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Lab 9—Solving Complicated Systems and
Understanding Errors

Objective:    Computers excel at solving complex systems, but the results must
sometimes be carefully interpreted.

MATLAB        Commands:

hilb(n) Makes the nxn Hilbert matrix.

inv(A) Finds the inverse of matrix A.

format rat Displays all numbers as ratios of fairly simple integers, even
when this is only an approximation.

format long Displays all numbers as 10-digit floating point numbers,
even when this is only an approximation.

x1=linspace(a,b,n) Generates n points in the interval [a,b]. Used for
plotting.

y1=2.1*x1+4.3 One example of how to define a line.

plot(x1,y1) Plots the line we just defined as x1 versus y1.

plot(x1,y1,x2,y2) Use this syntax to plot x1 versus y1 and x2 versus
y2 on the same set of axes.

Here we will study a linear system Ax b=  where A is a fairly large matrix, say
bigger than the 3x3 matrices we typically work with. As a convenient example,
let’s choose it to be a Hilbert matrix. A Hilbert matrix is one whose ijth entry is

given by a
i j

ij =
+
1

. Let’s look at a few in order to get the idea. MATLAB can

generate Hilbert matrices automatically (which is one reason why they were
chosen for this example—we won’t have to type in the 400 entries of a typical
20x20 matrix in the problem below). First set the format to rational:

format rat

hilb(3)

hilb(4)

A=hilb(5) Got the idea?

Now consider the system Ax b=  where A is hilb(5) and x = ( )1 1 1 1 1, , , , . Use
MATLAB to find b. Now we change formats:

format long

This induces small round-off errors as the rational number entries in A and b are
converted to floating point, so A and b are subtlely changed by this process.
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Because of these changes, one might expect that x = ( )1 1 1 1 1, , , ,  is not quite a
solution of Ax b=  anymore. Let’s check:

xNew=inv(A)*b

xDifference=x-xNew

There is a small error, but it’s not bad.

1. Repeat the above experiment, but use the 20x20 Hilbert matrix hilb(20).
Dont’ forget to first reset the format to rat. For x, use the column vector
each of whose twenty entries is a 1. Find b. Then set the format to long to
modify A and b by inducing round-off errors in them, and find the x that
solves the new system Ax b= . How large is the error in x that is induced by
the round-off errors we created in A and b?

From this we see that for delicate problems it will be important not to
assume our results are insensitive to numerical error. We can minimize such
errors by avoiding unnecessary operations, such as format changes.

2. This exercise will help us to understand geomatrically why small round-off
errors can sometimes lead to large effects. You can solve it by hand or with
MATLAB.

Consider a system of two linear equations, where the “slope” coefficients
appearing in the two equations are nearly equal and are not precisely known.
For simplicity, we will assume all other quantities in the equations are
precisely known. Such a system is

x x

x x
2 1

3 1

0 31 0 01 1 5

0 31 0 01 1 0

= − ±( ) +
= − ±( ) +

. . .

. . .

Solve this system when the coefficient of x1  appearing in the first equation
take value −0 32.  and the coefficient in the second takes value −0 30. . Then
solve the system if the situation were reversed (so the coefficient of x1  in the
first equation is −0 30.  and the coefficient in the second equation is −0 32. ).
For each solution, give a sketch representing the solution as the intersection
of the two lines described by these equations.


