Calculus Lab 23—Integrals of Rational Functions

Objectives: To compute integrals of rational functions using partial fractions decompositions.

Some Maple Commands:
convert (expr,parfrac, x) ; Finds the partial fractions decomposition of expr in terms of the variable x.
int (expr, x); Indefinite integral of expr with respect to x.
Finding the partial fractions decomposition of a function is a straightforward exercise, but it can be a very tedious one, so let's make Maple do it for us. To find the partial fractions decomposition of $\frac{1}{x^{3}-3 x^{2}+4}$.
$z:=1 /\left(x^{\wedge} 3-3 * x^{\wedge} 2+4\right)$;
convert (z,parfrac, x);
If you try to do this decomposition by hand, it should not pose too difficult a problem, but it would take you quite awhile to complete.

Exercise 1: Now that Maple has done the decomposition, can you now integrate the resulting expression by hand? You can have Maple integrate $\frac{1}{x^{3}-3 x^{2}+4}$ directly to check your result.

Similarly, Maple will automatically do the long division necessary to compute the partial fractions decomposition when the numerator is a polynomial of higher degree than the denominator. For example, try to decompose

$$
z=\frac{x^{3}+3 x^{2}-x+1}{x^{2}+6 x+8} .
$$

$z:=\left(x^{\wedge} 3+3 * x^{\wedge} 2-x+1\right) /\left(x^{\wedge} 2+6 * x+8\right) ;$
convert(z,parfrac, $x)$;
We can easily integrate this by hand.
Exercise 2: For each of the following functions $f(x)$, Use Maple to find the partial fractions decomposition. Using this decomposition, compute $\int f(x) d x$ by hand, showing your working (you need the practice). [Hint: You can easily check your answers by having Maple do the integrals too.]
a) $f(x)=\frac{x+3}{2 x^{2}-3 x-2}$
b) $f(x)=\frac{x}{x^{3}-2 x^{2}+x-2}$
c) $f(x)=\frac{x^{4}+1}{x^{3}+1}$
d) $f(x)=\frac{[(\sin x)-2] \cos x}{\sin ^{2} x+4 \sin x+3}$ [Hint: First find a substitution to eliminate the trig
functions, and then use partial fractions.]
e) $f(x)=\frac{\sin x}{\cos ^{3} x+\cos x}$

