Lab 2—Projections

Objective: To practise using projections of vectors to solve geometrical problems.

Recall MATLAB Commands:

<u>Some_Arithmetic_and_Trig:</u>

x=7	Assign to \mathbf{x} the value 7.		
3*14/(4+2)	Always use asterix $(*)$ for multiplication, slash $(/)$ for division.		
3^2	Use hat (^) for exponents.		
sqrt(25)	Square root function.		
cos(pi)	Use pi for π . The other trig functions are similarly defined.		
acos(1)	Inverse cosine (arccos). Make inverse trig functions by placing an a in front of the command for the trig function.		
Some vector comma	nds:		

a=[12 5 -3]	This creates the vector ((12,5,-3) and gives it the name a.
-------------	---------------------------	----------	----------------------------

b=(1/3)*[0]Creates vector (0,10/3,1). Notice how arithmetic is 10 3] done in MATLAB: Slash (/) for division and asterix (*) for multiplication.

dot(a,b) Takes the dot product of two vectors **a** and **b**.

cross(a,b) Takes cross product axb.

- 1. Use MATLAB's dot instruction to compute the projection proj.b of $\mathbf{b} = (1, -4, 2)$ along the direction of $\mathbf{a} = (-3, 1, 1)$. Find perp_ab. Finally, check that $\text{proj}_{a}\mathbf{b} + \text{perp}_{a}\mathbf{b} = \mathbf{b}$ and that $\text{proj}_{a}(\text{proj}_{a}\mathbf{b}) = \text{proj}_{a}\mathbf{b}$.
- 2. Find the projection of the vector $\mathbf{b} = (4, 1, -3)$
 - i) in the direction perpendicular to the plane 2x + 3y + z = 4.
 - ii) parallel to the plane 2x + 3y + z = 4.
- 3. In this problem, we will use the cross product and projection to find the distance between the lines $\mathbf{x}(t) = (1,1,2) + t(2,-3,2)$ and $\mathbf{x}(s) = (0,1,-1) + s(1,1,3)$.
 - (i) Find a vector \mathbf{n} that is perpendicular to the tangents to both these lines.

- (ii) Choose any two points, one on each given line, and find the vector \mathbf{v} joining your chosen points.
- (iii) Find and interpret the component of \mathbf{v} along the direction of \mathbf{n} .
- (iv) Can you give a reason why the two given lines are not parallel? Using only the result of part (iii), can you give a convincing reason why the two given lines do not intersect? If so, then one can conclude these lines are skew lines.