Calculus Lab 5—Exponentials and Logarithms

Objective: To understand the statement,

"The exponential function e^x grows more rapidly than any power function x^n ," and the complementary statement,

"The logarithm function grows more slowly than any positive power of \mathbf{x} ."

<u>New Maple Commands:</u>

evalf(E); The number *e* (the "natural base") is denoted by E in Maple.

exp(expression); Takes the exponential. The output of this is $e^{\text{expression}}$.

E^(expression); Same as exp(expression);.

ln(expression); Takes the natural logarithm of expression.

log(expression); Same as ln(expression);.

log10(expression); Takes the base 10 logarithm of expression.

Some_Recent_Maple_Commands:

- taylor(e1,x=a,n); Computes the degree n-1 Taylor polynomial of e1 about x = a.
- **limit(expr,x=a);** Takes the limit as $x \rightarrow a$.

```
limit(cos(x)/x,x=infinty); You can use infinity to denote ∞ in
Maple.
```

The inverse function to the exponential function is the logarithm. To see what this means, notice the outcome of the following commands:

```
exp(ln(x));
simplify(");
ln(exp(x));
simplify(");
```

Now let's plot $y = e^x$, and $y = x^n$ on the same set of axes, for various values of *n*: plot({exp(x),x,x^2,x^3,x^4},x=0..1);

Which curve is which? Hint: What is the y-intercept of e^x ? of x^n ?

<u>Exercise 1</u>: Repeat the above plot command. Each time, increase the upper limit of the domain by one (so plot using x=0..2, then plot again with x=0..3, and so on). As you increase the domain, you will eventually find a point where $e^x = x^3$ and beyond that point $e^x > x^3$. Find the (x,y) coordinates of this point. Continue to incrementally increase the domain, stopping when you are able to display the point where $e^x = x^4$ and find the the (x,y) coordinates of this point as well. Give a rough sketch of this last graph, labelling the curves.

Now ask Maple to compute the limits as $x \to \infty$ of e^x , e^x/x , e^x/x^2 , e^x/x^3 , and e^x/x^4 . Are the results expected from the graphs? What would you expect the limit as $x \to \infty$ of e^x/x^{100} to be? Confirm your expectation by checking this limit in Maple.

<u>Exercise 2</u>: Now plot the natural logarithm $\ln(x)$ together with $x^{1/2}$, $x^{1/3}$, $x^{1/4}$, and $x^{1/5}$ on the same set of axes, beginning with the domain x=0..50. (If there are problems, try plotting with the domain x=1..50 instead. The point x = 0 might cause minor trouble because $\ln(x)$ is not defined at x = 0.)

$plot({ln(x), x^{(1/2)}, x^{(1/3)}, x^{(1/4)}, x^{(1/5)}}, x=0..50);$

Now increase the domain incrementally until you reach the point where the curve of $x^{1/3}$ overtakes that of $\ln(x)$. What are the coordinates of this point? What are the coordinates of the point where the curve of $x^{1/4}$ overtakes that of $\ln(x)$? where the curve of $x^{1/5}$ overtakes that of $\ln(x)$? [Hint: Don't increase the domain by only small amounts. You will need to use truly enormous values for the upper limit of the domain. Also, don't bother to continue to plot $x^{1/3}$ and $x^{1/4}$ when looking for $x^{1/5}$ to overtake $\ln(x)$, as they will only get in the way.]

Ask Maple to compute the limits as $x \to \infty$ of $\ln(x)$, $\ln(x)/x^{1/2}$, $\ln(x)/x^{1/3}$, $\ln(x)/x^{1/4}$, and $\ln(x)/x^{1/5}$. Are the results expected from the graphs?