
Math 201 A1—Maple Lab 6

Objective:    To study qualitatively systems of two coupled first-order differential equations.

We will begin with a system of the form
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where A, B, C, and D are constants.

You have by now encountered two methods for solving this system. In Math 102, such
systems were written as a single matrix equation and "decoupled" by diagonalizing the
matrix that appears on the right-hand side. In Math 201, we replace the system by a single
second-order linear equation with constant coefficients, which we can then solve.

Let's consider the system, as above, for which A D= = −2, B C= = −1.

deq1:=diff(x(t),t)=-2*x(t)-y(t);

deq2:=diff(y(t),t)=-x(t)-2*y(t);

soln:=dsolve({deq1,deq2},{x(t),y(t)});

We can also solve initial value problems for this system. Say x( )0 5= , y( )0 0= .

soln:=dsolve({deq1,deq2,x(0)=5,y(0)=0},{x(t),y(t)});

soln[1]; This accesses the solution for x(t).

soln[2]; This accesses the solution for y(t). Let's graph these:

plot({rhs(soln[1]),rhs(soln[2])},t=0..5);

Now imagine a vertical line drawn on this plot at t t= 0 . This line determines the values
x x t0 0= ( ) and y y t0 0= ( ) where it cuts the two curves. But the parameter t0  is actually
unimportant; what matters is that x0 and y0 are uniquely related. This suggests we can
express the solution using a single curve of the form y f x= ( ) . Such a curve will be tangent
to the vector
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This means we can draw a field of vectors tangent (or tangent field, a direction field but with
arrows instead of line segments) to solution curves y f x= ( )  by plotting at each point this
vector field. Maple provides us with several ways of plotting this field. Here's one:

with(DEtools):We need to load the DEtools package for this.

DEplot({deq1,deq2},[x(t),y(t)],t=0..20,x=-1..5,y=-1
..5);

We can also plot solution curves on top of this diagram, if we are careful to use DEplot()
correctly. DEplot() solves differential equations numerically at many values of the
parameter t and plots the resulting curve. We will tell DEplot() how often it is to do this



by specifying the stepsize option. Too big a value will result in inaccurate solution
curves. Too small a value can also produce inaccurate curves, and can take too long.

DEplot({deq1,deq2},[x(t),y(t)],t=0..20,[[x(0)=0,y(0)=
5],[x(0)=3,y(0)=3],[x(0)=5,y(0)=0]],x=-1..5,y=-1 ..5,
stepsize=0.1);

To extend these curves back past their initial points, use negative values of the parameter t.

Exercise        1:    For each of the initial data sets

(i) t x y= ⇒ =0 0 5( , ) ( , ),

(ii) t x y= ⇒ =0 3 3( , ) ( , ), and

(iii) t x y= ⇒ =0 5 0( , ) ( , ),

sketch x(t) vs. t and y(t) vs. t on the same set of axes. Are there any minima or maxima of
these functions? How do they behave as t → ∞? Using instead the graphs of y vs. x for
these initial data, as just obtained with DEplot(), can you recognize the same features?

From the output of DEplot(),can you say anything about the behaviour of any  solution
curve as t → ∞? Can you see how the form of the differential equations themselves leads to
this behaviour?

Powerful qualitative methods like tangent fields allow us to examine even non-linear
systems, including so-called predator-prey models. Let x(t) represent the population of a
prey species and y(t) the population of a predator species that eats species x. The change in
these populations with time t can be modelled using familiar equations of population growth,
such as the logistic growth model, but with an added contribution. The equation for dx dt/
should have a negative contribution from y(t), since more predators will imply that more of
the prey species are eaten. Similarly, the more food, the faster the population of species y
grows, so the dy dt/  equation gets a positive contribution from x(t). One such model is
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Exercise        2:    Use DEplot() to have Maple draw the field of tangent vectors for this system.

If x and y represent populations, then they should never be negative. Use the plot of the
tangent field to explain why solution curves of this system can never cross an axis.

Eventually, no matter what the initial condition, all solution curves of this system approach
the same point, a so-called stable fixed point. What are the coordinates of this point? Using
the equations (1), compute dx dt/  and dy dt/  at this point.

For three randomly chosen sets of initial data (all positive values), have Maple plot solution
curves of the form y vs. x. For one of these initial data sets, have Maple plot solution curves
of the form y(t) vs. t and x(t) vs. t. Does Maple's solution x t y t( ), ( )( ) make sense; in
particular, can the value of one of the populations become negative? [Hint: Pay careful
attention to the domain of the parameter t.] Is it obvious from both forms of plots that
solutions converge to the fixed point?


