Lab 2—Projections

Objective: To practise using projections of vectors to solve geometrical problems.

Recall MATLAB Commands:

Some Arithmetic and Trig:

$\mathbf{x = 7}$	Assign to x the value 7.
$\mathbf{3 * 1 4 / (4 + 2)}$	Always use asterix (*) for multiplication, slash (/) for division.
$\mathbf{3 \wedge 2}$	Use hat (^) for exponents. $\mathbf{s q r t (2 5)}$
Square root function.	
$\boldsymbol{\operatorname { c o s } (p i)}$	Use pi for $\boldsymbol{\pi}$. The other trig functions are similarly defined.
	Inverse cosine (arccos). Make inverse trig functions by placing an a in front of the command for the trig function.

Some vector commands:
$\mathbf{a}=\left[\begin{array}{lll}12 & 5 & -3\end{array}\right] \quad$ This creates the vector $(12,5,-3)$ and gives it the name a.
$\mathbf{b}=(1 / 3) *\left[\begin{array}{lll}0 & 10 & 3\end{array}\right]$ Creates vector $(0,10 / 3,1)$. Notice how arithmetic is done in MATLAB: Slash (/) for division and asterix (*) for multiplication.
$\operatorname{dot}(\mathbf{a}, \mathbf{b}) \quad$ Takes the dot product of two vectors a and b .
cross (a,b) Takes cross product axb.

1. Use MATLAB's dot instruction to compute the projection $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ of $\mathbf{b}=(1,-4,2)$ along the direction of $\mathbf{a}=(-3,1,1)$. Find perp $\mathbf{a} \mathbf{b}$. Finally, check that $\operatorname{proj}_{\mathbf{a}} \mathbf{b}+\operatorname{perp}_{\mathbf{a}} \mathbf{b}=\mathbf{b}$ and that $\operatorname{proj}_{\mathbf{a}}\left(\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right)=\operatorname{proj}_{\mathbf{a}} \mathbf{b}$.
2. Find the projection of the vector $\mathbf{b}=(4,1,-3)$
i) in the direction perpendicular to the plane $2 x+3 y+z=4$.
ii) parallel to the plane $2 x+3 y+z=4$.
3. In this problem, we will use the cross product and projection to find the distance between the lines $\mathbf{x}(t)=(1,1,2)+t(2,-3,2)$ and $\mathbf{x}(s)=(0,1,-1)+s(1,1,3)$.
(i) Find a vector \mathbf{n} that is perpendicular to the tangents to both these lines.
(ii) Choose any two points, one on each given line, and find the vector \mathbf{v} joining your chosen points.
(iii) Find and interpret the component of \mathbf{v} along the direction of \mathbf{n}.
(iv) Can you give a reason why the two given lines are not parallel? Using only the result of part (iii), can you give a convincing reason why the two given lines do not intersect? If so, then one can conclude these lines are skew lines.
