Lab 14—The Gram-Schmidt Procedure

Recall:

norm(v)	Returns the length of the vector v .
dot(a,b)	Takes dot product of two vectors a and b.
inv(A)	Inverse of matrix A.
eig(A)	Computes the eigenvalues of matrix A.
[P,D]=eig(A)	Finds the diagonal form D of A and the matrix P that diagonalizes A (so $D=P^{-1}AP$).
Α'	(A-apostrophe) Computes the transpose of A.

The Gram-Schmidt Procedure for a 3-dimensional space:

Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a basis for a 3-dimensional (sub-)space. From it, we can produce an orthogonal basis as follows:

$$\mathbf{w}_1 = \mathbf{u}_1$$

$$\mathbf{w}_2 = \mathbf{u}_2 - \operatorname{proj}_{\mathbf{w}_1} \mathbf{u}_2$$

$$\mathbf{w}_3 = \mathbf{u}_3 - \operatorname{proj}_{\mathbf{w}_1} \mathbf{u}_3 - \operatorname{proj}_{\mathbf{w}_2} \mathbf{u}_3$$

where of course $\text{proj}_{\mathbf{w}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w}$.

We then get an orthonormal basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ by normalizing, so

$$\mathbf{v}_1 = \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|}, \quad \mathbf{v}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}, \quad \mathbf{v}_3 = \frac{\mathbf{w}_3}{\|\mathbf{w}_{31}\|}.$$

1. The span of the set of vectors $\{(1,4,1,3),(-2,-2,1,2),(2,-1,2,3)\}$ is a subspace of \mathbb{R}^4 . Starting with this set, use the Gram-Schmidt procedure (see the hint below) to generate an orthonormal basis for this subspace.

<u>Remark:</u> In general, you should not expect to get the same basis in both parts of this question. However, since the two bases are both orthonormal, they are related to each other by a change-of-basis matrix which is itself an orthogonal matrix.

<u>Hint:</u> You will need to compute quantities like $proj_w u$. To help you do this, we have installed a routine. Simply type

project(u,w)

to obtain $\text{proj}_w \mathbf{u}$. If the routine does not work, you can instead have MATLAB explicitly execute:

(dot(u,w)/dot(w,w)) *w since this equals proj_wu.

2. <u>Rotation about an arbitrary axis in R³</u>:

Find the standard matrix of rotation counter-clockwise by angle $\pi/3$ about the axis that passes through the origin and points in the (1,1,2) direction in \mathbb{R}^3 . Use the following method:

(i) First let $\mathbf{w}_1 = (1,1,2)$. Then find two other vectors \mathbf{w}_2 and \mathbf{w}_3 such that $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is an orthogonal basis. Normalize these vectors to get an orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ where $\mathbf{v}_i = \mathbf{w}_i / ||\mathbf{w}_i||$. There are several different ways to go about this:

<u>Method 1:</u> Find any vector \mathbf{w}_2 that solves $\mathbf{w}_1 \cdot \mathbf{w}_2 = 0$. Next, find a vector \mathbf{w}_3 that solves the system $\mathbf{w}_1 \cdot \mathbf{w}_3 = 0$, $\mathbf{w}_2 \cdot \mathbf{w}_3 = 0$ —you can do this by explicitly solving these last two equations or by computing the cross-product $\mathbf{w}_1 \mathbf{x} \mathbf{w}_2$. These vectors are an orthogonal basis. Normalize the vectors \mathbf{w}_i to get an orthonormal basis; call the normalized vectors \mathbf{v}_i , so $\mathbf{v}_i = \mathbf{w}_i / ||\mathbf{w}_i||$.

<u>Method 2</u>: Pick two new vectors **x** and **y** such that $\{\mathbf{w}_1, \mathbf{x}, \mathbf{y}\}$ are linearly independent; for example, you might choose them to be **i** and **j**. If so, then $\{\mathbf{w}_1, \mathbf{i}, \mathbf{j}\}$ is a basis for \mathbf{R}^3 , but it's not orthonormal. Apply the Gram-Schmidt procedure, exactly as in the last problem, to get an orthonormal basis.

- (ii) To make sure the basis is right-handed, enter the vectors \mathbf{v}_i as the columns of a matrix and take the determinant. If it is +1, you have a right-handed basis; if it's -1, you have a left-handed basis, so take one of your basis vectors (any one will do) and multiply it by -1 to get a right-handed basis.
- (iii) Write the *B*-matrix for rotation about \mathbf{v}_1 "counter-clockwise" by angle $\pi/3$. [Hint: This matrix has precisely the same form as the standard matrix for rotation about the x_1 -axis by the same angle.]
- (iv) Write down the change-of-basis matrix P that will transform this B-matrix into the standard matrix for this rotation. Confirm that $P^{-1}=P^{T}$ (this means that P is an orthogonal matrix). Now use the change-of-basis formula $[R]_{\rm s} = P[R]_{\rm B}P^{-1}$ to obtain the standard matrix for this rotation.
- (v) Compute $[R]_{s}[\mathbf{w}_{1}]$, and use the result to confirm that \mathbf{w}_{1} is an eigenvector of $[R]_{s}$ with eigenvalue 1.
 - (vi) What vector results from the application of this rotation to the vector $\mathbf{x} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$?