Lab 4-3D Rotations

Objective: To see that composition of two rotations about different coordinate axes are equivalent to a single rotation about a fixed direction.

MATLAB Commands:

$\mathbf{M}=\left[\begin{array}{lllll}1 & 2 & 3 ; 4 & 5 & 6\end{array}\right]$ Creates a certain $2 x 3$ matrix and calls it M. Use either spaces or commas to separate elements of a row and use semi-colons to separate rows.
$a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad$ Creates a vector and calls it a.
norm (a) Computes the length of vector a.
$\operatorname{dot}(\mathbf{a}, \mathbf{b}) \quad$ Computes dot product of vectors a and b .
$\mathbf{M * N} \quad$ If M and N are matrices, the asterix automatically uses matrix multiplication to take the product. Result is stored in variable ans, which will be overwritten.
$\mathbf{A}=\mathbf{M} * \mathbf{N} \quad$ As above, but result is stored in variable A for later use. Recommended.
rref(M) Computes reduced row echelon form of matrix M in a single step (no user input required, unlike $\mathrm{rr}(\mathrm{M})$). To store result in variable A, type $A=r r e f(M)$ instead.
$\operatorname{acos}(\mathbf{x}) \quad$ Takes \arccos (inverse cosine) of x . The answer will be in radians.

Let $R_{1}\left(\theta_{1}\right)$ be the linear mapping that rotates any vector in R^{3} through an angle θ_{1} counter-clockwise about the x_{1}-axis. It will have matrix

$$
\left[R_{1}\left(\theta_{1}\right)\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & -\sin \theta_{1} \\
0 & \sin \theta_{1} & \cos \theta_{1}
\end{array}\right]
$$

An important property of this mapping is that it leaves any vector parallel to the x_{1}-axis unchanged, as you would expect. You can easily check this by confirming that

$$
\left[R_{1}\left(\theta_{1}\right)\right]\left[\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right]
$$

By way of contrast, any vector \mathbf{v} lying in the $x_{2} x_{3}$-plane (the plane whose equation can be written $x_{1}=0$) is rotated through the angle θ_{1}, while remaining in the
$x_{2} x_{3}$-plane. To see this, define the vector \mathbf{v} whose components are given by the column matrix:

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[R_{1}\left(\theta_{1}\right)\right]\left[\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right]
$$

If you compute v_{1}, it will be zero, so \mathbf{v} lies in the $x_{2} x_{3}$-plane, as claimed. Moreover, if you take the dot product of \mathbf{v} with the original vector $\left(0, x_{2}, x_{3}\right)$ and divide by the length of each vector, you will get the cosine of the angle between these two vectors.

Notice that the length of any vector is unchanged by $R_{1}\left(\theta_{1}\right)$. Indeed, an important property of all rotations is that they leave lengths of vectors unchanged. We can consider this to be the defining property of rotations. Thus, a linear mapping $R: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{n}}$ is called a rotation if and only if the length of the vector $\mathbf{v}=R(\mathbf{x})$ equals the length of \mathbf{x} for every \mathbf{x} in the domain.

1. Write the matrices corresponding to the linear mappings $R_{2}\left(\theta_{2}\right)$, and $R_{3}\left(\theta_{3}\right)$ that rotate vectors counter-clockwise through angle θ_{2} about the x_{2}-axis and through angle θ_{3} about the x_{3}-axis respectively. What vectors are left unchanged by these mappings?
2. Find the matrix A which corresponds to the linear mapping f_{A} obtained by first rotating a vector in R^{3} through angle $\pi / 3$ counter-clockwise about the z axis and then through angle $3 \pi / 4$ counter-clockwise about the x-axis. [Hint: Matrix multiplication is much easier using MATLAB than it is by hand. To type π in MATLAB, type pi in lower-case letters.]
3. We next determine what axis this rotation is about. To do this, notice that any vector \mathbf{w} parallel to this axis will be left unchanged by the rotation, so \mathbf{w} will be a solution of the system of equations $\mathrm{A}[\mathbf{w}]=\mathbf{w}$, which we rewrite as $(\mathrm{A}-\mathrm{I})[\mathbf{w}]=\mathbf{0}$ where I is the identity matrix. Solve this system by performing row reduction of the matrix (A-I). [Hint: Although you can certainly use the rr(M) procedure to do this, the MATLAB command rref(M) will immediately return the reduced row echelon form of any matrix M, saving you plenty of time.] Write the parametric equations of the line through the origin parallel to the \mathbf{w} direction. This line is the axis of the rotation.
4. Now we compute the angle of the rotation. It will suffice to compute the angle for one specific example. Apply the rotation f_{A} to the vector $\mathbf{u}=(2,1,2)$ and find the resulting rotated vector $\mathbf{v}=f_{\mathrm{A}}(\mathbf{u})$. Find the vectors $\operatorname{perp}_{\mathbf{w}} \mathbf{u}$ and $\operatorname{perp}_{\mathbf{w}} \mathbf{v}$, which are the projections of \mathbf{u} and \mathbf{v} into the plane perpendicular to \mathbf{w}. What is the angle between these two projected vectors?
5. Find the matrix B of the linear mapping obtained by applying our original rotations in reverse order; that is, first applying the rotation by $\pi / 4$ counterclockwise about the x-axis and then rotating the result by angle $\pi / 6$ counterclockwise about the z-axis. This is also equivalent to a single rotation (you do not need to check this). By applying the method of Step 3 above, find the axis of this rotation. Is it different from the axis found before?

Optional: Your TA may assign you one or more of the following:
6. Find the vector whose components are the elements of the column vector $\mathrm{A}[\mathbf{i}]$, where $\mathbf{i}=(1,0,0)$. Repeat for $\mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$. Check that the columns $\mathrm{A}[\mathbf{i}], \mathrm{A}[\mathbf{j}]$, and $\mathrm{A}[\mathbf{k}]$ are mutually orthogonal and represent unit vectors (by computing the dot product of each pair of these vectors using MATLAB). This tells you how the coordinate axes are rotated.
7. Compute the dot product of the vector given in column form by

$$
\left[f_{\mathrm{A}}(\mathbf{x})\right]=\left[f_{\mathrm{A}}\left(x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}\right)\right]=x_{1} \mathrm{~A}[\mathbf{i}]+x_{2} \mathrm{~A}[\mathbf{j}]+x_{3} \mathrm{~A}[\mathbf{k}]
$$

with itself. Since we know that $\mathrm{A}(\mathbf{i}), \mathrm{A}(\mathbf{j})$, and $\mathrm{A}(\mathbf{k})$ represent mutually orthogonal unit vectors, this dot product should be equal $x_{1}{ }^{2}+x_{2}^{2}+x_{3}{ }^{2}$, which is just $|\mathbf{x}|^{2}$, so the length of $\left[f_{\mathrm{A}}(\mathbf{x})\right]$ equals the length of \mathbf{x}. This is an important property of rotations.

