Math 201 A1l—Maple Lab 4

Objectives: To investigate underdamping, overdamping, and critical damping.

Maple Commands:

dsol ve(deq, y(x)); Findsgenera solution to the differential equation deq.

dsol ve({deq, y(a)=y0,D(y) (a)=yl},y(x)); Solvesinitia vaue problem
with differential equation deq and initia conditions y(a) =Y,,
y'(a) = y,. To get anumerical solution, use:

dsol ve({deq,y(a)=y0,D(y)(a)=yl},y(x), numeric);

pl ot (expr,x=a..b,y=c..d); Theplot() command with domain x [[a,b]
and range y [J[c,d].

pl ot ({exprl,expr2,...},x=a..b,y=c..d); To plot more than one
expression on asingle set of axes, enclose the list of expressions in
curly braces.

diff(y(x),x$2); Maple notation for the second derivative y"(X).

Consider the following model for a shock absorbing
system. We begin with a spring with spring constant k k m

attached to amass m. We a so attach the mass to a piston |
whose other end is immersed in a viscous medium. This '_? —
X(t)

provides a damping force proportiona to the velocity and
opposing the motion of the mass, say —bv where c is a
positive constant. The mass then obeys the differential equation:

2
rnd th)+bdx(t)+kx=0 (1)
at dt
Here x measures the displacement of the mass from its equilibrium or rest position. The
auxiliary equation for (1) is

mr’>+br +k=0 (2)
When b* - 4mk > 0, the general solution is easily found to be
X(t) = ce™ +ce” (3)
—_ /h? — —ph-+/p% -
where 1, = b+ : allL ad r, = b Js 4mk. Since m, b, and k are postive
m m

constants, then r, and r, are negative constants.

Exercise 1: Consider thecase r, = -1, r, =-3. Use Maple's pl ot () command to verify
that when the constants ¢, and ¢, have the same sign, the spring never returns to its
equilibrium position x =0. Now choose these constants have different sign; in particular,
take ¢, =—1 and ¢, = 2. How many times does x(t) pass through x=0 now? Try a few
other values of these constants. Does the number of zero-crossings change? Is it ever more
than one? How do solutions behave as t — «? Pass in one example plot.




The above case is cdled the overdamped spring. Next, we study the underdamped case.
Then b® — 4mk < 0 and the general solution takes the form

X(t) = €"(c, cospt + ¢, sinpt). (4)

Exercise 2 Consider the case b=6, m=5, k=5, and find the particular solution
corresponding to x(0) =2, x'(0)=0.

Now on the same set of axes, plot this solution together with the two functions y,(t) = Ae™
and y2(t) = —Ae™, where A= /¢’ +c,> . Submit acopy of thisplot.

These functions sandwich the graph of the solution between them, touching the solution
curve tangentially so that the latter never passes through the enveloping curves. The form of
this plot suggests something that can be proved by using trig identities, that we can rewrite
(4) as

X(t) = Ae™ sin(Bt + @)

where @is a constant determined from ¢, and c,. but we won't pursue that issue here.

Finally, we consider the critically damped case b® — 4mk = 0. The only root of the auxiliary
equationisthen r = _%m' Then the genera solution is

X(t) = (e +ct)e™ (4)
Let's consider the case b=m, so k=" Then r = =3, We may check that ( 4) , with the
appropriate subsitution for r, really does solve the differential equation in this case:
deq: =ntdi ff(x(t),t$2)+nrdi ff(x(t),t)+(m4)*x(t)=0;

test: =subs(x(t)=(cl+c2*t)*exp(-t/2),lhs(deq)); Substtute the
proposed solution into the left-hand side of the equation.

sinplify(test); It should be zero, and therefore will equa the rhs (right-hand
side), which is of course also zero.

Exercise 3 Show that in this case the spring does not oscillate. How many times does it pass
through the equilibrium position, assuming it begins moving at t = 0? assuming it has been
moving for all time? By choosing appropriate values of ¢, and c,, give aplot of a case where
it does pass through zero.




