Calculus Lab 20—Volumes of Solids of Revolution

Objective: To practise the formulas for volumes of solids of revolution.

Recall Maple Commands:

plot (expr, x=a..b); Plots a graph of expr over the domain $[a, b]$.
plot (expr, $\mathbf{x}=\mathbf{a} . \mathbf{b}, \mathbf{y}=\mathbf{c} . \mathrm{d}$); As above, but the range displayed is now restricted to $[c, d]$.
plot (\{expr1, expr2\}, $\mathbf{x = a . . b}$); To plot more than one expression on a single set of axes, enclose the expressions in braces \{\}.
int (expr,x); Indefinite integral of expr with respect to x.
int (expr, $\mathbf{x = a} . . \mathrm{b}$) ; Definite integral of expr over domain $[a, b]$.
evalf(\%); Evaluate as a floating point (decimal) number (here \% tells Maple to use the previous expression as the argument for evalf).

Recall some of the formulas for computing volumes of solids of revolution:
$V=\int_{a}^{b} \pi[f(x)]^{2} d x$ gives the volume obtained by rotating about the x-axis the region between the x-axis and the graph of $f(x)$, using the method of disks.
$V=\int_{a}^{b} 2 \pi x f(x) d x$ gives the volume obtained by rotating the same region about the y-axis, using the method of cylindrical shells.

Exercise: For each of the following examples, sketch the specifed region R (Maple may help you draw the necessary graphs). Revolve R about the indicated axis to create a solid of revolution and sketch this solid. Set up the formula for the volume of this solid and compute the volume.
a) $f(x)=\left(x^{2}+1\right)^{1 / 2}, 1 \leq x \leq 2 . R$ is the region between the x -axis and the graph of $f(x)$. Revolve R about the y-axis. Compute the volume of this solid by hand using cylindrical shells.
b) $f(x)=\left(x^{2}+1\right)^{1 / 2}, 1 \leq x \leq 2$. This time, R is the region between this graph and the y axis. Revolve R about the y-axis and compute the volume of the resulting solid (using Maple or by hand) using the method of disks.
c) $f(x)=x \sin (x), 0 \leq x \leq \pi . R$ is the region between the x-axis and the graph of $f(x)$. Revolve R about the x-axis, using disks. You will need Maple to compute the volume integral. (If you prefer, you can convert the answer, likely given in terms of π, to a 10-digit decimal approximation using the evalf() command.)
d) $f(x)=x^{2}, g(x)=x^{1 / 2} . R$ is the region between these curves. Rotate R about the x axis. Compute the volume by any method you find convenient (shells or disks, Maple or hand calculations).

