
32

Lab 16—MATLAB's Symbolic Toolbox

Objective: To become familiar with MATLAB’s facilities for handling symbolic
expressions.

MATLAB Commands:

x=sym('x') Defines x to be a symbolic object which can then be treated
as a mathematical variable.

syms('a','b','c','d') Creates several symbolic objects at once
(syms('a') is the same as a=sym('a')).

syms a b c d Same as above.

y=sym('1/2') Creates symbolic object y and then gives it the definite
value 1/2, so y is treated as a mathematical constant.

M=[a b;c d] Creates symbolic matrix, if a, b, c, and d are symbolic
objects.

ezplot(y,[a b]) Plots symbolic expression y (given as a function of
symbolic object x) on the interval from a to b.

factor(y) Factors symbolic expression y (given as a function of
symbolic object x).

S=solve(eqn1,eqn2,...) Solves a system of equations in symbolic
variables x1, x2, ... and stores the solution in S.

S.x1 Returns the value that x1 takes in the solution S.

Unlike other mathematical software packages such asMaple, basic MATLAB deals
only with numbers and not with symbols. To work with symbols, MATLAB has
an extension called the symbolic toolbox, which is actually a part of the Maple
software package appended to MATLAB. The syntax for using the symbolic
toolbox is cumbersome, but should improve in future versions. In this lab, we will
become familiar with just a small portion of the toolbox’s capabilities.

1. Plot the polynomial y x x= − +3 3 2 . Factor y and find all values of x such
that y = 0 . Remember when defining y to first define x as symbolic. Also
remember that every multiplication must be represented by an asterix (*)
and that exponents are preceded by the hat (^) symbol.

To solve an equation or a system of equations in the symbolic toolbox, rewrite
each equation if necessary so that zero appears as the right-hand side. Give the
left-hand side of each equation a name. For single equations, we apply the

33

solve() command directly to this name. For systems, we first apply the
solve() command and then ask for the value of each unknown variable in turn.

For example, to solve x x2 3 1 5− + = , we can rewrite it as x x2 3 4 0− − = . Then:

syms x

eqn=x^2-3*x-4

solve(eqn) Try it yourself. Notice you get two roots, of course.

Next, let’s try the inhomogeneous system

x x

x x
1 2

1 2

2 3

4 2

+ =
+ = −

Now the syntax is more complicated:

eqn1=x1+2*x2-3

eqn2=4*x1+x2+2

S=solve(eqn1,eqn2) Notice the S= (you can use any symbol you may
prefer instead of S, if you wish).

S.x1 This returns to value of x1 in the solution.

S.x2 This returns to value of x2 in the solution.

2. Use the symbolic toolbox to solve the system

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 2 0

2 3 4 1

6

+ + =
+ + =

− + + = −

Finally, we will use the symbolic toolbox by using it to find the solutions of the
equation

det(A-xI) = 0

where A is a square matrix, I is the identity matrix, and x is a variable. You may
already know that the solutions x of this equation are called eigenvalues of A.

For example, to find the eigenvalues of A =
−

−

1 0 1

1 2 1

1 1 0

, we might use the

commands

A=sym('1 0 -1;1 2 1;-1 1 0') Notice we declare A to be symbolic even
though it contains no symbols. We do this so that we can
subtract from it the following matrix, which does contain
symbols.

B=sym('x 0 0;0 x 0;0 0 x') Thus B=xI.

34

p=determ(symsub(A,B)) Then p=det(A-xI). Notice that p is a
polynomial, the so-called characteristic polynomial of A.

s=solve(p) We store the roots of the polynomial p in the computer’s
memory in a variable called s.

If this result is not in numeric form, then we apply one last command:

numeric(s) This is only necessary if the quantities stored in s are not
already in decimal form.

3. Use the symbolic toolbox commands listed above to compute all eigenvalues of
the matrix

A =
− −
− − − −

4 8 5 3

1 2 0 1 2 0

5 2 7 7 2 3

3 2 3 3 2 2

/ /

/ /

/ /

