Lab 5—Linear Mappings

Objective: To gain familiarity with basic concepts related to linear mapping.

Some MATLAB Commands:

M=[1 2 3 4;0 1	0 1] Creates the matrix $M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
C=A*B	Defines the matrix C to be the matrix product of A times $B,$ where A and B are matrices.
<pre>rref(M)</pre>	Computes reduced row echelon form matrix row-equivalent to $\ensuremath{M}.$
null(M)	Returns a (possibly empty) set of column vectors. These vectors are a spanning set for the solution space of the system $Mx = 0$.

1. Suppose that $S: \mathbb{R}^2 \to \mathbb{R}^4$ and $T: \mathbb{R}^4 \to \mathbb{R}^2$ are linear mappings with matrices

$$[S] = \begin{bmatrix} 1/2 & -1 \\ -1/2 & 3/2 \\ 1 & 2 \\ 5/2 & -1 \end{bmatrix}, \quad [T] = \begin{bmatrix} 3 & 2 & 1 & 3 \\ 1 & -1 & -1 & 2 \end{bmatrix}$$

Determine the matrices for $S \circ T$ and $T \circ S$. What is S(4,-2)? Find T(S(-1,2)).

- 2. Does (5,-1,2,-5) lie in the span of the vectors (1,3,-1,-2), (2,3,-2,4), and (1,-2,3,3)? If so, express it as a linear comination of these vectors. [Hint: Set up the problem as a system of linear equations, convert the system to a matrix, and use rref().] Does (1,1,3,-5) lie in the span of these vectors?
- 3. Is $\mathbf{y} = (9/2, -5, 3, -13/2)$ in the range of the linear mapping L whose matrix is

$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 3 \\ -1 & -2 & 1 \\ -2 & 2 & 1 \end{bmatrix}?$$

If so, then find **x** such that $\mathbf{y} = L(\mathbf{x})$. [Hint: Again, rref() and backsubstitution may be useful.]