Calculus Lab 5-Exponentials and Logarithms

Objective: To understand the statement,
"The exponential function e^{x} grows more rapidly than any power function x^{n}," and the complementary statement,
"The logarithm function grows more slowly than any positive power of x."

New Maple Commands:

evalf(E); The number e (the "natural base") is denoted by E in Maple.
exp (expression); Takes the exponential. The output of this is $e^{\text {expression }}$.
E^{\wedge} (expression) ; Same as exp (expression);
In (expression); Takes the natural logarithm of expression.
log (expression) ; Same as ln(expression);
log10 (expression); Takes the base 10 logarithm of expression.

Some Recent Maple Commands:

taylor $(\mathbf{e} \mathbf{1}, \mathbf{x}=\mathbf{a}, \mathbf{n})$; Computes the degree $n-1$ Taylor polynomial of e1 about $x=\mathrm{a}$.
convert (\%, polynom); Converts the last expression (\%) to a true Maple polynomial.
limit (expr, $\mathbf{x}=\mathbf{a}$); Takes the limit as $x \rightarrow a$.
limit(cos(x)/x, $\mathbf{x = i n f i n t y) ; ~ Y o u ~ c a n ~ u s e ~ i n f i n i t y ~ t o ~ d e n o t e ~} \infty$ in Maple.

The inverse function to the exponential function is the logarithm. To see what this means, notice the outcome of the following commands:

```
exp(ln(x));
simplify(");
ln(exp(x));
simplify(");
```

Now let's plot $y=e^{x}$, and $y=x^{n}$ on the same set of axes, for various values of n :
plot ($\left.\left\{\exp (x), x, x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}, x=0 \ldots 1\right)$;
Which curve is which? Hint: What is the y-intercept of e^{x} ? of x^{n} ?

Exercise 1: Repeat the above plot command. Each time, increase the upper limit of the domain by one (so plot using $x=0 . .2$, then plot again with $x=0 \ldots 3$, and so on). As you increase the domain, you will eventually find a point where $e^{x}=x^{3}$ and beyond that point $e^{x}>x^{3}$. Find the (x, y) coordinates of this point. Continue to incrementally increase the domain, stopping when you are able to display the point where $e^{x}=x^{4}$ and find the the (x, y) coordinates of this point as well. Give a rough sketch of this last graph, labelling the curves.

Now ask Maple to compute the limits as $x \rightarrow \infty$ of $e^{x}, e^{x} / x, e^{x} / x^{2}, e^{x} / x^{3}$, and e^{x} / x^{4}. Are the results expected from the graphs? What would you expect the limit as $x \rightarrow \infty$ of e^{x} / x^{100} to be? Confirm your expectation by checking this limit in Maple.

Exercise 2: Now plot the natural logarithm $\ln (x)$ together with $x^{1 / 2}, x^{1 / 3}, x^{1 / 4}$, and $x^{1 / 5}$ on the same set of axes, beginning with the domain $\mathrm{x}=0.50$. (If there are problems, try plotting with the domain $\mathrm{x}=1 . .50$ instead. The point $x=0 \mathrm{might}$ cause minor trouble because $\ln (x)$ is not defined at $x=0$.)
plot (\{ln(x), $\left.\left.\mathbf{x}^{\wedge}(1 / 2), \mathbf{x}^{\wedge}(1 / 3), \mathbf{x}^{\wedge}(1 / 4), \mathbf{x}^{\wedge}(1 / 5)\right\}, \mathbf{x}=0 \ldots 50\right)$;
Now increase the domain incrementally until you reach the point where the curve of $x^{1 / 3}$ overtakes that of $\ln (x)$. What are the coordinates of this point? What are the coordinates of the point where the curve of $x^{1 / 4}$ overtakes that of $\ln (x)$? where the curve of $\mathrm{x}^{1 / 5}$ overtakes that of $\ln (x)$? [Hint: Don't increase the domain by only small amounts. You will need to use truly enormous values for the upper limit of the domain. Also, don't bother to continue to plot $x^{1 / 3}$ and $x^{1 / 4}$ when looking for $x^{1 / 5}$ to overtake $\ln (x)$, as they will only get in the way.]
Ask Maple to compute the limits as $x \rightarrow \infty$ of $\ln (x), \ln (x) / x^{1 / 2}, \ln (x) / x^{1 / 3}, \ln (x) / x^{1 / 4}$, and $\ln (x) / x^{1 / 5}$. Are the results expected from the graphs?

