Lab 12—Diagonalization

Objective: To practise diagonalization of matrices over the real numbers.

MATLAB Commands:

eig(A)	Returns the eigenvalues of square matrix A.
det(A)	Computes the determinant of square matrix A.
inv(A)	Gives the inverse of square matrix A.
eye(n)	This is the nxn identity matrix—handy for eigenvalue problems.

Note: In this lab, we use different notation than your text. We will use **v** for eigenvectors (your text uses **x**) and x for eigenvalues (your text uses λ).

1. a) Use MATLAB's eig() command to find the eigenvalues
of
$$M = \begin{bmatrix} -3 & -5 & -7 \\ -2 & 1 & 0 \\ 1 & 5 & 5 \end{bmatrix}$$
.

- b) For each eigenvalue x found above, find the corresponding eigenvector \mathbf{v} of \mathbf{M} by using row reduction to solve $(\mathbf{M}-x\mathbf{I})\mathbf{v} = \mathbf{0}$.
- c) Construct a matrix P whose columns are the eigenvectors of M. Compute the product $D = P^{-1}MP$ and confirm that D is diagonal. Compute the determinants of D and M and confirm that they are equal.
- d) Construct another matrix Q whose columns are also the eigenvectors of M but this time place them in a different order than in P (so perhaps the first column of P is the second column of Q and so forth). Again compute $P^{-1}MP$. What has changed?
- 2. Find a basis for \mathbb{R}^4 comprised of eigenvectors of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{bmatrix}$.

Using it, construct a matrix P that diagonalizes A. Compute $P^{-1}AP$.

3. <u>The square root of a matrix</u>: By any convenient method diagonalize the matrix $\mathbf{M} := \begin{bmatrix} 46 & 42 \\ -21 & -17 \end{bmatrix}$. Construct the matrix \mathbf{P} whose columns are the eigenvectors of \mathbf{M} . As well, construct a diagonal matrix \mathbf{Q} whose diagonal elements are the square roots of the eigenvalues of \mathbf{M} (the off-diagonal

elements are of course zero). Lastly, find the matrix $B = PQP^{-1}$. Verify that $B^2 = M$. In this sense, B is a "matrix square root" of M.