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In this paper we consider several different methods to produce spanning sets for irre-
ducible polynomial representations of GL(n, K) for an infinite field K, and we show how
these spanning sets are related.

The irreducible polynomial representations of GL(n, K) can be afforded by submodules
L(λ) of Schur modules ∇(λ), indexed by partitions λ of positive integers r. Each ∇(λ) is a
GL(n, K)-submodule of the polynomials A(n, r) of degree r in the n2 coordinate functions
xij on GL(n, K), where GL(n,K) acts on A(n, r) by right translation. The module ∇(λ)
has a K-basis consisting of bideterminants corresponding to semistandard λ-tableaux. The
module L(λ) is generated as a GL(n,K)-module by a highest-weight vector Tλ, which is a
product of determinants of principal minors of the matrix X = (xij)1≤i,j≤n.

If K has characteristic 0, it is well known that the modules ∇(λ) are irreducible, that
is, ∇(λ) = L(λ). If the characteristic of K is p > 0, then in general the dimension of L(λ)
and the dimensions of its weight spaces are not known. We give several methods for finding
K-spanning sets for L(λ), all of which are adapted for the weight-space decomposition of
L(λ).

Our first spanning set B comes from evaluating bideterminants at XA, where A is an
element of GL(n, K), using the Binet-Cauchy formula. This is then compared to a spanning
set of L(λ) produced by a method due to Pittaluga and Strickland in [PS], which is given as

follows. For a partition λ whose first part λ1 = s, let λ̃ be the partition which complements λ
inside the rectangular Young diagram of size n×s. An explicit non-zero SL(n, K)-invariant of

∇(λ)⊗∇(λ̃) is calculated; this gives rise to an SL(n, K)-homomorphism φ : ∇(λ̃)∗ → ∇(λ),
and the image of φ is L(λ). We show that the spanning set produced in this way is the same,
up to sign, as our first spanning set B.

For our third method, let R̂(T ) denote the sum of bideterminants corresponding to

tableaux S which are row equivalent to T . Let A be the set of R̂(T ) where T is semis-
tandard. Using the Schur algebra, we show that A is a spanning set for L(λ). We show that
A is related to B by the Désarménien matrix Ω [D], [G, p. 70].

It is known that ∇(λ) can be defined over Z, in the sense that there is a GL(n, Z)-module
∇Z(λ) which is a finitely generated free Z-module, and our GL(n, K)-module ∇(λ) arises
from ∇Z(λ) by base change

φ : ∇Z(λ) → K ⊗Z ∇Z(λ) ∼= ∇(λ).

In general L(λ) cannot be defined over Z, but we define a GL(n, Z)-module LZ(λ), and
L(λ) = φ(LZ(λ)). The methods we give to produce spanning sets for L(λ) produce Z-bases
of LZ(λ).
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1. Polynomial Representations of GL(n,K)

Throughout, K shall denote an infinite field of arbitrary characteristic, and n and r are fixed
positive integers.

A partition of r is a k-tuple λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ . . . ≥ λk, λi ∈ N and∑k
i=1 λi = r. The Young diagram of shape λ is a collection of r boxes arranged in k left

justified rows with the ith row consisting of λi boxes. A λ-tableau is obtained by filling the
boxes of the Young diagram of shape λ with numbers from the set {1, . . . , n}. The conjugate
of λ shall be denoted µ = (µ1, . . . , µs) where µi is the length of the ith column of the Young
diagram of shape λ and s is the number of columns in the Young diagram of shape λ. For
instance, if λ = (3, 2), then µ = (2, 2, 1) and the following is a λ-tableau:

1 1 2
3 5

A λ-tableau is semistandard if the elements in each row increase weakly from left to right
and the elements in each column increase strictly from top to bottom (as illustrated by the
above tableau).

Let A(n) denote the polynomials over K in the n2 indeterminates xij, 1 ≤ i, j ≤ n. Let
X denote the matrix (xij)1≤i,j≤n. Then GL(n,K) acts on A(n) by

g · P (X) = P (Xg), g ∈ GL(n, K), P ∈ A(n).

For a GL(n,K)-module V which has a finite K-basis {v1, v2, . . . , vm}, we say that V affords
a polynomial representation of GL(n, K) if for each g ∈ G,

gvj =
m∑

i=1

cij(g)vi where each cij(g) ∈ A(n). (1)

Let A(n, r) be the subset of A(n) given by polynomials of degree r. We say that V is a
polynomial module of degree r if each cij(g) in (1) is in A(n, r). Let M(n, r) denote the
category of polynomial GL(n,K)-modules of degree r. Then A(n, r) is in M(n, r), where
GL(n, K) acts on A(n, r) by right translation.

Given an n × n matrix A = (aij)1≤i,j≤n, and subsequences I, J of (1, 2, . . . , n) let AI
J

denote the determinant of the minor of A whose rows are indexed by I and columns indexed
by J . If I = (i1, i2, . . . , ik), J = (j1, j2, . . . , jk), we shall also denote AI

J by

Ai1,i2,...,ik
j1,j2,...,jk

.

Fix λ, a partition of r. Suppose that λ1 = s, so a Young diagram of shape λ has s columns.
For a tableau T , let T (j) denote its j-th column. Given two λ-tableaux S and T the
bideterminant (S : T ) ∈ AK(n, r) is given by

(S : T ) = X
S(1)
T (1)X

S(2)
T (2) · · ·X

S(s)
T (s).

Let Tλ denote the λ-tableau whose entries in the ith row are all i’s. We shall mainly
be concerned with bideterminants (Tλ : T ); the tableau T shall be taken to represent the
bideterminant (Tλ : T ). In this notation, Tλ is then the product of the determinants of the
principal minors of X of sizes µ1, µ2, . . . , µs.
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Definition 1 Let ∇(λ) denote the K-span of the λ-tableaux T .

The module ∇(λ) is denoted by Dλ,K in [G]. Provided that the Young diagram of shape
λ has at most n rows, ∇(λ) is a nonzero GL(n, K)-invariant submodule of A(n, r) so is a
polynomial representation of GL(n,K). (If λ has more than n rows, ∇(λ) = 0.)

The module ∇(λ) has a K-basis consisting of semistandard λ-tableaux. This is proved
by one of several so-called straightening algorithms, which allow one to write a given tableau
as a sum of semistandard tableaux with integral coefficients. See for example [G, 4.5a] or
[F, Theorem 1, p. 110]. We shall use the method given in [F, §8.1, pp. 108–110], (see also
[T, p. 421]) which we now briefly describe.

Let J be a fixed subsequence of column j + 1 of a tableau T , and let I be a subsequence
of column j of T , having the same size as J ; we denote this size by |I|. Let T ∗(I, J) be the
tableau obtained by interchanging the elements in I and J , maintaining the ordering of the
elements. Let T (I, J) be the column increasing tableau obtained from T ∗(I, J) by applying
a suitable column permutation; we will denote this permutation by σI , since we keep J fixed
and vary I. Then we have [F, §8.1]

T =
∑
|I|=|J |
I⊆T (j)

T ∗(I, J) =
∑
|I|=|J |
I⊆T (j)

sgn(σI)T (I, J). (2)

Order the set of λ-tableaux by S � T if, in the right-most column which is different in
the two tableaux, the lowest box in which they differ has a larger entry in S. If T is column
increasing but not semistandard, suppose that the entry in the kth row of the column j is
larger than the entry in the kth row of the column j+1. Then if J is taken to be the sequence
of entries in column j of T which occur in rows 1 through k, and I is any subsequence of
column j having the same size as J , we have

T (I, J) � T. (3)

Combined with (2), this gives a straightening algorithm, by downward induction on �.

Definition 2 Let L(λ) denote the GL(n, K)-submodule of ∇(λ) generated by Tλ.

It is known that L(λ) is irreducible; indeed it is the unique irreducible GL(n,K)-
submodule of ∇(λ), and every irreducible polynomial representation of GL(n, K) is afforded
by L(λ) for some partition λ. See [G, 5.4c, 3.5a], where L(λ) is denoted by Dmin

λ,K or [M
Theorem 3.4.1], where ∇(λ) is denoted by M(λ).

Let D(n) ⊂ GL(n, K) be the subgroup of diagonal matrices and B ⊂ GL(n,K) the
subgroup of upper triangular matrices. If V is a representation of GL(n, K), v ∈ V is
called a weight vector of weight χ = (χ1, . . . , χn), χi ∈ N0, if d · v = dχ1

1 · · · dχn
n · v for all

d = diag(d1, · · · dn) ∈ D(n). A vector v ∈ V is a highest weight vector if B · v = K∗ · v. The
tableau Tλ ∈ ∇(λ) is a highest weight vector. The weight space associated to χ is

V χ = {v ∈ V : d · v = dχ1

1 · · · dχn
n · v for all d ∈ D(n)}.

Given a λ-tableau T in ∇(λ), T has weight χ = (χ1, . . . , χn) where χi is the number of
i’s which are entries in the tableau. For a polynomial GL(n, K)-module V , V is the direct
sum ⊕χV χ of its weight spaces, cf. [G, Prop. 3.3f].
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2. The First Spanning Set

In this section, we present a new method for obtaining a spanning set for L(λ). We know
that L(λ) is spanned over K by all A ·Tλ, as A varies over GL(n,K). Evaluate A ·Tλ at the
matrix X. Use [M, §222], which in our notation can be stated as follows: if I and J are two
subsequences of (1, 2, . . . , n) of size m, then

(XA)I
J =

∑
H

XI
HAH

J

where H varies over all subsequences of (1, 2, . . . , n) of size m. This follows the Binet-Cauchy
formula, [P, 2.3, p. 10] or [M, §217]. Thus

A · Tλ(X) = Tλ(XA) =
s∏

k=1

(XA)1,2,...,µk
1,2,...,µk

=
s∏

k=1

∑
Ik

X1,2,...,µk

Ik
AIk

1,2,...,µk

=
∑

I1,I2,...,Is

( s∏
k=1

X1,2,...,µk

Ik

)( s∏
k=1

AIk
1,2,...,µk

)
where for each k, Ik varies over all subsequences of (1, 2, . . . , n) of size µk. For each s-tuple

(I1, I2, . . . , Ik),
∏s

k=1 X
{1,2,...,µk}
Ik

is a λ-tableau T , and
∏s

k=1 AIk

{1,2,...,µk} is a bideterminant

(T : Tλ) evaluated at the matrix A; we denote this by T ′(A). (We have written T ′ to remind
us that the rows and columns of the bideterminant T are switched in evaluating (T : Tλ) at
A.) So

A · Tλ =
∑

T

T · T ′(A) (4)

where T varies over the set C of all column-increasing λ-tableaux T .
Let T denote the set of semistandard λ-tableaux. Write the tableau T as a K-linear

combination of semistandard tableaux:

T =
∑
S∈T

γTSS.

Apply the K-algebra automorphism on A(n) which takes xij to xji. Then we get

T ′(A) =
∑
S∈T

γTSS ′(A)

where S ′(A) is the bideterminant (S : Tλ) evaluated at A. Then A · Tλ can be written as

A · Tλ =
∑
T∈C

(∑
S∈T

γTSS
)(∑

U∈T

γTUU ′(A)
)

=
∑
U∈T

U ′(A)
( ∑

T∈C,S∈T

γTUγTSS
)
.

Define

B =

{ ∑
T∈C,S∈T

γTUγTSS : U ∈ T

}
.
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We have shown that every element of L(λ) is a K-linear combination of elements of B. Let
M(λ) be the K-span of the set B. We have

L(λ) ⊆ M(λ) ⊆ ∇(λ).

We want to show that L(λ) = M(λ). Define

PU =
∑

T∈C,S∈T

γTUγTSS, U ∈ T .

We must show that for each semistandard λ-tableau U0, PU0 is a linear combination∑
A

cAA · Tλ =
∑
A,U

cAU ′(A)PU ,

for some elements A of GL(n,K) and some scalars cA ∈ K. We shall use the following two
lemmas.

Lemma 1 Suppose that f1, f2, . . . , fk are linearly independent polynomials, over K, in vari-
ables x1, x2, . . . , xm. Then there exist m-tuples A1, A2, . . . , Ak ∈ Km such that

det
(
fj(Ai)1≤i,j≤k

)
6= 0.

Proof. Use induction on k. Suppose that

det
(
fj(Ai)1≤i,j≤k

)
= 0

for all m-tuples A1, A2, . . . , Ak ∈ Km. Expand this determinant along the last row. Let Gj

be the (k − 1) × (k − 1) matrix obtained from
(
fj(Ai)

)
be deleting the last row and j-th

column. Then ∑
j

(−1)j+kfj(Ak) det Gj

is the 0 polynomial in Ak. Since the set {fj : j = 1, . . . k} is linearly independent, then each
det Gj = 0, for all choices of m-tuples A1, A2, . . . , Ak−1. However, by induction, there exist
A1, A2, . . . , Ak−1 such that det G1 6= 0. This is a contradiction, and the proof is complete.�

Lemma 2 Suppose that {f1, f2, . . . , fk} and {p1, p2, . . . , pk} are sets of polynomials in m
variables over K, and that {fi} is linearly independent. Then for each l, there exist m-tuples
A1, A2, . . . , Ak ∈ Km and scalars c1, c2 . . . ck ∈ K such that

pl =
∑

1≤i,j≤k

cifj(Ai)pj.

Proof. From the previous lemma there exist A1, A2, . . . Am satisfying det
(
fj(Ai)

)
6= 0. Con-

sider the system of k equations in the k-unknowns ci, 1 ≤ i ≤ k:

k∑
i=1

cifj(Ai) = 0, j 6= l

k∑
i=1

cifl(Ai) = 1.
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Since det
(
fj(Ai)

)
6= 0, then this system has a (unique) solution c1, c2 . . . ck ∈ K. Multiply

the j-th equation by pj and add, giving

pl =
∑

1≤i,j≤k

cifj(Ai)pj.

�

Theorem 1 The set B is a spanning set for L(λ).

Proof. We must show that for each U0 ∈ T , there exist elements A ∈ GL(n,K) and scalars
cA ∈ K such that

PU0 =
∑

A

cAA · Tλ =
∑
A,U

cAU ′(A)PU .

Enumerate the elements of T as U1, U2, . . . Uk. Then for integers i, 1 ≤ i ≤ k define

pi = PUi
=

∑
T∈C,S∈T

γTUi
γTSS, fi = (Ui : Tλ).

Applying the previous two lemmas, we find Ai and scalars ci such that for each l,

pl =
∑

1≤i,j≤k

cifj(Ai)pj.

Each fi and pi are polynomials in the n2 variables xij so each Ai can be regarded as an n×n
matrix Ai. We want the Ai to be in GL(n,K).

First suppose that µ1 = n. Since det
(
fj(Ai)

)
6= 0, for each i there must exist j such that

fj(Ai) 6= 0. Since fj is the bideterminant (Uj : Tλ), and by definition

(Uj : Tλ) = XI1
1.2,...,µ1

· · ·XIs
1,2,...,µs

where I1, . . . , Is are the columns of Ui, then the minor (Ai)
I1
{1,2,...,µ1} 6= 0 Since µ1 = n, then

det(Ai) 6= 0, and Ai ∈ GL(n,K) as desired Thus we have

pl =
∑
i,j

cifj(Ai)pj ∈ L(λ)

which proves that L(λ) = M(λ) in this case.
In the general case, let λ′ be the partition obtained from λ by placing a column of length

n to the left of the Young diagram of λ; thus the conjugate µ′ of λ′ is (n, µ1, µ2, . . . , µk).
Consider L(λ′) ⊆ M(λ′) ⊆ ∇(λ). Since µ′

1 = n, it follows from the previous paragraph that
L(λ′) = M(λ′). But all the elements in each of L(λ) and M(λ) can be obtained from those
of L(λ′) and M(λ′), respectively, be dividing by det(X). Hence L(λ) = M(λ) and the proof
is complete. �

The spanning set B is well adapted to the weight space decomposition of L(λ). Each
tableau T has a well defined weight χ, and if T is not semistandard, the straightening
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procedure gives us T as a linear combination of semistandard tableaux, each of which also
has weight χ. Let T χ be the set of semistandard λ-tableaux of weight χ, and define

Bχ =
{ ∑

T∈C,S∈T

γTUγTSS : U ∈ T χ
}

.

The following result follows by projecting onto weight spaces.

Corollary The weight space L(λ)χ has spanning set Bχ.

Example 1. Take n = 4, λ = (2, 1).

A · Tλ = (XA)1,2
1,2(XA)1

1

= (X1,2
1,2A

1,2
1,2 + X1,2

1,3A
1,3
1,2 + X1,2

1,4A
1,4
1,2 + X1,2

2,3A
2,3
1,2 + X1,2

2,4A
2,4
1,2 + X1,2

3,4A
3,4
1,2) ·

(X1
1A

1
1 + X1

2A
2
1 + X1

3A
3
1 + X1

4A
4
1)

Let χ = (1, 1, 0, 1) and consider the projection (A · Tλ)
χ of A · Tλ onto the χ-weight space of

L(λ).

(A · Tλ)
χ = 1 4

2
A1,2

1,2A
4
1 + 1 2

4
A1,4

1,2A
2
1 + 2 1

4
A2,4

1,2A
1
1

= 1 4
2

A1,2
1,2A

4
1 + 1 2

4
A1,4

1,2A
2
1 +

(
1 2
4

− 1 4
2

)
(A1,4

1,2A
2
1 − A1,2

1,2A
4
1)

= A1,2
1,2A

4
1

(
2 1 4

2
− 1 2

4

)
+ A1,4

1,2A
2
1

(
− 1 4

2
+ 2 1 2

4

)

Thus the weight space L(λ)χ is spanned over K by the elements

2 1 4
2

− 1 2
4

, − 1 4
2

+ 2 1 2
4

.

Note that these two elements are linearly independent unless the characteristic of K is 3,
when they are equal; so dim L(λ)χ is 1 if the characteristic of K is 3, and is 2 otherwise.

3. The Pittaluga-Strickland Method

In this section we present a method due to Pittaluga and Strickland [PS] for finding a
spanning set for L(λ). Our use of rows and columns of tableaux is reversed from that in
[PS].

Given λ = (λ1, . . . , λk), a partition of r, consider its conjugate partition µ = (µ1, . . . , µs).

Define µ̃ to be the partition given by µ̃1 = n−µs, . . . , µ̃s = n−µ1, and let λ̃ be the conjugate
of µ. For example, if λ = (3, 2), then µ = (2, 2, 1), so µ̃ = (4, 3, 3) and λ̃ = (3, 3, 3, 1).

Pictorially, the Young diagrams for λ and λ̃ form an n × s rectangle when placed side by
side with µ̃ rotated by 180◦.
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n

s

λ

λ̃

We shall define an SL(n, K)-equivariant map from the dual ∇(λ̃)∗ to ∇(λ). Since

HomK(∇(λ̃)∗,∇(λ)) is naturally isomorphic to ∇(λ) ⊗ ∇(λ̃), we first find an SL(n, K)-

invariant element of ∇(λ)⊗∇(λ̃).
Consider the rectangular-shaped Young diagram with n rows and s columns; the top part

of this is the Young diagram associated to λ and the bottom is associated to λ̃. Fill column
k of the λ part of the diagram consecutively with the numbers 1, 2, . . . , µk; fill each column
of the λ̃ portion consecutively with the numbers n + 1, n + 2, . . . , 2n − µk. This gives us a
rectangular tableau R. In the following example n = 4 and λ is the partition (3, 1), and R is

1 1 1
2 2 5
5 5 6
6 6 7

In this section we replace our n × n matrix X of indeterminates by a 2n × n matrix
X = (xij)1≤i≤2n,1≤j≤n. Let B(n) be the polynomials K[xij : 1 ≤ i ≤ 2n, 1 ≤ j ≤ n]. Then
GL(n, K) acts on B(n) by g · p(X) = p(Xg), for p ∈ B(n), g ∈ GL(n,K).

Let R(k) denote the determinant of the minor of X whose rows are indexed by column k
of R, and whose columns are 1, 2, . . . , s. Expand R(k) using Laplace expansion on the first
µk rows (see [M, p. 80] or [P, 2.4.1, p. 11]):

R(k) =
∑
Ik

(−1)ν(Ik)X1,2,...,µk

Ik
Xn+1,n+2,...2n−µk

I′
k

where Ik varies over all subsequences of (1, 2, . . . , n) of size µk, I ′k is the complement of Ik in
(1, 2, . . . , µk), and

ν(I) =
∑
i∈I

i− µk(µk+1)

2
.

Now define

α =
s∏

k=1

R(k).

Then

α =
∑

I1,I2,...Is

( s∏
k=1

(−1)ν(Ik)X1,2,...,µk

Ik

)( s∏
k=1

Xn+1,n+2,...,2n−µk

I′
k

)
. (5)

Let A′(n) be the polynomials K[xij : n + 1 ≤ i ≤ 2n, 1 ≤ j ≤ n] which again is a
GL(n, K)-module via right translation. There is a GL(n,K)-isomorphism σ from B(n) to
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A(n)⊗ A′(n) given by σ(xij) = xij ⊗ 1 if 1 ≤ i ≤ n and σ(xij) = 1⊗ xij if n + 1 ≤ i ≤ 2n.
There is also a GL(n, K)-isomorphism τ : A′(n) → A(n) given by τ(xi+n,j) = xij. Applying
σ and then 1⊗ τ to α we get the element

β =
∑

I1,I2,...Is

( s∏
k=1

(−1)ν(Ik)X1,2,...,µk

Ik

)
⊗
( s∏

k=1

X1,2,...,n−µk

I′
k

)
For each s-tuple (I1, I2, . . . Is),

∏s
k=1 X1,2,...,µk

Ik
is a tableau T whose j-th column is Ij =

T (j) and
∏s

k=1 X1,2,n−µk

I′
k

is a λ̃-tableau T , whose j-th column is I ′s−j.

Define

ν(T ) =
s∑

k=1

ν(T (k))

Then
β =

∑
T∈C

(−1)ν(T )T ⊗ T ∈ ∇(λ)⊗∇(λ̃). (6)

Suppose that the entries is column k of R are r1, r2, . . . , rn. Then for g ∈ GL(n, K) we
have

g ·R(k) = (Xg)r1,r2,...rn

1,2,...,n = Xr1,r2,...rn

1,2,...,n g1,2,...n
1,2,...,n = (det g)R(k).

Hence g · α = (det g)sα, and g · β = (det g)sβ. Now β gives us φ in HomK(∇(λ̃)∗,∇(λ̃))
given by

φ(f) =
∑
T∈C

(−t)ν(T )f(T )T, f ∈ ∇(λ̃)∗.

Since gβ = (det g)sβ, then

φ(gf) =
∑
T∈C

(−t)ν(T )f(g−1T )T = g
∑
T∈C

(−t)ν(T )f(g−1T )g−1T = (det g)−sgφ(f).

Thus the image of φ is a GL(n, K)-submodule of ∇(λ). It can be shown, as in [PS], that
im φ is L(λ); this also follows from Theorem 4 below.

In the sum (6) for β, write the tensor factors in T ⊗ T as a linear combinations of

semistandard tableaux. Let T (λ̃) denote the set of semistandard λ̃-tableaux. Then

β =
∑
S∈T

U∈T (eλ)

aSUS ⊗ U ∈ ∇(λ)⊗∇(λ̃)

for some integers aSU regarded as elements of K. The basis {U ∈ T (λ̃)} of ∇(λ̃) gives rise

to the dual basis {U∗ : U ∈ T (λ̃)} of ∇(λ̃)∗, and

φ(U∗) =
∑
S∈T

aSUS.

Define
S = {φ(U∗) : U ∈ T (λ̃)},
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which is a spanning set of the im φ.
Let Cχ denote the set of all column-increasing λ-tableaux of weight χ. For T ∈ Cχ the

λ̃-tableau T has a certain weight, which we shall call χ. Define

βχ =
∑
T∈Cχ

(−1)ν(T )T ⊗ T ∈ ∇(λ)χ ⊗∇(λ̃)χ.

Straightening T ∈ T χ gives us a linear combination of semistandard tableaux of the same
weight χ, hence

βχ =
∑

S∈T χ

U∈T (eλ)χ

aSUS ⊗ U ∈ ∇(λ)χ ⊗∇(λ̃)χ

and if U ∈ T (λ̃) has weight χ then

φ(U∗) =
∑

S∈T χ

aSUS.

Define
Sχ = {φ(U∗) : U ∈ T (λ̃)χ},

which is a spanning set for (im φ)χ.

Example 2. Suppose that n = 4 and λ = (2, 1). Then

R =

1 1
2 5
5 6
6 7

α = (X1,2
1,2X

5,6
3,4 −X1,2

1,3X
5,6
2,4 + X1,2

1,4X
5,6
2,3 + X1,2

2,3X
5,6
1,4 −X1,2

2.4X
5,6
1,3 + X1,2

3,4X
5,6
1,2 ) ·

(X1
1X

5,6,7
2,3,4 −X1

2X
5,6,7
1,3,4 + X1

3X
5,6,7
1,2,4 −X1

4X
5,6,7
1,2,3 )

Expand this as a sum of monomials in X1,2
i,j X1

kX5,6,7
a,b,c X5,6

d,e where {i, j, d, e} = {k, a, b, c} =
{1, 2, 3, 4}; consider the sum of the monomials for which {i, j, k} = {1, 2, 4} that is, consider
the sub-sum αχ where χ = (1, 1, 0, 1), giving

αχ = X1,2
1,2 (−X1

4 )X5,6,7
1,2,3X

5,6
3,4 + X1,2

1,4 (−X1
2 )X5,6,7

1,3,4X
5,6
2,3 + (−X1,2

2,4 )X1
1X

5,6,7
2,3,4X

5,6
1,3 .

Then

βχ = − 1 4
2

⊗
1 3
2 4
3

− 1 2
4

⊗
1 2
3 3
4

− 2 1
4

⊗
2 1
3 3
4

= − 1 4
2

⊗
1 3
2 4
3

− 1 2
4

⊗
1 2
3 3
4

−
(

1 2
4

− 1 4
2

)
⊗

 1 2
3 3
4

−
1 3
2 4
3


=

(
−2 1 4

2
+ 1 2

4

)
⊗

1 3
2 4
3

+

(
1 4
2

− 2 1 2
4

)
⊗

1 2
3 3
4
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Hence

φ

 1 3
2 4
3

∗

 = −2 1 4
2

+ 1 2
4

, φ

 1 2
3 3
4

∗

 = 1 4
2

− 2 1 2
4

.

So Sχ consists of the two elements

−2 1 4
2

+ 1 2
4

, 1 4
2

− 2 1 2
4

.

We want to show that the elements of S are the same, up to sign, as those in B of Section
2. In the expression (6) for β, writing each T as a linear combination of semistandard
tableaux, we shall have to see what happens to T . We first show that T is semistandard if
and only if T is.

Theorem 2 If T is a semistandard λ-tableau, then T is a semistandard λ̃-tableau.

Proof. It is enough to prove the result for a two column tableau. Suppose that the entries in
columns one and two of T are a1 < a2 < . . . < am and b1 < b2 < . . . < br respectively. T is
semistandard, so aj ≤ bj for 1 ≤ j ≤ r. Let β1 < β2 < . . . < βn−r and α1 < α2 < . . . < αn−m

be the entries in columns one and two of T . By definition, T (2) is the complement of T (1)
and T (1) is the complement of T (2).

We shall use induction to show that βj ≤ αj for 1 ≤ j ≤ n −m. Suppose that β1 > α1

and let α1 = l. Since α1 is the minimal entry in T (2), a1 = 1, a2 = 2, . . . al−1 = l − 1, and
al > l (since l does not occur in T (1)). The minimal number which does not occur in T (2)
is β1 > α1 = l, so b1 = 1, b2 = 2, . . . , bl−1 = l − 1, and bl = l > al. Since this contradicts the
fact that T is semistandard, β1 ≤ α1.

Now assume that βj−1 ≤ αj−1 and suppose that βj > αj. Then, since βj−1 ≤ αj−1 <
αj < βj, αj must occur in T (2) for there is no number which is in T (1) that falls between
βj−1 and βj. Since there are j numbers less than or equal to αj in T (2), there are s = αj − j
numbers less than αj which are not in T (2). These s numbers must occur in the first s rows
of T (1). Since αj is not in T (1), as+1 > αj. We will show that bs+1 = αj.

Since βj−1 < αj < βj, there are j− 1 numbers less than or equal to αj − 1 which occur in
T (1), so there are s = αj − j numbers less than αj which occur in T (2). Again, they occur
in the first s rows of T (2). Since αj occurs in T (2), so bs+1 = αj < as+1 which contradicts
the fact that T is semistandard. Consequently, βj ≤ αj. This completes the proof. �

Next, if T is not semistandard, we use the straightening procedure described in section 1.
This involves consideration of tableaux of the form T (I, J), and we must see what happens
to T when I and J are switched in T .

Lemma 3 Suppose that T is a tableau with two columns and that I and J are subsets of the
same cardinality of the first and second columns of T respectively.

1. If I ∩ J 6= ∅, then T (I, J) = T (I − I ∩ J, J − I ∩ J).
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2. If σ and θ are permutations such that T ∗(I, J) = sgn(σ)T (I, J) and T
∗
(I, J) =

sgn(θ)T (I, J) then sgn(σ) = sgn(θ).

Proof of 1. We will show that if I ∩ J 6= ∅, then T (I, J) = T (I − I ∩ J, J − I ∩ J). Suppose
that I ∩ J = {x}, I = (i1, . . . , im, x, . . .), and J = (j1, . . . , jk, x, . . .). Since the entries in
T which are not members of I or J are irrelevant to our proof, we consider the following
tableaux where T ∗ = T ∗(I, J) and T ∗∗ = T ∗(I − {x}, J − {x}):

T =

i1 j1
...

...
ik jk

ik+1 x
...

...
im jm

x jm+1
...

...

, T ∗ =

j1 i1
...

...
jk ik
x ik+1
...

...
jm im

jm+1 x
...

...

, T ∗∗ =

j1 i1
...

...
jk ik

jk+2 x
...

...
jm+1 im

x im+1
...

...
Now, T ∗(I, J) = sgn(σ)T ∗(I−{x}, J−{x}) where σ is the product of the two permutations
which make T ∗(I, J) and T ∗(I −{x}, J −{x}) identical. It is clear from the above tableaux
that these permutations have the same length, so sgn(σ) = 1, and T ∗(I, J) = T ∗(I−{x}, J−
{x}). By induction on the size of I ∩ J , T (I, J) = T (I − I ∩ J, J − I ∩ J) where I ∩ J is of
any size.
Proof of 2. By part 1 we may assume that I ∩ J = ∅. Then, I ∩ T (2) = ∅ and J ∩ T (1) = ∅,
for otherwise T (I, J) = 0. It follows that I ⊆ T (1) and J ⊆ T (2) so T

∗
(I, J) is well-defined.

We will show that if |I| = |J | = 1, then the permutations under consideration have the same
sign. The result then follows for subsets I and J of any size since one may interchange the
corresponding elements in I and J one at a time.

Let I = {a}, J = {b}, T ∗ = T ∗(I, J) and T
∗

= T
∗
(I, J). Suppose that T ∗(1) is not

column increasing and suppose that there is an x ∈ T ∗(1) with x > b but x < a. (The
argument is essentially the same if there is an x ∈ T ∗(1) with x < b but x > a).

Let X1 = {x ∈ T ∗(1)|x > b but x < a} and suppose that

αs < αs+1 < . . . < αt

are the elements of X1. Then T ∗(1) becomes column increasing after one applies the cycle σ1

which places b in the row in which αs occurs and moves αi down a row for s ≤ i ≤ t. There
is a similar cycle σ2 which makes T ∗(2) column increasing, and cycles σ1 and σ2 which make
T
∗
(1) and T

∗
(2) column increasing.

Let A = {x ∈ X1 : x 6∈ T} so that X1 = (X1 ∩ T ) ∪ A. Let X 1 = {x ∈ T
∗
(1) : x >

b but x < a} and B = {x ∈ X 1 : x 6∈ T}. Then, X 1 = (X1 ∩ T ) ∪ B, and if σ1 6= σ2, then
A 6= ∅ or B 6= ∅, or both.

Suppose that A 6= ∅ and let x ∈ X1, x 6∈ T . Then x ∈ T ∗(2), and since x > b but x < a,
T ∗(2) is not column increasing. It follows that x ∈ X2 = {x ∈ T ∗(2) : x > b but x < a}
and X2 = (X2 ∩ T ) ∪ A. Similarly, if B 6= ∅, the set X 2 = {x ∈ T

∗
(2) : x > b but x < a} =

(X2 ∩ T ) ∪B.
Let |X1 ∩ T | = l1, and |X2 ∩ T | = l2. Then the length of σ1 is l(σ1) = l1 + |A| and

l(σ2) = l2 + |A|. Since l(σ1) = l1 + |B| and l(σ2) = l2 + |B|, sgn(σ1σ2) = sgn(σ1 σ2). �
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Lemma 4 If T is a two column tableau, and J is an ordered subset of the second column of
T , then

T =
∑
|I|=|J |
I⊆T (1)

sgn(σI)T (I, J).

Proof. We will prove that∑
|I|=|J |
I⊆T (1)

sgn(σI)T (I, J) =
∑
|I|=|J |
I⊆T (1)

sgn(σI)T (I, J),

from which the statement follows, since the right-hand side is certainly equal to T by (2) of
Section 1 applied to T .

Applying Lemma 3, part 1 to T , we may assume that I ∩ J = ∅. As noted at the
beginning of the proof of Lemma 3, part 2., we have J ⊆ T (2) if and only if J ⊆ T (2), and
I ⊆ T (1) if and only if I ⊆ T (1) so T (I, J) is well-defined. Furthermore,

{I : |I| = |J |, I ⊆ T (1), I ∩ J = ∅} = {I : |I| = |J |, I ⊆ T (1), I ∩ J = ∅}.

Since I ∩ J = ∅, T (I, J) = T (I, J). Since the permutation which makes T ∗(I, J) column
increasing has the same sign as the permutation which makes T

∗
(I, J) column increasing,

the two sums are identical. �

Theorem 3 Suppose that {Ti : 1 ≤ i ≤ m} is the set of semistandard λ-tableau. If T =∑m
i=1 aiTi , then T =

∑m
i=1 aiTi.

Proof. We apply downward induction on the ordering � given before (3) of Section 1. If T
is semistandard, then so is T by Theorem 2, so the result holds in this case. In particular
it holds for the largest tableau T in the ordering, since if this T were not semistandard one
could write T as a sum of tableaux which are larger in the ordering, by (2) and (3).

Suppose that the conclusion holds for all S � T . Suppose that T is not semistandard.
Write

T =
∑
|I|=|J |

I⊆T (k−1)

sgn(σI)T (I, J) (7)

where J is a subsequence of T (k), chosen as in (2). Then, by Lemma 4,

T =
∑
|I|=|J |

I⊆T (k−1)

sgn(σI)T (I, J).

Write each T (I, J) in the right side of (7) sum as a sum of semistandard tableaux:

T (I, J) =
∑

i

aI,iTi.
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From (3), each T (I, J) in (7) satisfies T (I, J) � T , so by induction, for each T (I, J) on the
right of (7) we have

T (I, J) =
∑

i

aI,iTi.

so that

T =
m∑

i=1

∑
|I|=|J |

I⊆T (k−1)

sgn(σI)aI,iTi, T =
m∑

i=1

∑
|I|=|J |

I⊆T (k−1)

sgn(σI)aI,iTi.

This completes the proof. �

Due to the above theorem, we may write β as follows:

β =
∑

T

(−1)ν(T )T ⊗ T =
∑
T∈C

(−1)ν(T )

(∑
S∈T

γTSS

)
⊗
∑
U∈T

γTUU

=
∑

S,U∈T

(∑
T∈C

(−1)ν(T )γTSγTU

)
S ⊗ U.

We know that {U : U ∈ T } is the set of semistandard λ̃-tableaux. Hence

φ(U
∗
) =

∑
S,U∈T

∑
T∈C

(−1)ν(T )γTSγTU .

We now have that
S = {

∑
T∈C,S∈T

(−1)ν(T )γTSγTUS : U ∈ T }.

Theorem 4 The elements of the Pittaluga-Strickland spanning set S are, up to sign, the
same as those in the first spanning set B.

Proof. Note that we need only show that for each U ∈ T , the sign (−1)ν(T ) is the same for
each T ∈ C. Then

∑
(−1)ν(T )γTSγTUS = ±

∑
γTSγTUS which is the same as the element

PU ∈ B up to sign. Given T ∈ C, T =
∑

S∈T γTSS, where all S in the sum have the same
weight as T . So, for each U ∈ T , each S in the sum

∑
T∈C
S∈T

γTUγTSS has the same weight as

T . If suffices to prove, then, that if T and S are two tableaux with the same weight, then
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(−1)ν(T ) = (−1)ν(S). But,

ν(T ) =
s∑

k=1

ν(T (k))

=

 ∑
t∈T (1)

t− µ1(µ1 + 1)

2

+ . . . +

∑
t∈T (s)

t− µs(µs + 1)

2


=

(∑
t∈T

t

)
−

(
k∑

i=1

µi(µi + 1)

2

)

=

(∑
t∈S

t

)
−

(
k∑

i=1

µi(µi + 1)

2

)

=
s∑

k=1

ν(S(k))

= ν(S)

from which the result follows. �

4. The third spanning set and the Désarménien matrix

Let Σr denote the symmetric group on r letters and let I denote the set of all r-tuples
I = (i1, . . . , ir) where iρ ∈ {1, . . . , n}. Given I = (i1, . . . , ir) ∈ I, σ · I = (iσ1, . . . , iσr) defines
an action of Σr on I and an action on I × I is given by σ · (I, J) = (σ · I, σ · J). We write
(I, J) ∼ (I ′, J ′) if (I, J) and (I ′, J ′) are in the same Σr-orbit of I × I.

Given I, J ∈ I, let xI,J = xi1j1 · · ·xirjr ∈ A(n, r). Then xI,J = xI′,J ′ if and only if (I, J) ∼
(I ′, J ′) and if Γ is a set of representatives of the Σr-orbits of I ×I, the set {xI,J : (I, J) ∈ Γ}
is a basis for A(n, r). It is known that A(n, r) is a coalgebra so its dual, denoted S(n, r), is
an algebra called the Schur Algebra:

S(n, r) = (A(n, r))∗ = HomK(A(n, r), K).

Define ξI,J ∈ S(n, r) by

ξI,J(xI′,J ′) =

{
1 if (I, J) ∼ (I ′, J ′)
0 otherwise

.

Clearly ξI,J = ξI′,J ′ iff (I, J) ∼ (I ′, J ′) and the set {ξI,J : (I, J) ∈ Γ} is the dual basis for
S(n, r).

Given A ∈ GL(n, K), define eA ∈ S(n, r) by eA(c) = c(A) where c ∈ A(n, r). One can
extend the map A → eA linearly to get a map e : KGL(n,K) → S(n, r) which is a morphism
of K-algebras. Let mod(S(n, r)) denote the category of all finite dimensional left S(n, r)-
modules. In [G, Proposition 2.4c], it is shown that the categories M(n, r) and mod(S(n, r))
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are equivalent using the above morphism. In particular, a module V in either category can
be studied as a module of the other category via the rule:

κv = e(κ)v, for all κ ∈ KGL(n, K), v ∈ V. (8)

From this it follows that the K-span of the set {ξ · Tλ : ξ ∈ S(n, r)} is equal to the K-span
of the set {A · Tλ : A ∈ GL(n, K)} = L(λ). This will give another spanning set for L(λ).

Suppose that S and T are two λ-tableaux. We say that S and T are row equivalent,
denoted S ∼r T if they are equal up to a permutation of the rows. Define

R̂(T ) =
∑
S∼rT

S.

The following theorem is also proved in [C, 6.7(2)]. The proof we give here uses the
Schur algebra and the Carter-Lusztig basis for the Weyl module, ∆(λ). Given an r-tuple I,
let TI denote the λ-tableau which is obtained by filling the corresponding Young diagram
canonically across the rows with the numbers in I. Let I(λ) denote the subsequence which
satisfies TI(λ) = Tλ. If fλ denotes the highest weight vector in ∆(λ), the following set forms
a K-basis for ∆(λ) (see [G, 5.4b]):

{ξI,I(λ)fλ : TI ∈ T }.

This is Green’s version of the Carter-Lusztig basis for ∆(λ). It is known that ∆(λ) has a
unique maximal submodule M and that ∆(λ)/M is isomorphic to L(λ) ([G, 5.3b]).

Theorem 5 The set A = {R̂(T ) : T ∈ T } is a spanning set for L(λ).

Proof. Since {ξI,J : (I, J) ∈ Ω} forms a basis for S(n, r), L(λ) is generated by the set
{ξI,J · Tλ : (I, J) ∈ Ω}. But (as in [G], proof of 6.4 b)), L(λ) is K-spanned by the elements

{ξI,λ · Tλ : I ∈ I} and ξI,λ · Tλ = R̂(TI). So L(λ) is K-spanned by the set {R̂(T ) :
T is a λ-tableau}.

Using the Carter-Lusztig basis for ∆(λ), we obtain a surjective map φ : ∆(λ)/M → L(λ)
defined by φ(ξI,λfλ + M) = ξI,λTλ. Since {ξI,λfλ : I ∈ I, TI ∈ T } is a basis for ∆(λ),

{ξI,λTλ : I ∈ I, TI ∈ T } = {R̂(T ) : T ∈ T } generates L(λ). �

In order to investigate the relationship between A and B we introduce a definition and
lemma. Given T ∈ C and S ∈ T , let γTS, denote the straightening coefficient of S in the
straightening decomposition of T . Define

g(S) =
∑
T∈C

γTST.

For example, if λ = (2, 1) and χ = (1, 1, 1), there are three column-increasing λ-tableaux:

1 2
3

, 1 3
2

, 2 1
3
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Then since
2 1
3

= 1 2
3

− 1 3
2

,

g

(
1 2
3

)
= 1 2

3
− 2 1

3
.

Lemma 5 Each element in the spanning set B corresponds to a g(S) where S ∈ T ;

B = {g(S) : S ∈ T }.

Proof. In Section 2, we showed (4) that A · Tλ =
∑

T∈C T · T ′(A). Write T ′(A) as a k-linear
combination of semistandard tableaux. This yields

A · Tλ =
∑
T∈C

T · T ′(A)

=
∑
T∈C

T ·

(∑
S∈T

γTSS ′(A)

)

=
∑
S∈T

S ′(A)

(∑
T∈C

γTST

)
=

∑
S∈T

S ′(A)g(S)

It follows that A = {g(S) : S ∈ T }. �

To prove our next result, we state some results from [D]. Let RT (respectively CT ) be the
tableau obtained by writing T so that its rows (respectively columns) are weakly increasing
(respectively increasing). If CU is the image of U under the action of the permutation σ,
then let s(U) = sgn(σ). Given two column increasing λ-tableau T and T ′, define Ω(T, T ′) =∑
{s(U): CU = T , RU = T ′}. For example, consider

T =
1 2 2
3 3 4
5 5

, T ′ =
1 2 4
2 3 5
3 5

.

There are exactly two tableaux U which satisfy CU = T and RU = T ′. They are as
follows:

U =
1 2 4
5 3 2
3 5

, and U ′ =
1 2 4
3 5 2
5 3

.

Since s(U) = s(U ′) = 1, Ω(T, T ′) = 2.

Totally order the set of semistandard λ-tableaux, by defining S < S ′ if the first entry in
the first row in which they differ is smaller in S than in S ′. The Désarménien matrix is the
matrix Ω = [Ω(S, S ′)]S,S′∈T . It is proved in [D] that Ω is a unimodular matrix. Moreover, if
T is a column increasing tableau, then Ω bears the following relationship to the straightening
coefficients of T :

(γTS)S∈T · Ω = (Ω(T, S))S∈T . (9)
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Theorem 6 The spanning sets B and A are related via the Désarménien matrix. In partic-
ular,

B · Ω = A.

Proof. Fix S ∈ T . It will be shown that
∑

U∈T g(U)Ω(U, S) = R̂(S). By definition,

R̂(S) =
∑

U ′∼rS U ′, and for each U ′ in the sum we have U ′ = sgn(σU ′)U where U is a
column increasing tableau. So we may write

R̂(S) =
∑

U ′∼rS

U ′ =
∑

U ′∼rS
U ′∼cU

sgn(σU ′)U,

where all U in the sum are column increasing. Let T be a column increasing tableau, and
let aT be the coefficient of T in R̂(S). Then

aT T =
∑

T ′∼rS
T ′∼cT

sgn(σT ′)T = Ω(T, S)T.

On the other hand, if bT is the coefficient of T in the sum
∑

U∈T g(U)Ω(U, S) = R̂(S),
then bT =

∑
U∈T γTUΩ(U, S) = Ω(T, S), by (9). Hence, aT = bT , and the desired result

follows. �

5. Z-forms

The objects A(n), A(n, r), S(n, r), and ∇(λ) all have Z-analogues. Let AZ(n) denote the
polynomial ring Z[xij : 1 ≤ i, j ≤ n], and let AZ(n, r) be the polynomials in AZ(n) of degree
r; both AZ(n) and AZ(n, r) are GL(n, Z)-modules by right translation. Define (cf. [G, p. 23,
p. 26])

SZ(n, r) = HomZ(A(n, r), Z).

A λ-tableau T gives us a bideterminant (Tλ : T ) regarded as an element of AZ(n). Let
∇Z(λ) denote the Z-span of these bideterminants, which is a GL(n, Z)-module. It is a free
Z-module on the semistandard tableaux, since the straightening coefficients lie in Z.

We continue to denote by ∇(λ) the GL(n, K)-module of the K-span of the λ-tableaux
T . We have the base change homomorphism

φ : ∇Z(λ) → K ⊗Z ∇Z(λ) ∼= ∇(λ), x 7→ 1⊗ x.

Let LZ(λ) be the GL(n, Z)-submodule of ∇Z(λ) generated by Tλ. Then φ(LZ(λ)) is isomor-
phic to L(λ).

The categories of polynomial GL(n, Z)-modules of degree r and of SZ(n, r)-modules are
equivalent, just as they are for fields K, via the Z-analogue of κ:

κZ : ZGL(n, Z) → SZ(n, r), A 7→ eA, eA(c) = c(A), A ∈ GL(n, Z), c ∈ AZ(n, r).

In particular, LZ(λ) is the SZ(n, r) submodule of ∇Z(λ) generated by Tλ.
Regard the sets B and A as subsets of ∇Z(λ).
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Theorem 7 Each of B and A are Z-bases of LZ(λ).

Proof. The element R̂(T ) ∈ A is given by ξI,I(λ), for some I, as noted in the proof of Theorem
5. Hence ξI,I(λ) is in the SZ(n, r)-module generated by Tλ, which is the same as LZ(λ). So
the Z-span of A is contained in LZ(λ). The module LZ(λ) is generated over Z by elements
of the form A ·Tλ, where A ∈ GL(n, Z); from section 2, each A ·Tλ is a Z-linear combination
of elements of B. Then, denoting by ZX the Z-span of a set X , we have

ZA ⊆ LZ(λ) ⊆ ZB.

From Theorem 6, A and B are related by the Désarménien matrix, which is unimodular.
Thus ZA = ZB, and so LZ(λ) = ZA = ZB. If we take the field K = Q, we know that
L(λ) = ∇(λ), and that dim∇(λ) is the number of semistandard λ-tableaux, which is the
size of A. So A is linearly independent over Q, hence over Z. This completes the proof. �

Corollary The module LZ(λ) has finite index in ∇Z(λ).
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