are a elements of C, but we are assuming
that #C < a. So if D is the empty set, then i has repeated entries, which we have excluded.
Hence we may assume that d ≥ 1, and it follows that

L′′ =
a∑
d=1

L′′d.

If we permute the elements of i, giving say i′, then M(D, e, i′) and N(D, e, i′) are, up to
the same sign, equal to M(D, e, i) and N(D, e, i), respectively. So L′′(D,E, i′) = L′′(D,E, i).
Let

C(`) = {(i1, . . . , i`) : i1 < . . . < i`, ij ∈ C, j = 1, . . . , `}.
Then

L′′(D,E) =
∑
i∈C`

L′′(D,E, i) = `!
∑

i∈C(`)

L′′(D,E, i).

Since ` = a− d then

L′′d =

(
a

d

)
d!(a− d)!

∑
E∈Ed

∑
i∈C(`)

L′′(D,E, i).
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Since
(
a
d

)
d!(a− d)! = a!, then

L′′d =
∑
E∈Dd

L(D,E) = a!
a∑
d=1

Sd.

Since L = L′′ as functions on O(n), the proof is complete. �

In the definition of L in (4.1) we allowed all possible i1, . . . , ia ∈ I − C. We define

(4.6) L̃ =
∑

i1,...,ia∈I−C
i1<···<ia


i1 ı1
i2 ı2
...

...
ia ıa
S0

: T

 .
Lemma 4.2. If K has characteristic 0, then as functions on O(n), L̃ is equal to

∑a
d=1 Sd.

Proof. As we have seen, repeated indices contribute nothing to the sum L. The result now
follows from Lemma 4.1 by dividing by a!. �

It will follow from our results in Section 7 that this result also holds at positive charac-
teristic. However, because of our characteristic zero assumption in this last lemma, we will
need to assume that K has charactersistic 0 for most of our results until the end of Section
6.

In Lemmas 4.1 and 4.2, we sum over E ∈ Ed; if for all i ∈ I, i, ı do not occur in T , then
each Ed is empty, and Sd = 0. We then have the following.

Lemma 4.3. Suppose that for all i ∈ I, i, ı do not occur in T . Then as functions on O(n),

∑
i1,...,ia∈I−C
i1<···<ia


i1 ı1
i2 ı2
...

...
ia ıa
S0

: T

 = 0.

A first application is that on O(n), any bideterminant is, up to sign, equal to a bideter-
minant of shape λ, where λ′1 + λ′2 ≤ n. We will prove this now in the two-column case.

Lemma 4.4. Supppose that [S : T ] is a bideterminant whose shape consists of a single

column. Let S
′

denote the column-increasing tableau whose entries are {ı ∈ I : i /∈ S}.
Then as functions on O(n),

(4.7) [S : T ] = ± det ·[S ′ : T ′].
Proof. We assume that each of S and T has no repeated entries. Suppose that S has k
entries, and let a = n − k. Let V be the one-column tableau of length n whose entries are
all the elements of I. Consider the sum

(4.8) s =
∑

i1,...,ia∈I
i1<···<ia


i1 ı1
i2 ı2
...

...
ia ıa
S

: V T
′

 .
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Apply Lemma 4.2. Since the set C is empty, each Sd is empty except for d = a. We delete

a pairs i, ı from the tableau with columns V , T
′
; this means we delete all the entries of T

′
,

and what remains of V is T . So we get, as functions on O(n),

s = ±[S : T ].

On the other hand, unless i1, . . . , ia all do not occur in S,
i1
i2
...
ia
S

: V

 = 0.

So all terms in the sum (4.8) are 0 except when i1, i2, . . . , ia are the complementary entries
to S, in which case

i1
i2
...
ia
S

: V

 = ± det,


i1 ı1
i2 ı2
...

...
ia ıa
S

: V T
′

 = ± det ·[S ′ : T ′].

So we get [S : T ] = ± det ·[S ′ : T ′], on O(n), as desired. �

Lemma 4.5. Suppose that S and T each have shape λ, where each of S and T have two
columns. Suppose that λ′1 + λ′2 > n. Then [S : T ] is equal, up to sign, to a bideterminant

[S̃ : T̃ ] where S̃ and T̃ have shape λ̃, where each of S̃, T̃ have two columns, and λ̃′1 + λ̃′2 < n.

Proof. Apply Lemma 4.4 to each of [S1 : T1] and [S2 : T2], giving, on O(n)

(4.9) [S : T ] = ± det 2 · [S̄ ′1 : T̄ ′1][S̄
′
2 : T̄ ′2].

If g ∈ O(n), then det(g) = ±1, so we may delete the factor det2. Let [S̃ : T̃ ] be the

bideterminant where S̃1 = S̄ ′2, S̃2 = S̄ ′1, T̃1 = T̄ ′2, T̃2 = T̄ ′1. The shape of [S̃ : T̃ ] is λ̃ where

λ̃′1 = n− λ′2, λ̃′2 = n− λ′1. Then [S : T ] = ±[S̃ : T̃ ]. Since λ′1 + λ′2 > n then

λ̃′1 + λ̃′2 = 2n− λ′1 − λ′2 < n.

This completes the proof. �

5. O(n)-straightening

We assume that K has characteristic 0. The following three lemmas are replacements of
Lemma 3.6, 3.7, and 3.8 of [KW]. Our situation is more complicated than in [KW], as we
need tableaux of different shapes and sizes.

We first deal with violations of condition (OS 1) in the definition of O(n)-standard in
Section 2.

Lemma 5.1. Suppose that S and T are λ-tableaux having two columns, and that S is not
O(n)-standard, in that αj + βj > 2j for some j. Then

(5.1) [S : T ] =
∑

U∈S,U 6=S

−[U : T ] + s
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where S is a set of tableaux all of shape λ such that S ≺ U , and s is a signed sum of
bideterminants of shapes µ with |µ| < |λ|. The set S does not depend on T . If T = T λ, then
s = 0.

Proof. Let J = {i ∈ I : i ≤ j}, and K = {i ∈ I : i > j}; then #J = 2j. For a column Sk
of S, write i ∈ Sk if i occurs as an entry in column Sk. Let

A = {i ∈ J : i ∈ S1 and ı ∈ S2}
B = {i ∈ J : i ∈ S1 or ı ∈ S2 but not both}
C = {i ∈ J : i /∈ S1, ı /∈ S2}.

Then J is the disjoint union of A, B, and C. Let a = #A, b = #B, c = #C. Then
a+ b+ c = #J = 2j, and αj + βj = 2a+ b. Since we are assuming that αj + βj > 2j, then
2a+ b > 2j, so a > c.

Let S be the set of all tableaux obtained from S as follows. For each i ∈ A, replace the pair
i, ı in S by a pair i′, ı′ where i′ ∈ I −C; do this in all possible ways, where the replacements
are strictly increasing down the first column of the tableau.

For each U ∈ S, let U ′ be the tableau obtained from U by rearranging the elements in
each column so that the replacements i, i′ occur in the first a rows. Then∑

U∈S

[U : T ] = ±
∑
U∈S

[U ′ : T ]

and this last sum has the form (4.6). From Lemma 4.2, the sum
∑

U∈S [U : T ] is equal to
a signed sum s of bideterminants having shapes µ such that |µ| < |λ|, and from Lemma
4.3, s = 0 if T = T λ. If for some U ∈ S a replacement i′ is in B, then either i′ occurs
twice in U1 or ı′ occurs twice in U2, so the bideterminant [U : T ] = 0. So the only non-zero
bideterminants in the sum

∑
U∈S [U : T ] are those for which all the replacements come from

A ∪ K, since the replacements cannot come from C. One of these is the original [S : T ],
where each pair i, ı is replaced by itself. Any other U ∈ S has at least one replacement i′

coming from K, so i′ > j and therefore S ≺ U . Then

[S : T ] = −
∑

U∈S,U 6=S

[U : T ] + s.

and for each U where [U : T ] occurs in this sum, S ≺ U . The tableaux U in this sum depend
only on S and not on T . �

Example. Consider the bideterminant as a function on O(6)

[S : T ] =

 1 2
2 2
2

:
1 2
2 3
3

 .
For the tableau S, α2 = 3, β2 = 2, α2 + β2 > 4. For j = 2, A = {2, 2}, B = {1}, C = {1}.
Then a = 2, c = 1. From Lemma 4.2, on O(6),

∑
i1,i2∈I,i1,i2 6=1

i1<i2

 1 ı2
i1 ı1
i2

:
1 2
2 3
3

 = −
[

1 1
1

:
1 3
3

]
−
[

1 1
1

:
1 2
2

]
+ [1 : 1].
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The sum on the left is equal to 1 2
2 2
2

: T

+

 1 3
2 2
3

: T

+

 1 3
2 2
3

: T

+

 1 3
2 2
3

: T

+

 1 3
2 2
3

: T

+

 1 3
3 3
3

: T

 .
Then we get, on O(6), 1 2

2 2
2

: T

 = −

 1 2
2 3
3

: T

−
 1 2

2 3
3

: T

−
 1 2

2 3
3

: T

−
 1 2

2 3
3

: T


−

 1 3
3 3
3

: T

− [ 1 1
1

:
1 3
3

]
−
[

1 1
1

:
1 2
2

]
+ [1 : 1].

Next we deal with violations of (OS 2)

Lemma 5.2. Suppose that S and T are column-increasing λ-tableaux with two columns,
and that S is not O(n)-standard, in that αj + βj = 2j for some j with αj > βj, and
S(αj, 1) = j, S(βj, 2) = , S(αj − 1, 1) 6= , Then [S : T ] may be expressed as a signed sum
of bideterminants as in equation (5.1), Lemma 5.1.

Proof. Define J ,K, A,B,C, a, b, c as in the proof of Lemma 5.1. Since j ∈ S1 and  ∈ S2,
then j ∈ A.

We claim that  ∈ C. If  is in S1, since Sαj ,1 = j, we must have  in position αj − 1 of
column 1, since the entries of the columns are strictly increasing. But we are assuming that
S(αj − 1, 1) 6= . So  is not in column 1 of S. Since S(βj, 1) = , and  < j, then j does not
occur in S2. So  ∈ C, as claimed.

Since αj+βj = 2j, then 2a+b = 2j, and since a+b+c = 2j, then a = c. Let A′ = A∪{},
C ′ = C − {}, and let a′ = #A′, c′ = #C ′, so c′ < a.

Now proceed with the argument of the proof of Lemma 5.1, but use C ′ instead of C in the
definition of S. More precisely, let S ′ be the set of all tableaux obtained from S by replacing
the pairs i, ı in S by i′, ı′ where i′ ∈ I − C ′.

From Lemma 4.2, the sum
∑

U∈S′ [U : T ] is equal to a signed sum of bideterminants having
shapes µ with |µ| < |λ|. One of the terms in the sum

∑
U∈S′ [U : T ] is the original [S : T ].

Of the others, all but one involve the replacement of at least one pair i, ı with i′, ı′ where
i′ ∈ K, and so the resulting U � S. The one exception arises from the replacement of j, 
with , j. The resulting U � S since the second column of U is identical to that of S except
that  has been replaced by j, and j > . This completes the proof. �

Example. Consider the O(7) bideterminant

[S : T ] =

 1 2
1
2

:
1 2
2
2

 .
For S, with j = 2, α2 + β2 = 3 + 1 = 2j and α2 > β2; S(α2, 1) = 2, S(β2, 2) = 2, but the 2
in the first column of S is not protected by a 2 above it. (Note that for T , the 2 in the first
column is protected, and T is O(7)-standard.)
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Using the notation of the lemma, applied to S, with j = 2, we have A = {2}, C = {2},
C ′ is empty. Let

s =
∑

i∈{1,1,2,2,3,3,0}

 1 i
1
ı

:
1 2
2
2

 .
From Lemma 4.2, as functions on O(7),

s =

[
1
1

:
1
2

]
.

The sum s is equal to 1 2
1
2

: T

+

 1 2
1
2

: T

+

 1 3
1
3

: T

+

 1 3
1
3

: T

+

 1 0
1
0

: T

 .
It follows that on O(7), 1 2

1
2

: T

 = −

 1 2
1
2

: T

−
 1 3

1
3

: T

−
 1 3

1
3

: T

−
 1 0

1
0

: T

+

[
1
1

:
1
2

]
.

We now deal with violations of condition (OS 3).

Lemma 5.3. Suppose that S and T are λ-tableaux with two columns. and that S is not O(n)-
standard, in that αj + βj = 2j for some j with αj = βj, and S(αj, 1) = , S(αj, 2) = j and
S(αj−1, 2) 6= . Then [S : T ] can be expressed as one-half a signed sum of bideterminants of
three types: (i) of shape µ where |µ| < |λ|; (ii) of shape µ where µCλ; (iii) of the form [U : T ]
where S ≺ U . The tableaux U in (iii) and their signs in the signed sum are independent of
T . The terms from (i) and (ii) are all 0 if T = T λ.

Proof. Proceed as in the proof of the previous lemma. Since S(αj, 1) =  and j > , then
j does not occur in the first column of S; since S(αj, 2) = j and S(αj − 1, 2) 6= , then 
does not occur in the second column of S. So j ∈ C; in this case let C ′′ = C − {j}. Argue
as in the proof of the previous lemma, but now with S ′′ given by replacing pairs i, ı in S
by i′, ı′ where i′ ∈ I − C ′′. This time,

∑
U∈S′′ [U : T ] is equal to [S : T ] plus an exceptional

term [S∗ : T ] where S∗ comes from replacing , j in S with j, , plus a signed sum s3 of
bideterminants [U : T ] where S ≺ U . From Lemma 4.2

[S : T ] + [S∗ : T ] + s3 = s1

where s1 is a signed sum of bideterminants of shape µ where |µ| < |λ|. The tableau S∗ is
not GL(n)-standard; straightening [S∗ : T ], from Lemma 3.2, gives

[S∗ : T ] = [S : T ] + s′3 + s2

where s′3 is a signed sum of bideterminants [V : T ] of shape λ where V � S, and s2 is a
signed sum of bideterminants of shape µ where µC λ. Then

2[S : T ] + s3 + s′3 + s2 = s1, 2[S : T ] = s1 − s2 − (s3 + s′3),

where s1 satisfies (i) in the conclusion of the lemma, s2 satisfies (ii), and s3 + s′3 satisfies
(iii). �



A BASIS OF BIDETERMINANTS FOR THE COORDINATE RING OF THE ORTHOGONAL GROUP 17

Example. Consider the function on O(6) given by

[S : T ] =

 1 1
2 2
3

:
1 1
2 2
2

 .
For the tableau S, α2 = β2 = 2. The 2 in S is not protected, since 2, 2 occur in the second
row, and there is no 2 above the 2. From Lemma 4.2, on O(6)

∑
i∈I

 1 1
i i
3

:
1 1
2 2
3

 = −
[

1 1
3

:
1 1
3

]
−
[

1 1
3

:
2 2
3

]
.

Let the right side of this equation be s1. The left side of the equation is equal to 1 1
2 2
3

:
1 1
2 2
3

+

 1 1
2 2
3

:
1 1
2 2
3

+

 1 1
3 3
3

:
1 1
2 2
3

 .
The first term is [S : T ]. Call the third term [V : T ]. The middle term needs to be GL(n)-
straightened; this was done in Example 3.1. From this example, the middle term is equal to
[S : T ], minus a bideterminant [U : T ], where S ≺ U , plus a signed sum s2 of bideterminants
of shape (2, 13). So we have, on O(6),

2[S : T ] = −[U : T ] + [V : T ] + s1 + s2 = s1 + s2 + s3 where s3 = −[U : T ] + [V : T ].

We can now state our main straightening result.

Theorem 5.1. Suppose that S and T are tableaux of the same shape λ, having at most n
parts. Then as functions on O(n),

[S : T ] =
∑
U

aU [U : T ] + s

where the tableaux U in the sum are O(n)-standard, each aU ∈ K and is independent of T ,
and s is a linear combination of bideterminants of shapes µ where |µ| < |λ| or |µ| = |λ| and
µC λ. If T = T λ then s = 0.

Proof. We use triple induction, first on the size |λ| of a partition λ, next using the dominance
order C on partitions of the same size, and lastly, downward induction on the order ≺ on
tableaux of the same shape. Given a bideterminant [S : T ], use Mead’s GL(n)-straightening
from Theorem 3.1, to reach the case that [S : T ] is GL(n)-standard.

To achieve O(n)-standardness, we write the bideterminant [S : T ] as a product of two
bideterminants, the first [S : T ]1 coming from the first two columns of each of S and T ,
except for violations of (OS3) where we take columns 1 and b, and the second [S : T ]2
coming from the remaining columns. We need to straighten [S : T ]1. To get the condition
that λ′1 + λ′2 ≤ n, use Lemma 4.5. To achieve the three conditions in the definition of O(n)-
standard, use the three previous lemmas. Then multiply by [S : T ]2. In the course of using
these results, we sometimes replace a two-column subtableau with one where the columns
have different lengths. We might get an array which is not a tableau, since the column
lengths might not be decreasing. Then we rearrange the columns to get a tableau. �

Using Remark 2.2, we have an analogous result where we replace [S : T ] by [T : S]. Then
we have
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Corollary 5.1. The coordinate ring K[O(n)] is spanned by O(n)-standard bideterminants.

6. Filtrations and Linear Independence

Let K be a field of characteristic 0.
The coordinate ring K[GL(n)] is a GL(n)-bimodule,

g1fg2(x) = f(g2xg1), f ∈ K[GL(n)], g1, g2, x ∈ GL(n).

The same equation defines an O(n)-bimodule structure on the coordinate ring K[O(n)].

Lemma 6.1. For tableaux S and T of the same shape λ, and g ∈ GL(n),

[S : T ]g =
∑
U

aU [U : T ]

where the sum is over a certain collection {U} of λ-tableaux, and each aU ∈ K does not
depend on T .

Proof. For an n× n matrix A, let [S : T ](A) denote the evaluation of the function [S : T ] at
A; in this notation, ([S : T ]g)(X) = [S : T ](gX).

First supppose that S and T each have just one column. From the Binet-Cauchy formula,
(see for example [Pra, 2.3, p. 10]])

[S : T ](gX) =
∑
U

[S : U ](g)[U : T ](X), so [S : T ]g =
∑
U

(
[S : U ](g)

)
[U : T ]

where the U in the sum vary over all column-increasing tableaux, of the same shape as S.
In the general case, since a bideterminant is a product of determinants, one for each column
of the tableaux, [S : T ] =

∏
j[Sj : Tj]. Then

[S : T ]g =
∏
j

[Sj : Tj]g =
∏
j

∑
Uj

(
[Sj : Uj](g)

)
[Uj : Tj]


=

∑
U

(∏
j

(
[Sj : Uj](g)

)
[Uj : Tj]

)

=
∑
U

(∏
j

[Sj : Uj](g)

)(∏
j

[Uj : Tj]

)
=

∑
U

aU [U : T ]

where

aU =
∏
j

[Sj : Uj]g = [S : U ]g.

�

For a partition λ having at most n parts, the Schur module for GL(n), which we denote
by Lλ, is the K-span of all bideterminants [T λ : T ] where T varies over all tableaux of shape
λ. As is well known, this is a left GL(n)-submodule of K[GL(n)]; this also follows from
Lemma 6.1. A good reference for Schur modules is Chapter 4 of [G], where they are denoted
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by Dλ,K . Since the characteristic of K is 0, Lλ is irreducible. Define the right Schur module
λL to be the K-span of all bideterminants [T : T λ].

Define the orthogonal left Schur module, denoted LλO to be the K-span of [T λ : T ]O as T
varies over all tableaux of shape λ. This is a left O(n)-submodule of K[O(n)]. Similarly we
have the right orthogonal Schur module [T : T λ]O, spanned by [T λ : T ]O.

Lemma 6.2. The right orthogonal Schur module λLO is spanned over K by all O(n)-standard
bideterminants [T : T λ]. The left analogue LλO is spanned by all O(n)-standard bideterminants
[T λ : T ].

Proof. The first statement follows from Theorem 5.1. The second statement follows by taking
transposes. �

We define the module Mλ, as in [KW, p. 254], as follows. Fix a partition λ, and let T be
a λ-tableau. Identify T with an element of tensor space V ⊗|λ|, and let {T} = Y λT where Y λ

is the Young symmetrizer, as in [KW, (2.2), p. 254]. Let Mλ be the span of all Y λT , as T
varies over all λ-tableaux. This is a module for GL(n), which as is well-known, is irreducible.

A trace tensor in V ` is a linear combination of the form∑
i∈I

x⊗ vi ⊗ y ⊗ vı ⊗ z

where x, y and z are elements of some (possibly zero) tensor power of V and {vi : i ∈ I} is
the standard basis of V . Let U ⊂ V ⊗` be the span of all such trace tensors. Define

Oλ = Mλ/(Mλ ∩ U).

As in [KW] and [W, Chap V.7], Oλ is an irreducible O(n)-module, and the irreducible
O(n)-modules are given by Oλ where λ is a partition with at most n parts, with λ′1 +λ′2 ≤ n.

In the GL(n) case, it is well known that Mλ and Lλ are isomorphic. We will show that
Oλ and LλO are isomorphic O(n)-modules. To do this we use the following formalism. Let
M be a finite-dimensional polynomial O(n)-module, with basis m1, . . . ,mk. For m ∈ M ,
g ∈ O(n), write

gm =
k∑
i=1

ai(g,m)mi.

It is clear that for g, g′ ∈ O(n), we have ai(gg
′,m) = ai(g, g

′m). Define fm ∈ K[O(n)] by
fm(g) = a1(g,m). (This, of course, depends on the choice of ordered basis of M .) Define
the map

F : M → K[O(n)] F (m) = fm, m ∈M.

Then F is a homomorphism of O(n)-modules. We sometimes write fM,m instead of just fm,
and FM instead of F .

If we have another O(n)-module M ′ with basis m′1. . . . ,m
′
`, we use the ordered basis

{mi ⊗m′j} whose first element is m1 ⊗m′1. For the element m⊗m′, we have

g(m⊗m′) = gm⊗ gm′ =
∑
i,j

ai(g,m)a′(g,m′)mi ⊗m′j

from which it follows that
fM⊗M ′,m⊗m′ = fM,mfM ′,m′ .

If N is an O(n)-sumbodule of M which does not contain a scalar multiple of m1, we pick
the basis m1, . . . ,mk of M such that for some j > 1, mj+1, . . . ,mk is a basis of N . Let M
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denote M/N , which has basis m1, . . . ,mj. If m ∈ M has the form m =
∑k

i=1 aimi then

m =
∑j

i=1 aimi so fM,m = fM,m.
Suppose that λ is the partition of k whose shape consists of one column. It is well-known

and easy to see that the module GL(n)-module Mλ is the k-th exterior power
∧k V of V ; Mλ

is an O(n)-module by restriction. Pick a basis of Mλ whose first element is m1 = vj1∧· · ·∧vjk
where j1, j2, . . . jk are the first k elements of I, as in (2.2). Let T (k) denote the one-column
tableau with entries j1, j2, . . . jk. Then fMλ,m1

= [T (k) : T (k)]O. Let ∧v(k) = vj1 ∧ · · · ∧ vjk .
Now let λ be any partition. Then Mλ has a basis whose first element m1 is Y λT λ which

is equal to

∧v(λ′1)⊗ · · · ⊗ ∧v(λ′`) ∈
∧|λ′1|

V ⊗ · · · ⊗
∧|λ′`|

V

where λ′ has ` parts. The module Mλ is an O(n)-module by restriction. It follows that
fMλ,m1

is the bideterminant [T λ : T λ]O.
Since Oλ is a factor module of Mλ, it follows that fOλ,m1

= fMλ,m1
= [T λ : T λ]O. Since Oλ

is an irreducible O(n)-module, then any element m ∈ Oλ is a linear combination of elements
of the form {gim1} for suitable gi ∈ O(n). Hence FOλ(m) ∈ LλO. So FOλ is an O(n)-module
homomorphism from Oλ to LλO. From [KW], Oλ has basis given by standard O(n)-tableaux.
Note that the main idea of [KW] is to prove straightening; linear independence follows from
Proctor [Pro].

Proposition 6.1. For a partition λ with at most n parts, the left and right Schur modules LλO
and λLO are irreducible, and have K-bases given by O(n)-standard bideterminants [T λ : T ],
and [T : T λ], respectively.

Proof. From the preceding paragraph there is a non-zero homomorphism F from Oλ to LλO.
Since Oλ has K-basis indexed by the set of O(n)-standard tableaux of shape λ, and since
LλO is spanned by O(n)-standard [T λ : T ]O of shape λ, by Lemma 6.2, it follows that F is
surjective. It is injective, since Oλ is irreducible. The analogue for right Schur modules is
similar. �

Let ≤ be any partial order on the set of partitions of at most n parts, such that

(6.1) µ < λ if |µ| < |λ|; and µ < λ if |µ| = |λ| and µC λ.

Let A(≤ λ) denote the K-subspace of K[O(n)] spanned by standard O(n)-bideterminants

of shape µ where µ ≤ λ. Define A(< λ) similarly. Let A(≤ λ) denote A(≤ λ)/A(< λ). Let

[S : T ]O denote the image of the bideterminant [S : T ]O in A(≤ λ)/A(< λ).

Theorem 6.1. There is an isomorphism

Φ : LλO ⊗ λLO → A(≤ λ))

of O(n)-bimodules given by

Φ
(

[T λ : S]O ⊗ [T : T λ]O

)
= [T : S]O

where S and T are O(n)-standard tableaux of shape λ.

Proof. Note that Φ is well-defined, since LλO and λLO have bases, from Proposition 6.1. We
first show that Φ is a right O(n)-module homomorphism.
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Suppose that S and T are O(n)-standard. For g ∈ O(n), we have from Lemma 6.1

(6.2) [T : T λ]g =
∑
U

aU [U : T λ]

where the U in the sum are column-increasing tableaux, and aU ∈ K. From Theorem 5.1,
each [U : T λ]O can be written as

(6.3) [U : T λ]O =
∑
V

bU,V [V : T λ]O

where the tableaux V are O(n)-standard. Then

Φ
(

[T λ : S]O ⊗ [T : T λ]Og
)

= Φ
(

[T λ : S]O ⊗
∑
U,V

aUbU,V [V : T λ]O

)
=

∑
U,V

aUbU,V [V : S]O.(6.4)

On the other hand, (
Φ
(
[T λ : S]O ⊗ [T : T λ]O

))
g = [T : S]Og.

From Lemma 6.1 the coefficients aU in (6.2) are the same for [T : S]g as they are for [T : T λ]g,
so

[T : S]g =
∑
U

aU [U : S].

Moreover when O(n)-straightening [U : S]O, we get the same answer, mod A(< λ), as we do
when straightening [U : T λ]O, from Theorem 5.1. So from (6.3) we get

[U : S]O ≡
∑
V

bU,V [V : S]O mod A(< λ).

Then (
Φ
(
[T λ : S]O ⊗ [T : T λ]O

))
g = [T : S]Og =

∑
U,V

aUbU,V [V : S]O.

It follows from this and (6.4) that Φ is a homomorphism of right O(n)-modules. That it is
a homomorphism of left O(n)-modules has a similar proof.

Since LλO is an irreducible left O(n)-module and λLO is an irreducible right O(n)-module,
then LλO⊗λLO is an irreducible O(n)-bimodule. Therefore Φ has trivial kernel. Now LλO⊗λLO
has K-basis given by the set of all [T λ : S] ⊗ [T : T λ] where S and T are O(n)-standard of

shape λ, and this basis is mapped by Φ to the set {[T : S]O} of generators of A(≤ λ). It
follows that Φ is an isomorphism. �

Corollary 6.1. The set of O(n)-standard bideterminants [S : T ]O are linearly independent.

Proof. This is because the set of all [T λ : S]O ⊗ [T : T λ] is a basis of LλO ⊗ λLO. �

Theorem 6.2. Let < be a partial order satisfying (6.1), and let <̃ be a total order which

refines <. Then A(≤̃λ) has K-basis given by the set of O(n)-standard bideterminants [S : T ]O
of shape µ≤̃λ.
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Proof. By induction, A(<̃λ) has a basis given by O(n)-standard bideterminants of shape
<̃λ. It follows from Theorem 6.1 that the images of [S : T ] in A(≤ λ)/A(< λ), where
[S : T ] are O(n)-standard of shape λ, are a basis of A(≤ λ)/A(< λ). We conclude that the

O(n)-standard bideterminants of shape ≤̃λ form a basis of A(≤̃λ). �

Corollary 6.2. The set of O(n)-standard bideterminants is a K-basis of K[O(n)].

Proof. From Theorem 5.1 the O(n)-standard bideterminants span K[O(n)]. Finitely many

of them lie in A(≤̃λ) for some λ, hence are linearly independent. �

7. Base Change and Non-zero Characteristic

We first discuss base change. Suppose that R is an integral domain of characteristic not
2, having infinite field of fractions K. Define O(n,R) to be the subgroup of GL(n,R) given
by elements g such that gtJg = J , where J is the matrix of the bilinear form (2.1). Let
SO(n,R) be the elements in O(n,R) of determinant 1. Essentially following [Bo1, 2.4] define
R[O(n)] to be the polynomial ring R[X(i, j)] modulo the ideal A of polynomials which vanish
on O(n,K) where K is the algebraic closure of K. Define R[SO(n)] similarly. From [Bo2,
18.3], SO(n,K) is dense in SO(n,K), in the Zariski topology, and then O(n,K) is dense in
O(n,K). So A is the ideal of polynomials in R[X(i, j)] which vanish on O(n,K). In the case
that R is an infinite field K, the definition of K[O(n)] just given agrees with the definition
given in section 2, namely the restriction of polynomials in K[X(i, j)] to O(n,K).

The group SO(n,K) is a Chevalley group. (Strictly speaking, for this to hold we should
assume that n ≥ 4.) We use a result of Chevalley, as discussed in [Bo1]. From [Bo1, Lemma
4.6] the ring K ⊗Z Z[SO(n)] is reduced (that is, it has no nilpotent elements). It follows, as
in [Bo1, 3.4], that

(7.1) K[SO(n)] ∼= K ⊗Z Z[SO(n)].

The group O(n,K) has two irreducible components, namely the subsets on which the de-
terminant is ±1. We have the idempotents e+ = (1/2)(1− det) and e− = (1/2)(1 + det) in
K[O(n)], and

K[O(n)] = e+K[O(n)]⊕ e−K[O(n)], e+K[O(n)] = K[SO(n)].

Let Z[1/2] be the ring of rational numbers whose denominators are powers of 2. It follows
that

(7.2) K[O(n)] ∼= K ⊗Z[1/2] Z[1/2][O(n)].

Theorem 7.1. If K is an infinite field of odd characteristic, then the set of O(n)-standard
bideterminants [S : T ] is a K-basis of K[O(n)].

Proof. We first prove an analogous result for Z[1/2][O(n)]. Let R = Z[1/2].
Start with a polynomial P in R[X(i, j]). Mead straightening can be done over any field,

indeed over Z. So P is an R-linear combination of bideterminants [S : T ] where S and T are
GL(n)-standard. A bideterminant [S : T ] is a polynomial in the n2 variables X(i, j) with
integer coefficients, and so gives rise to an an element, denoted, [S : T ]O,R, of R[O(n)]. The
O(n)-straightening results we have used, namely Lemmas 4.5, 5.1, 5.2, 5.3 hold in R[O(n)].
So we can do O(n)-straightening in R[O(n)] and we see that the O(n)-standard bidetermi-
nants [S : T ]O,R generate R[O(n)] as an R-module. In Q[O(n)], the O(n)-standard bideter-
minants [S : T ] are linearly independent over Q, from Theorem 6.2, so the O(n)-standard
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bideterminants [S : T ]O,R are linearly independent over R, from (7.2). Thus R[O(n)] is a free
R-module, with basis consisting of the O(n)-standard bideterminants [S : T ]O,R. Using (7.2),
it follows that the O(n)-standard bideterminants [S : T ] form a K-basis of K[O(n)]. �

We now consider Theorem 6.1 at odd positive characteristic. The definitions of LλO, λLO,
and A ≤ λ make sense for any field K. At positive characteristic, LλO is not in general an
irreducible left O(n,K)-module, and we must find a different argument for the proof.

Let R = Z[1/2], and let LλO,R be the R-span of [T λ : T ]O,R ∈ R[O(n)] for all λ-tableaux

T . This is a left O(n,R) module, and has a basis of bideterminants [T λ : T ]O,R where T is
O(n)-standard of shape λ. There are analogous definitions and results for λLO,R.

As in the definition of A(λ) following equation (6.1), let A(≤ λ)R be the R-span of all

[S : T ]O,R where S and T have shape µ ≤ λ. Similarly we define A(< λ)R, and let A(≤ λ)R =
A(≤ λ)R/A(< λ)R. Then we have the following analogue of Theorem 6.1.

Theorem 7.2. If K is an infinite field of characteristic not 2, then there is an isomorphism

Φ : LλO ⊗ λLO → A(≤ λ))O

of O(n,K)-bimodules given by

Φ
(

[T λ : S]O ⊗ [T : T λ]O

)
= [T : S]O

where S and T are O(n)-standard tableaux of shape λ.

Proof. That Φ is a bimodule homomorphism is similar to the proof of Theorem 6.1. The
isomorphism Φ above is defined over R = Z[1/2]:

ΦR : LλO,R ⊗ λLO,R → A(≤ λ))O,R, ΦR

(
[T λ : S]O,R ⊗ [T : T λ]O,R

)
= [T : S]O,R.

Since Φ is injective if K = Q, then ΦR is injective. It then follows that ΦR is an isomorphism,
and by base change we see that Φ is an isomorphism. �

8. The group of orthogonal similitudes

Let R be as in the previous section. With a view to future applications to the orthogonal
Schur algebra, we now formulate our results with respect to the group GO(n,R) of orthogonal
similitudes. This is defined as all g ∈ GL(n,R) such that for some unit γ = γ(g) of R,

(8.1) 〈gv, gw〉 = γ 〈v, w〉 for all v, w ∈ Rn.

Here 〈 , 〉 is the form defined in equation (2.1).
The element γ can be defined, as a function on GO(n,R), by

(8.2) γ =
∑
i∈I

X(i, 1)X(ı, 1).

The map γ : GO(n,R)→ R× is a homomorphism.
Define R[GO(n)] to be the polynomials in the n2 + 1 variables X(i, j) and 1/ det, with

coefficients in R, modulo the ideal of those polynomials vanishing on GO(n,K).

Lemma 8.1.

K[GO(n)] ∼= K ⊗Z[1/2] Z[1/2][GO(n)].
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Proof. There are two cases, depending on whether n is even or odd, since GO(n) is connected
if n is odd but not if n is even. For g ∈ GO(n,K) the condition (8.1) is equivalent to
gtJg = γJ , where J is the matrix of the bilinear form (2.1); then on GO(n,K),

(8.3) det g2 = γ(g)n.

If n is odd, then from [KMRT, 12.4], GO(n,K) = SO(n,K) · K× ∼= SO(n,K) × K×. It
follows from the definitions that

Z[GO(n)] ∼= Z[SO(n)]⊗ Z[t, t−1]

where t is an indeterminate. Then the lemma follows from (7.1).
Now suppose that n is even. Given c ∈ K× let ξ(c) be the diagonal matrix

diag(c, c, . . . , c, 1, 1, . . . 1)

where the first n/2 diagonal entries are equal to c. We have a map of algebraic varieties

Φ : O(n)×K× → GO(n), Φ(g, c) = gξ(c).

For g ∈ GO(n,K),

γ
(
gξ(γ(g)−1

)
= γ(g)γ(g)−1 = 1, so gξ(γ(g)−1) ∈ O(n).

Then Φ is invertible, with inverse given by

Ψ(g) = (gξ(γ(g))−1, γ(g))

and Ψ is a regular map because of (8.2). It follows that

K[GO(n)] ∼= K[O(n)]⊗K[t, t−1].

and the lemma follows from (7.2). �

Define A(n, r, R) to be the R-module of polynomials of degree r in the n2, variables X(i, j),
with coefficients in R. Define AGO(n, r, R) to be A(n, r, R) modulo the submodule of all
polynomials which vanish on GO(n,K), so AGO(n, r,K) is the restriction of the polynomials
in A(n, r,K) to GO(n,K). We will find a basis for AGO(n, r,K).

The main technical Lemma 4.1, becomes, in this context:

Lemma 8.2. As functions on GO(n,K), we have

∑
i1,...,ia
∈I−C


i1 ı1
i2 ı2
...

...
ia ıa
S0

: T

 = a!
a∑
d=1

γdSd.

Proof. Proceed as with the proof of Lemma 4.1, until equation (4.3). As functions on
O(n,K),

∑
i∈I X(i, j)X(ı, k) = δj,k, whereas as functions on GO(n,K), we have∑

i∈I

X(i, j)X(ı, k) = δj,kγ.

Then equation (4.3) gets replaced, as functions on GO(n,R), by∑
is∈I−C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
= δσ(gs),τ(hs)

γ −
∑
is∈C

X
(
is, σ(gs)

)
X
(
ıs, τ(hs)

)
.
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Similarly, all occurences of δσ(gs),τ(hs)
get replaced by δσ(gs),τ(hs)

γ, and δ(s) gets replaced by

δσ(gs),τ(hs)
γ. Equation (4.4) becomes, on GO(n,K),

a∏
s=1

(
δ(s)−

∑
is∈C

Z(s, is)

)
=
∑
D∈D

(−1)`(D)γd
∑

(i1,...,i`)∈C`

∏
s∈D′

Z(s, is).

With these replacements, the result follows as in the proof of Lemma 4.1. �

Our main result now, for any infinite field K of characteristic not 2, is

Theorem 8.1. A basis of AGO(n, r,K) is given by the set of functions on GO(n,K)

Br = {γk[S : T ] : k ∈ Z, 0 ≤ k ≤ r/2}
where [S : T ] is O(n)-standard of shape λ with |λ| = r − 2k.

Proof. As in the previous section, we first find a basis for AGO(n, r,Z[1/2]). We start with
GL(n)-straightening, which can be done over any ring R. We need to show that as functions
on GO(n,Q), a bideterminant [S : T ] where S and T are tableaux of shape λ with |λ| = r,
is a Z[1/2]-linear combination of the elements in Br. We call this GO(n)-straightening. We
need GO(n)-analogues of our O(n)-straightening lemmas. From Lemma 8.2 we get a GO
analogue of Lemma 4.2, which is that on GO(n,Q)

(8.4)
∑
U∈S∗

[U : T ] =
a∑
d=1

γdSd.

As in Lemma 5.1, [S : T ] =
∑

U∈S −[U : T ] + s; using (8.4), we see that on GO(n,Q) s is a
signed sum of terms of the form γb[S ′ : T ′] where S ′ is a tableaux of shape σ where |σ| < |λ|
and b+ |σ| = r. Since [S ′ : T ′] can be GO(n)-straightened by induction, then so can [S : T ].
Analogues of Lemmas 5.2 and 5.3 are similar.

We need a GO-analogue of Lemma 4.5. Equation (4.9) becomes, on GO(n,Q),

[S : T ] = ± det 2γ` · [S̄ ′1 : T̄ ′1][S̄
′
2 : T̄ ′2]

for a suitable integer `. If [S : T ] has shape λ where λ′1 + λ′2 > n, the analogue of Lemma

4.5, using (8.3), is that on GO(n,Q), [S : T ] = ±γb[S̃ : T̃ ], for a suitable integer b, where S̃

and T̃ are as in Lemma 4.5. This proves GO(n)-straightening.
Since a polynomial in Z[1/2][X(i, j)] which vanishes on GO(n,Q) also vanishes on O(n,Q),

we have a ring homomorphism

F : AGO(n, r, Z[1/2])→ Z[1/2][O(n)].

The set F (Br) is linearly independent, since γ = 1 on O(n,Q) and the O(n)-standard
bideterminants are linearly independent in Q[O(n)]. So Br is a linearly independent set in
AGO(n, r, Z[1/2]). The theorem now follows from Lemma 8.1. �
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[M] D. G. Mead, Determinantal ideals, identities, and the Wronskian, Pacific J. Math. 42 (1972), 165–175.
[O] S. Oehms, Centralizer coalgebras, FRT-construction, and symplectic monoids, J. Algebra 244 (2001),

19–44.
[Pra] V. V. Prasolov, Problems and Theorems in Linear Algebra, Translations of Mathematical Monographs.

134 (American Mathematical Society, Providence, RI, 1994).
[Pro] R. A. Proctor, Young tableaux, Gel’fand patterns, and branching rules for classical groups, J. Algebra

164 (1994), 299–360.
[W] H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946.

University of Alberta, Department of Mathematical and Statistical Sciences, Edmonton,
Alberta, Canada T6G 2G1

E-mail address: gcliff@math.ualberta.ca


