Lab 14-The Gram-Schmidt Procedure

Recall:

norm (v) Returns the length of the vector v.
$\operatorname{dot}(\mathbf{a}, \mathbf{b}) \quad$ Takes dot product of two vectors a and b .
inv (A) Inverse of matrix A.
eig(A) Computes the eigenvalues of matrix A.
[P, D] =eig(A) Finds the diagonal form D of A and the matrix P that diagonalizes $A\left(\right.$ so $\left.D=P^{-1} A P\right)$.

A '
(A-apostrophe) Computes the transpose of A .

The Gram-Schmidt Procedure for a 3-dimensional space:

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a basis for a 3-dimensional (sub-)space. From it, we can produce an orthogonal basis as follows:

$$
\begin{aligned}
& \mathbf{w}_{1}=\mathbf{u}_{1} \\
& \mathbf{w}_{2}=\mathbf{u}_{2}-\operatorname{proj}_{w_{1}} \mathbf{u}_{2} \\
& \mathbf{w}_{3}=\mathbf{u}_{3}-\operatorname{proj}_{\mathbf{w}_{1}} \mathbf{u}_{3}-\operatorname{proj}_{\mathbf{w}_{2}} \mathbf{u}_{3}
\end{aligned}
$$

where of course $\operatorname{proj}_{\mathbf{w}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}$.
We then get an orthonormal basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ by normalizing, so

$$
\mathbf{v}_{\mathbf{1}}=\frac{\mathbf{w}_{\mathbf{1}}}{\left\|\mathbf{w}_{\mathbf{1}}\right\|}, \quad \mathbf{v}_{2}=\frac{\mathbf{w}_{2}}{\left\|\mathbf{w}_{2}\right\|}, \quad \mathbf{v}_{3}=\frac{\mathbf{w}_{3}}{\left\|\mathbf{w}_{31}\right\|}
$$

1. The span of the set of vectors $\{(1,4,1,3),(-2,-2,1,2),(2,-1,2,3)\}$ is a subspace of R^{4}. Starting with this set, use the Gram-Schmidt procedure (see the hint below) to generate an orthonormal basis for this subspace.

Remark: In general, you should not expect to get the same basis in both parts of this question. However, since the two bases are both orthonormal, they are related to each other by a change-of-basis matrix which is itself an orthogonal matrix.

Hint: You will need to compute quantities like $\operatorname{proj}_{\mathbf{w}} \mathbf{u}$. To help you do this, we have installed a routine. Simply type

```
project(u,w)
```

to obtain $\operatorname{proj}_{\mathbf{w}} \mathbf{u}$. If the routine does not work, you can instead have MATLAB explicitly execute:
$(\operatorname{dot}(\mathbf{u}, \mathbf{w}) / \operatorname{dot}(\mathbf{w}, \mathbf{w})) * \mathbf{w}$ since this equals $\operatorname{proj}_{\mathbf{w}} \mathbf{u}$.
2. Rotation about an arbitrary axis in R^{3} :

Find the standard matrix of rotation counter-clockwise by angle $\pi / 3$ about the axis that passes through the origin and points in the $(1,1,2)$ direction in R^{3}. Use the following method:
(i) First let $\mathbf{w}_{1}=(1,1,2)$. Then find two other vectors \mathbf{w}_{2} and \mathbf{w}_{3} such that $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is an orthogonal basis. Normalize these vectors to get an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where $\mathbf{v}_{\mathrm{i}}=\mathbf{w}_{\mathrm{i}} /\left\|\mathbf{w}_{\mathrm{i}}\right\|$. There are several different ways to go about this:

Method 1: Find any vector \mathbf{w}_{2} that solves $\mathbf{w}_{1} \cdot \mathbf{w}_{2}=0$. Next, find a vector \mathbf{w}_{3} that solves the system $\mathbf{w}_{1} \cdot \mathbf{w}_{3}=0, \mathbf{w}_{2} \cdot \mathbf{w}_{3}=0$-you can do this by explicitly solving these last two equations or by computing the crossproduct $\mathbf{w}_{1} \mathrm{X} \mathbf{w}_{2}$. These vectors are an orthogonal basis. Normalize the vectors \mathbf{w}_{i} to get an orthonormal basis; call the normalized vectors \mathbf{v}_{i}, so $\mathbf{v}_{\mathrm{i}}=\mathbf{w}_{\mathrm{i}} /\left\|\mathbf{w}_{\mathrm{i}}\right\|$.

Method 2: Pick two new vectors \mathbf{x} and \mathbf{y} such that $\left\{\mathbf{w}_{1}, \mathbf{x}, \mathbf{y}\right\}$ are linearly independent; for example, you might choose them to be \mathbf{i} and \mathbf{j}. If so, then $\left\{\mathbf{w}_{1}, \mathbf{i}, \mathbf{j}\right\}$ is a basis for R^{3}, but it's not orthonormal. Apply the Gram-Schmidt procedure, exactly as in the last problem, to get an orthonormal basis.
(ii) To make sure the basis is right-handed, enter the vectors \mathbf{v}_{i} as the columns of a matrix and take the determinant. If it is +1 , you have a right-handed basis; if it's -1 , you have a left-handed basis, so take one of your basis vectors (any one will do) and multiply it by -1 to get a right-handed basis.
(iii) Write the B-matrix for rotation about \mathbf{v}_{1} "counter-clockwise" by angle $\pi / 3$. [Hint: This matrix has precisely the same form as the standard matrix for rotation about the x_{1}-axis by the same angle.]
(iv) Write down the change-of-basis matrix P that will transform this B matrix into the standard matrix for this rotation. Confirm that $\mathrm{P}^{-1}=\mathrm{P}^{\mathrm{T}}$ (this means that P is an orthogonal matrix). Now use the change-ofbasis formula $[R]_{\mathrm{S}}=\mathrm{P}[R]_{\mathrm{B}} \mathrm{P}^{-1}$ to obtain the standard matrix for this rotation.
(v) Compute $[R]_{S}\left[\mathbf{w}_{1}\right]$, and use the result to confirm that \mathbf{w}_{1} is an eigenvector of $[R]_{\mathrm{S}}$ with eigenvalue 1 .
(vi) What vector results from the application of this rotation to the vector $\mathbf{x}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$?

