Calculus Lab 10—Inverse Functions

Objective: To study inverses of functions from the point of view of the cancellation equations.

Recall:

Tn:=taylor (expr, $\mathbf{x}=\mathbf{a}, \mathbf{n}+1)$; Tn is the $n^{\text {th }}$-order Taylor polynomial of expr about a.

Pn:=convert (Tn, polynom); Converts $T n$ to a Maple polynomial (drops the $O\left(x^{n+1}\right)$).

Recall that a function g is said to be the inverse of a function f on the domain $[a, b]$ if for all x in $[a, b]$ the following equations hold:

$$
\begin{aligned}
& f(g(x))=x \\
& g(f(x))=x
\end{aligned}
$$

These are sometimes called the cancellation equations.
Given a function, how do you find the inverse function? First, you should make sure the function you are dealing with is one-to-one; that is, every y-value must belong to only one x -value.

Exercise 1: Make three plots of $\cos (x)$, one plot for each of the following domains: $x=-10 . .10$, $x=-P i / 2 \ldots P i / 2$, and $x=0 . . P i$. Use these plots to answer the following questions (you don't have to copy down the plots unless you feel it would help explain your answer):

Does $\cos (x)$ have an inverse function, if x is allowed to be any number? if x can be any number between $-\pi / 2$ and $\pi / 2$? if x can be any number between 0 and π ?

Now let us assume we have a one-to-one function. How do we find its inverse? The function itself takes an x-value and produces a y-value. According to the cancellation equations, the inverse function takes that y-value as input and gives back the original x-value.

That is, if $y=f(x)$, then to find the inverse function we must solve for x, which will of course depend on y. To make this dependence clear, we write $x=g(y)$. Then g is the inverse function for f. By the way, we usually write g in the form $y=g(x)$ instead of $x=g(y)$; in other words, once we find out what g is, we then use the symbol x to represent its independent variable and use y for its dependent variable.

How does one do this in Maple? Let's use an example:
$\mathbf{f}:=\mathbf{x} \boldsymbol{>} \mathbf{4 *} \mathbf{x} /(3+\mathbf{x})$; This function is not defined at $x=-3$, but it is one-toone.
plot(f,-infinity..infinity); This will produce a less-than-perfect graph, but perhaps it's good enough to confirm that f is one-to-one. By the way, if you see a vertical line running through $x=-3$, it's not part of the graph. It's an error produced by Maple's "join up the dots" plotting routine.
solve $(\mathbf{y}=\mathbf{f}(\mathbf{x}), \mathbf{x})$; Maple returns the answer $\frac{-3 y}{y-4}$.
Now we define the inverse function for f. It is simply this answer, but with x replacing y :

```
g:=x->-3*x/(x-4);
```

Finally, check that f and g are inverses by applying the cancellation equations:

```
f(g(x));
simplify(%);
g(f(x));
simplify(%);
```

Exercise 2: Using the above steps, find the inverse of the function $f(x)=\sqrt{x^{3}+1}$ on the domain $x \geq-1$. Check your answer using the cancellation equations.

Lastly, we will look at the inverse function for the tanction on the domain $-\pi<x<\pi$. It is usually called arctan. Try the following in Maple:
$\tan (P i / 4) ; \quad$ Maple should answer: 1 (you might have to use the simplify() command).
arctan("); Maple should answer: $\pi / 4$. This is what you would expect, using the cancellation equations. This tells us that

$$
\pi=4 \arctan (1) .
$$

But now here comes the really interesting part. Did you ever wonder how it happens that people know the value of the number π to many digits of accuracy? You could try to measure both the circumference and the diameter of a circle and divide the latter into the former. The answer should be π, but such measurements are bound to be inaccurate. Here's a way that involves no measurements and has nothing to do with circles(!):

Exercise 3: Find the tenth-order taylor polynomial, expanded about $\mathrm{x}=0$, for the function $f(x)=4 \arctan (x)$. Substitute $x=1$ into this polynomial. What do you get? Did you get very close to the accepted value of π ? Try increasing the order of
the polynomial, to see if you can do better. The first eight digits of the accepted value, by the way, is 3.1415926 , and you will need an enormous taylor polynomial to get even a few digits correct. See how close you can come before Maple runs out of memory or you run out of time. Report the order of the highest-order Taylor polynomial you were able to try, and the approximate value for π that resulted.

