Lab 5-Linear Mappings

Objective: To gain familiarity with basic concepts related to linear mapping.

Some MATLAB Commands:

$\mathbf{M}=\left[\begin{array}{lllllll}1 & 2 & 3 & \mathbf{4} ; \mathbf{0} & \mathbf{1} & \mathbf{0} & 1\end{array}\right]$ Creates the matrix $M=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1\end{array}\right]$.
$\mathbf{C}=\mathbf{A} * \mathbf{B} \quad$ Defines the matrix \mathbf{C} to be the matrix product of A times B , where A and B are matrices.
rref(M) Computes reduced row echelon form matrix row-equivalent to M.
null(M) Returns a (possibly empty) set of column vectors. These vectors are a spanning set for the solution space of the system $\mathbf{M x}=\mathbf{0}$.

1. Suppose that $S: \mathrm{R}^{2} \rightarrow \mathrm{R}^{4}$ and $T: \mathrm{R}^{4} \rightarrow \mathrm{R}^{2}$ are linear mappings with matrices

$$
[S]=\left[\begin{array}{cc}
1 / 2 & -1 \\
-1 / 2 & 3 / 2 \\
1 & 2 \\
5 / 2 & -1
\end{array}\right], \quad[T]=\left[\begin{array}{cccc}
3 & 2 & 1 & 3 \\
1 & -1 & -1 & 2
\end{array}\right]
$$

Determine the matrices for $S \circ T$ and $T \circ S$. What is $S(4,-2)$? Find $T(S(-1,2))$.
2. Does $(5,-1,2,-5)$ lie in the span of the vectors $(1,3,-1,-2),(2,3,-2,4)$, and $(1,-2,3,3)$? If so, express it as a linear comination of these vectors. [Hint: Set up the problem as a system of linear equations, convert the system to a matrix, and use rref().] Does $(1,1,3,-5)$ lie in the span of these vectors?
3. Is $\mathbf{y}=(9 / 2,-5,3,-13 / 2)$ in the range of the linear mapping L whose matrix is

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
1 & 4 & 3 \\
-1 & -2 & 1 \\
-2 & 2 & 1
\end{array}\right] ?
$$

If so, then find \mathbf{x} such that $\mathbf{y}=L(\mathbf{x})$. [Hint: Again, rref() and backsubstitution may be useful.]

