Lab 12-Diagonalization

Objective: To practise diagonalization of matrices over the real numbers.

MATLAB Commands:

eig(A)	Returns the eigenvalues of square matrix A.
$\operatorname{det}(\mathbf{A})$	Computes the determinant of square matrix A.
inv(A)	Gives the inverse of square matrix A.
eye(n)	This is the nxn identity matrix-handy for eigenvalue problems.

Note: In this lab, we use different notation than your text. We will use \mathbf{v} for eigenvectors (your text uses \mathbf{x}) and x for eigenvalues (your text uses $\boldsymbol{\lambda}$).

1. a) Use MATLAB's eig() command to find the eigenvalues

$$
\text { of } M=\left[\begin{array}{ccc}
-3 & -5 & -7 \\
-2 & 1 & 0 \\
1 & 5 & 5
\end{array}\right]
$$

b) For each eigenvalue x found above, find the corresponding eigenvector \mathbf{v} of M by using row reduction to solve $(\mathrm{M}-x \mathrm{I}) \mathbf{v}=\mathbf{0}$.
c) Construct a matrix P whose columns are the eigenvectors of M . Compute the product $\mathrm{D}=\mathrm{P}^{-1} \mathrm{MP}$ and confirm that D is diagonal. Compute the determinants of D and M and confirm that they are equal.
d) Construct another matrix Q whose columns are also the eigenvectors of M but this time place them in a different order than in P (so perhaps the first column of P is the second column of Q and so forth). Again compute $\mathrm{P}^{-1} \mathrm{MP}$. What has changed?
2. Find a basis for R^{4} comprised of eigenvectors of the matrix $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 0 & 1\end{array}\right]$. Using it, construct a matrix P that diagonalizes A . Compute $\mathrm{P}^{-1} \mathrm{AP}$.
3. The square root of a matrix: By any convenient method diagonalize the matrix $\quad \mathrm{M}:=\left[\begin{array}{cc}46 & 42 \\ -21 & -17\end{array}\right]$. Construct the matrix P whose columns are the eigenvectors of \mathbf{M}. As well, construct a diagonal matrix Q whose diagonal elements are the square roots of the eigenvalues of M (the off-diagonal
elements are of course zero). Lastly, find the matrix $B=P Q P^{-1}$. Verify that B^{2} $=\mathrm{M}$. In this sense, B is a "matrix square root" of M.

