Lab 8—Change of Bases

Objective: To become familiar with change-of-basis matrices.

Useful MATLAB Commands:

inv (M)
Finds the inverse of the square matrix M, if an inverse exists.
rref(A)
Returns reduced row echelon form matrix obtained from A.
rank (A)
Returns the rank of A.
eye(n) Creates the $n x n$ identity matrix I_{n}, where n is a positive integer.

1. Let V be the subspace of R^{4} spanned by the basis set B comprised of the vectors

$$
\mathbf{v}_{1}=(2,1,0,1), \quad \mathbf{v}_{2}=(1,-1,-1,0), \quad \mathbf{v}_{3}=(1,1,2,2) .
$$

a) If $\mathbf{x}=(7,0,-4,1)$, show that \mathbf{x} is in V. What are the B-coordinates of \mathbf{x} ? (Hint: You should be able to do both parts of this question at once.)
b) Find a vector \mathbf{v}_{4} such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a basis for R^{4}. [Remark: There are many correct answers.] Check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.

Now recall the formula giving the behaviour of a matrix under a change of basis.
If the matrix $[L]_{S}$ is the standard matrix of a linear mapping $L: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{n}}$ and if B is another basis set for R^{n}, then we may write the matrix for L in the B -basis as

$$
[L]_{\mathrm{B}}=\mathrm{P}^{-1}[L]_{\mathrm{S}} \mathrm{P},
$$

where the columns of P are the vectors comprising the basis set B.
2. Let $L: \mathrm{R}^{3}->\mathrm{R}^{3}$ be a linear mapping with standard matrix

$$
[L]_{S}=\left[\begin{array}{ccc}
1.4 & 2.1 & -3.5 \\
3.1 & -4.5 & 1.2 \\
-3 & -2.7 & 3.9
\end{array}\right]
$$

Let $B=\{(1,1,2),(2,4.3,-2.2),(2.1,-2.5,-0.9)\}$ be a new basis set. What is the matrix $[L]_{\mathrm{B}}$ of this mapping in the new basis set? (Hint: The MATLAB inv() command listed above may be useful.)
3. Let $B=\{(1,0,1),(4,1,-2),(-2,2,1)\}$ be a basis of mutually orthogonal vectors on R^{3}. Let L be the linear mapping $L: \mathrm{R}^{3}->\mathrm{R}^{3}$ described by the B-matrix

$$
[L]_{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This mapping is a familiar geometrical transformation. Can you identify it? What matrix describes this mapping in the standard basis for R^{3} ?

