
Math 201 A1—Maple Lab 4

Objectives:    To investigate underdamping, overdamping, and critical damping.

Maple        Commands:

dsolve(deq,y(x)); Finds general solution to the differential equation deq.

dsolve({deq,y(a)=y0,D(y)(a)=y1},y(x)); Solves initial value problem
with differential equation deq and initial conditions y a y( ) = 0,

′ =y a y( ) 1 . To get a numerical solution, use:

dsolve({deq,y(a)=y0,D(y)(a)=y1},y(x),numeric);

plot(expr,x=a..b,y=c..d); The plot() command with domain x a b∈[ , ]
and range y c d∈[ , ].

plot({expr1,expr2,...},x=a..b,y=c..d); To plot more than one
expression on a single set of axes, enclose the list of expressions in
curly braces.

diff(y(x),x$2); Maple notation for the second derivative ′′y x( ).

Consider the following model for a shock absorbing
system. We begin with a spring with spring constant k
attached to a mass m. We also attach the mass to a piston
whose other end is immersed in a viscous medium. This
provides a damping force proportional to the velocity and
opposing the motion of the mass, say −bv where c is a
positive constant. The mass then obeys the differential equation:
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Here x measures the displacement of the mass from its equilibrium or rest position. The
auxiliary equation for (1) is
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When b mk2 4 0− > , the general solution is easily found to be
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. Since m, b, and k are positive

constants, then r1 and r2 are negative constants.

Exercise        1:    Consider the case r1 1= − , r2 3= − . Use Maple's plot() command to verify
that when the constants c1 and c2 have the same sign, the spring never returns to its
equilibrium position x = 0 . Now choose these constants have different sign; in particular,
take c1 1= −  and c2 2= . How many times does x(t) pass through x = 0  now? Try a few
other values of these constants. Does the number of zero-crossings change? Is it ever more
than one? How do solutions behave as t → ∞? Pass in one example plot.
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The above case is called the overdamped spring. Next, we study the underdamped case.
Then b mk2 4 0− <  and the general solution takes the form

x t e c t c tt( ) cos sin= +( )α β β1 2 . (4)

Exercise         2:    Consider the case b = 6, m = 5, k = 5, and find the particular solution
corresponding to x( )0 2= , ′ =x ( )0 0 .

Now on the same set of axes, plot this solution together with the two functions y t Ae t
1( ) = α

and y t Ae t2( ) = − α , where A c c= +1
2

2
2 . Submit a copy of this plot.

These functions sandwich the graph of the solution between them, touching the solution
curve tangentially so that the latter never passes through the enveloping curves. The form of
this plot suggests something that can be proved by using trig identities, that we can rewrite
(4) as

x t Ae tt( ) sin( )= +α β φ

where φ is a constant determined from c1 and c2 . but we won't pursue that issue here.

Finally, we consider the critically damped case b mk2 4 0− = . The only root of the auxiliary
equation is then r b

m= −
2 . Then the general solution is

x t c c t e rt( ) = +( ) −
1 2 (4)

Let's consider the case b m= , so k m= 4 . Then r = −1
2 . We may check that (4), with the

appropriate subsitution for r, really does solve the differential equation in this case:

deq:=m*diff(x(t),t$2)+m*diff(x(t),t)+(m/4)*x(t)=0;

test:=subs(x(t)=(c1+c2*t)*exp(-t/2),lhs(deq));  Substitute the
proposed solution into the left-hand side of the equation.

simplify(test); It should be zero, and therefore will equal the rhs (right-hand
side), which is of course also zero.

Exercise        3:    Show that in this case the spring does not oscillate. How many times does it pass
through the equilibrium position, assuming it begins moving at t = 0? assuming it has been
moving for all time? By choosing appropriate values of c1 and c2, give a plot of a case where
it does pass through zero.


