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equations for
Robinson-Trautman metric.

Arises from Einstein
o Calabi flow. }

@ Flow of static metrics. Parabolic flows from
o Flow of stationary } Ricci ﬂO_W of .
, Lorentzian metric.
metrics.
@ Ricci flow on manifolds } Black hole thermodynamics.
with boundary.

Quantum Gravity:

@ Renormalization group flow for nonlinear sigma models.
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The two problems:

@ Tachyon condensation: the behaviour of mass under Ricci flow of
asymptotically flat metrics.
o Decay of tachyon: radiates closed string graviton modes.
e RG flow emulates dynamics.
e This picture suggests that mass should decay in Ricci flow.

@ Quasilocal mass: the behaviour of mass under the flow of static
metrics. Two cases:
o Asymptotically flat manifolds with inner boundary and Bartnik's
boundary conditions.
o No inner boundary: complete manifold.
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Notions of Convergence

o If M = My = const along the flow, lim;_,, M(t) = Mp.Initial data
with nonzero mass cannot converge to flat space ... in a sufficiently
strong topology (Dai and Ma).

o Geometric convergence, however, requires only convergence on
bounded subsets.

@ Analogously, in string scenario, one does not see the mass change at
spatial infinity no matter how long one waits...mass change occurs at
null infinity.

@ Therefore, one should track the quasilocal mass.
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Gutperle, Headrick, Minwalla, Schomerus (GHMS, 2002)

e Expanding Ricci soliton on R? given by

ds® = t (f2(r)dr® + r*¢?d6?) , ¢ = const.

Changing coordinates to p = ry/t, we get
ds® = f2(p/\/t)dp* + p?¢2do? .

e f(x) is given implicitly by

()en(t25) ()l
o f(x) — ¢ for x \, 0.
o f(x) = 1for x / 0.

e f is monotonic on (0, c0).
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ds? = t(f2(r)dr® + r’¢*d6?)
= (p/Vt)dp® + p°¢*d0?
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ds® = t(f*(r)dr® + r’¢?d6?)
= (p/Vt)dp® + p°¢*d0?
@ Asymptotic deficit angle is 2D

2 7 mass (hint: think of
isoperimetric deficit).
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Graph of f(x) for ( =1/3

ds? = t(f2(r)dr® + r’¢*d6?)
= (p/Vt)dp® + p°¢*d0?

@ Asymptotic deficit angle is 2D

2 7 mass (hint: think of
isoperimetric deficit).

o At fixed t, the p — oo limit is
flat cone of deficit angle

0 : ; ; : §=2m(1-).
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Eric Woolgar (University of Alberta)
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t (F(r)dr* + r*¢*do?)
= 2(p/Vt)dp® + p*¢*d6?

@ Asymptotic deficit angle is 2D
mass (hint: think of
isoperimetric deficit).

o At fixed t, the p — oo limit is
flat cone of deficit angle
§=2m(1-).

o At fixed p, the t — oo limit is
flat space.
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Lessons Learned

e Mass (deficit angle) constant along flow.
@ Geometric limit is flat space; mass jumps to zero.

@ Quasi-local mass evaporates smoothly; evaporation occurs primarily
on distance scales r < \/t.

@ Agrees with qualitative “rolling tachyon” predictions in string theory.

Does similar behaviour occur in higher dimensions, where mass is not a
deficit angle?
@ Long time existence for nontrivial data? for realistic data?

o Convergence to flat space for such data?
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Assume

@ Rotational symmetry.

@ Asymptotic flatness.

@ No minimal hyperspheres present initially.
Then

@ No minimal hyperspheres ever form.

@ Ricci flow exists for all future time and preserves asymptotic flatness.
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Higher dimensions

Oliynyk and Woolgar [CAG 15 (2007) 535; arxiv:math/0607438]:
Assume

@ Rotational symmetry.

@ Asymptotic flatness.

@ No minimal hyperspheres present initially.
Then

@ No minimal hyperspheres ever form.

@ Ricci flow exists for all future time and preserves asymptotic flatness.
@ Mass is constant along flow.

@ Solution converges to flat space as t — oc.
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@ The i =j > 1 flow equation is a linear (algebraic) equation for
0x/0r, so solve for x/0r.
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o Hamilton-DeTurck: % = —2Rj + Lxgij; with X = x(t, r)%.

o Fixed coordinates: ds? = f2(t, r)dr? + r’g(S"!, can)

@ The i =j > 1 flow equation is a linear (algebraic) equation for
0x/0r, so solve for x/0r.

@ Substitute result into i = j = 1 equation to get a single parabolic
equation for f:
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Basic idea:

@ Hamilton-DeTurck: g’f = —2Rjj + Lxgij; with X = x(t, r)%.
o Fixed coordinates: ds = f2(t, r)ydr? + r’g(S"1, can)

@ The i =j > 1 flow equation is a linear (algebraic) equation for
0x/0r, so solve for x/0r.

@ Substitute result into i = j = 1 equation to get a single parabolic
equation for f:

of  10* 2 (Of 2+ (n—2) 1)\ of
ot f29or2  f3\or r rf2 ) or

_M (f2 _ 1)

r2f

@ Mean curvature of spheres r = a'is H = 7~ r) > const > 0Vt > 0:
No minimal spheres form, coordinates goo for all t > 0.
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Basic idea:

o Hamilton-DeTurck: g’f = —2Rjj + Lxgij; with X = x(t, r)%.

o Fixed coordinates: ds = f2(t, r)ydr? + r’g(S"1, can)

@ The i =j > 1 flow equation is a linear (algebraic) equation for
0x/0r, so solve for x/0r.

@ Substitute result into i = j = 1 equation to get a single parabolic
equation for f:

of  10* 2 (Of 2+ (n—2) 1)\ of
ot f29or2  f3\or r rf2 ) or
(n

- r2f2) (f2 - 1)

@ Mean curvature of spheres r = a'is H = 7~ r) > const > 0Vt > 0:
No minimal spheres form, coordinates goo for all t > 0.

o Indeed, easy to show that f(t,r) ~ 1+ const/(1+ t).
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Brown-York quasilocal mass and curvature

e f is equivalent to Brown-York quasilocal mass

pulX] = /z (Ho — H)dx
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e f is equivalent to Brown-York quasilocal mass

Y = sphere of coordinate radius r, ¢, = vol(S™1, can).

e f and % give the sectional curvatures:
1 0f _ 1 8 p

° K1 = 3G, = c.F5, 2 Curvature in planes containing g.
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Y = sphere of coordinate radius r, ¢, = vol(S™1, can).

e f and % give the sectional curvatures:
1 0f _ 1 8 p

° K1 = 3G, = c.F5, 2 Curvature in planes containing g.

o kp =% (L—4): curvature in planes tangent to symmetry spheres.

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 12 / 23



|
Brown-York quasilocal mass and curvature

e f is equivalent to Brown-York quasilocal mass

Y = sphere of coordinate radius r, ¢, = vol(S"~1, can).

of and glve the sectional curvatures:

10f _ 1 0 _p . . el
o K1 rf3 dr = o.rf or 2+ curvature in planes containing 3
o kp =% (L—4): curvature in planes tangent to symmetry spheres.
Ok 2
° Blanchl G2 = £ (k1 — k2).
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Brown-York quasilocal mass and curvature

e f is equivalent to Brown-York quasilocal mass

Y = sphere of coordinate radius r, ¢, = vol(S™1, can).

e f and ﬂ give the sectional curvatures:
10f _ 1 0 _p

. . . 8

° K1 f3 Br = o.f or pi—2- curvature in planes containing or

o kp =% (L—4): curvature in planes tangent to symmetry spheres.
Ok 2

° Blanchl G2 = £ (k1 — k2).

e PDE for f implies f ~ 1+ (Cl"ftt) t — 00, so u(t,r) — 0 Vr.
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Brown-York quasilocal mass and curvature

e f is equivalent to Brown-York quasilocal mass

Y = sphere of coordinate radius r, ¢, = vol(S™1, can).

e f and ﬂ give the sectional curvatures:
1Lof _ 1 0 _p

. . . 8
° K1 f3 dr = o.rf or -2+ curvature in planes containing or
o kp =% (L—4): curvature in planes tangent to symmetry spheres.
Ok 2
° Blanchl G2 = £ (k1 — k2).

e PDE for f implies f ~ 1+ (Cl"ftt) t — o0, so u(t,r) — 0Vr.

o Likewise k1, k2 and all derivatives — 0; flow converges geometrically
to flat space.
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Rotational symmetry with a minimal sphere
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Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg
o Corseted 3-spheres, normalized Ricci flow.

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 13 /23



-
Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg

o Corseted 3-spheres, normalized Ricci flow.
o Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.
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Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg

o Corseted 3-spheres, normalized Ricci flow.
o Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

@ Husain and Seahra
e Schwarzschild throat.
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Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg
o Corseted 3-spheres, normalized Ricci flow.
o Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.
@ Husain and Seahra

e Schwarzschild throat.
o Also see critical behaviour.
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Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg

o Corseted 3-spheres, normalized Ricci flow.
o Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

@ Husain and Seahra

e Schwarzschild throat.
o Also see critical behaviour.

o Mikula and Woolgar
o Bubble nucleation.
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Rotational symmetry with a minimal sphere

o Garfinkle and Isenberg
o Corseted 3-spheres, normalized Ricci flow.
o Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.
@ Husain and Seahra
e Schwarzschild throat.
o Also see critical behaviour.
o Mikula and Woolgar

e Bubble nucleation.
e Preliminary: No critical behaviour: Flows tends to flat space.
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Summary

Results:
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.

@ Mass is constant.
@ Rotationally symmetric flow:
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.
@ Mass is constant.

@ Rotationally symmetric flow:
o If no initial minimal sphere is present, none forms.
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.
@ Mass is constant.

@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.
o Flow then exists for all t > 0 and converges to flat space as t — c©.
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.
@ Mass is constant.

@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.
o Flow then exists for all t > 0 and converges to flat space as t — c©.
e String theory picture qualitatively confirmed.
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.

@ Mass is constant.
@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.

o Flow then exists for all t > 0 and converges to flat space as t — c©.

e String theory picture qualitatively confirmed.

o If minimal sphere is present initially, numerical work suggests it
evaporates.
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Results:
@ Ricci flow preserves asymptotic flatness.

@ Mass is constant.
@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.

o Flow then exists for all t > 0 and converges to flat space as t — c©.

e String theory picture qualitatively confirmed.

o If minimal sphere is present initially, numerical work suggests it
evaporates.
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.

@ Mass is constant.
@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.

o Flow then exists for all t > 0 and converges to flat space as t — c©.

e String theory picture qualitatively confirmed.

o If minimal sphere is present initially, numerical work suggests it
evaporates.

Questions:

@ Can we perturb about rotational symmetry?
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Summary

Results:
@ Ricci flow preserves asymptotic flatness.

@ Mass is constant.
@ Rotationally symmetric flow:

o If no initial minimal sphere is present, none forms.

o Flow then exists for all t > 0 and converges to flat space as t — c©.

e String theory picture qualitatively confirmed.

o If minimal sphere is present initially, numerical work suggests it
evaporates.

Questions:
@ Can we perturb about rotational symmetry?

@ What other highly symmetric cases are physically interesting, and can
we find similar results in such cases?

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 14

23
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Bartnik's Quasi-Local Mass

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:

o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:
o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).
o Consider an asymptotically flat manifold (M, g) that has (i) Rg >0
and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:
o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).
o Consider an asymptotically flat manifold (M, g) that has (i) Rg >0
and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

o Glue dB to dM. Call (M, g) an extension of B.

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:
o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).
o Consider an asymptotically flat manifold (M, g) that has (i) Rg >0
and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

o Glue dB to dM. Call (M, g) an extension of B.
o Compute ADM mass of (M, g).

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:
o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).
o Consider an asymptotically flat manifold (M, g) that has (i) Ry >0

and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

o Glue dB to dM. Call (M, g) an extension of B.
o Compute ADM mass of (M, g).

@ Infimum of the ADM mass, taken over all such extensions, is the
Bartnik mass of (B, G).

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:
o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).
o Consider an asymptotically flat manifold (M, g) that has (i) Ry >0

and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

o Glue dB to dM. Call (M, g) an extension of B.
o Compute ADM mass of (M, g).

@ Infimum of the ADM mass, taken over all such extensions, is the
Bartnik mass of (B, G).

Question: Is the infimum ever nonzero?

'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Bartnik's Quasi-Local Mass

Special case—Static spacetime:

o "Blob of matter”: Bounded region (B, G) with Rg > 0 and boundary
(dB, h).

o Consider an asymptotically flat manifold (M, g) that has (i) Ry >0
and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB C B.

o Glue dB to dM. Call (M, g) an extension of B.

o Compute ADM mass of (M, g).

@ Infimum of the ADM mass, taken over all such extensions, is the
Bartnik mass of (B, G).

Question: Is the infimum ever nonzero?

Conjecture: The infimum is realized as the mass of a solution of the static
Einstein equations.
'R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1-27
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Static metrics

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 16 / 23



E—
Static metrics

Static Einstein Equations:

2 _ 202 | o i
ds® = —e'd7° + er-2gjdx'dx

-1
R,'j = (:_2>V,'UVJ'U
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E—
Static metrics

Static Einstein Equations:

ds?> = —e?Udr? + e%g;jdxidxj
n—1
R,'j = (n — 2) V,’UVJ'U
=Au = 0
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E—
Static metrics

Static Einstein Equations:

ds? = —e?'dr? —i—e" 2g dx’ dx!

-1
= (n )V,‘UVJ'U
0

= Au =

Flow of Static Metrics (B List; PhD thesis under G Huisken):

8—; = —2(Rj— kiVuV,u)
ou
a = Au
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E—
Static metrics

Static Einstein Equations:

ds? = —e?'dr? —i—e" 2g dx’ dx!

-1
= (n )V,‘UVJ'U
0

= Au =

Flow of Static Metrics (B List; PhD thesis under G Huisken):

8—; 2 (Ryj — k3V;uV;u)
ou
a = Au

Flow parameter is \.
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E—
Static metrics

Static Einstein Equations:

ds? = —e?'dr? —i—e" 2g dx’ dx!

-1
= (n )V,‘UVJ'U
0

= Au =

Flow of Static Metrics (B List; PhD thesis under G Huisken):

8—; = —2(Rj— kiVuV,u)
ou
a = Au

Flow parameter is \.Take k2 = ZT% if n# 2, so in this case fixed points

give static Ricci-flat (n + 1)-metrics.
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E—
Static metrics

Static Einstein Equations:

ds? = —e?'dr? —i—e" 2g dx’ dx!

-1
= (n )V,‘UVJ'U
0

= Au =

Flow of Static Metrics (B List; PhD thesis under G Huisken):

8—; 2 (Ryj — k3V;uV;u)
ou
a = Au

Flow parameter is \.Take k2 = ZT% if n# 2, so in this case fixed points

give static Ricci-flat (n + 1)-metrics. Flow is defined for n = 2 as well,
since k, is arbitrary.
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Static Metric Flow is Ricci Flow (+ Diffeo)
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Static Metric Flow is Ricci Flow (+ Diffeo)

@ Begin with metric
dS? = G dxtdx” = e*idr? + gjdx'dx/
with
ou -0 8g,'j

ar =0 o 0
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Static Metric Flow is Ricci Flow (+ Diffeo)

@ Begin with metric

ds? = Gudxtdx” = e2knt 72 4 g,-J-dxidxj

with 9u D8
@ Define vector field o
X = _k"VIUW'

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 17 /23



|
Static Metric Flow is Ricci Flow (+ Diffeo)

@ Begin with metric

ds? = Gudxtdx” = e2knt 72 4 g,-J-dxidxj

with 9u D8
@ Define vector field o
X = _k"VIUW'

@ Apply Hamilton-DeTurck flow

G,
a—ﬁ = —2R%, + Lx G-
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Static Metric Flow is Ricci Flow (+ Diffeo)

@ Begin with metric

ds? = Gudxtdx” = e2knt 72 4 g,-J-dxidxj

with 9u D8
@ Define vector field o
X = —k,,V’uW.

@ Apply Hamilton-DeTurck flow

G,
a—§ = —2R%, + Lx G-

@ This yields the static metric flow equations of the last slide.
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Rotationally Symmetric Case
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Rotationally Symmetric Case

@ What are the rotationally symmetric solutions of List's flow?
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Rotationally Symmetric Case

@ What are the rotationally symmetric solutions of List's flow?

@ Special case: no minimal spheres:

ds® = F2(\, r)dr® + r?dQ? | u=u(\r) .

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 18 /23



-
Rotationally Symmetric Case

@ What are the rotationally symmetric solutions of List's flow?

@ Special case: no minimal spheres:

ds® = F2(\, r)dr® + r?dQ? | u=u(\r) .

@ Above condition implies manifold is noncompact, so assume
asymptotic flatness.
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Rotationally Symmetric Case

@ What are the rotationally symmetric solutions of List's flow?

@ Special case: no minimal spheres:

ds® = F2(\, r)dr® + r?dQ? | u=u(\r) .

@ Above condition implies manifold is noncompact, so assume
asymptotic flatness.

@ Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.
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]
Problem:

Say (M, g(0)) is asymptotically flat. Are there solutions (M, g(t), u(t)) of

of 182f_£(8f>2+((n—2)_ 1)8f

ot f2or2 3 \or r rf2 ) or
(n—2) kj ou ?
r2f (f 1)+ f \or

du

rri Au+ Lxu

19w [1 10f n-2]0u
2 9r2 rf2  f30r r or

for t € [0,00) and, if so, does (M, g(t)) converge geometrically to some
(Mo, 8x), and does u(t) converge?
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Long time existence?
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Long time existence?

@ Bounds on |Vul:
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Long time existence?

@ Bounds on |Vul:
o List: |Vu| decays at least as 1/4/t.
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1/+/t.
e u stays smooth at origin: %|Vu| < const.
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1/+/t.
e u stays smooth at origin: %|Vu| < const.

@ Bounds on f:
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1/+/t.
e u stays smooth at origin: %|Vu| < const.

@ Bounds on f:

o Bound below: f(t,r) > const depending only on initial data 7(0, r)
and, for n = 2, the limit of f as r — oo.
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1//t.
e u stays smooth at origin: 1|Vu| < const.

@ Bounds on f:
o Bound below: f(t,r) > const depending only on initial data 7(0, r)
and, for n = 2, the limit of f as r — co.
o Bound above: f(t,r) < const - (14 t)?/2, p > 0 depends on IVulo,n-
In particular, f < ef.
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1/+/t.
e u stays smooth at origin: 1|Vu| < const.

@ Bounds on f:

o Bound below: f(t,r) > const depending only on initial data 7(0, r)
and, for n = 2, the limit of f as r — oo.

o Bound above: f(t,r) < const - (1+ t)P/2, p > 0 depends on [Vu|( ).
In particular, f < ef.

@ Thus expect existence for all t > 0, but not always convergence on
R".
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Long time existence?

@ Bounds on |Vul:

o List: |Vu| decays at least as 1/+/t.
e u stays smooth at origin: 1|Vu| < const.

@ Bounds on f:

o Bound below: f(t,r) > const depending only on initial data 7(0, r)
and, for n = 2, the limit of f as r — oo.

o Bound above: f(t,r) < const - (1+ t)P/2, p > 0 depends on [Vu|( ).
In particular, f < ef.

@ Thus expect existence for all t > 0, but not always convergence on
R".
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Curvature bounds
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E—
Curvature bounds

Theorem (List): Say solution exists for t < T. If solution fails to exist at
T, then lim; ~7 sup,¢p |Riem(t, x)| — oo.
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E—
Curvature bounds

Theorem (List): Say solution exists for t < T. If solution fails to exist at
T, then lim; ~7 sup,¢p |Riem(t, x)| — oo.

@ n > 2: Rotational symmetry: Only two sectional curvatures:

_lof 1 1
ﬂl_rf38r”€2_r2 f2) 7

Oky 2
W—;(K,l—l‘iz) 5 Weyl—O
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E—
Curvature bounds

Theorem (List): Say solution exists for t < T. If solution fails to exist at
T, then lim; ~7 sup,¢p |Riem(t, x)| — oo.

@ n > 2: Rotational symmetry: Only two sectional curvatures:

_lof 1 1
ﬂl_rf38r”€2_r2 f2) 7

Oky 2
W—;(K,l—l‘iz) , Weyl—O

@ rp > —const/(1+t).
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Curvature bounds

Theorem (List): Say solution exists for t < T. If solution fails to exist at
T, then lim; ~7 sup,¢p |Riem(t, x)| — oo.

@ n > 2: Rotational symmetry: Only two sectional curvatures:

_lof 1 1
ﬂl_rf38r”€2_r2 f2) 7

Oky 2
W—;(K,l—l‘iz) 5 Weyl—O

@ rp > —const/(1+t).

@ n = 2: Curvature reduces to scalar curvature R.

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 21 /23



E—
Curvature bounds

Theorem (List): Say solution exists for t < T. If solution fails to exist at
T, then lim; ~7 sup,¢p |Riem(t, x)| — oo.

@ n > 2: Rotational symmetry: Only two sectional curvatures:

_lof 1 1
ﬂl_rf38r”€2_r2 f2) 7

Oky 2
W—;(K,l—l‘iz) 5 Weyl—O

@ rp > —const/(1+t).

@ n = 2: Curvature reduces to scalar curvature R.

o Either case: R is bounded below, tends to positive.
R=2(n—1)k1 + (n—1)(n—2)kp > —const /(1 + t).
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-
Flow of stationary metrics
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Flow of stationary metrics

Hamilton-DeTurck flow of metric

ds? = —e2\/%u (dt + A,'dXi)2 + gdeide-
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Flow of stationary metrics

Hamilton-DeTurck flow of metric
ds® = —ez\/ﬁu (dt + A,-dx’)2 + gjjdx'dx’.
Following List, pull back by vector field

n—1

X = —
n—2

Vu.
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Flow of stationary metrics

Hamilton-DeTurck flow of metric

ds® = —ez\/%u (dt + A,-dx’.)2 + g,-J-dxidxj.
Following List, pull back by vector field
n—1
n—2
Also convenient to apply gauge transformation to A.

X = — Vu.
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Flow of stationary metrics

Hamilton-DeTurck flow of metric
ds® = —ez\/" 2 (dt + A;dx’ ) —I-g,-J-dxidxj.
Following List, pull back by vector field

n—1
n—2
Also convenient to apply gauge transformation to A. Get:

au o 2 2/n2 2
0Bi  _ _wiF, n—1l.Gi
= —VFU—21/n_2FUVU,

X = — Vu.

dgii n—2 2 kI
- —2Rff+2mvfuvju—eﬁg FixFir
FilAl = ViA;=VjA;.
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-
Alternative flow for stationary metrics
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-
Alternative flow for stationary metrics

o Fixed points of previous system do not obey the stationary metric
equations.
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-
Alternative flow for stationary metrics

o Fixed points of previous system do not obey the stationary metric
equations.

@ Propose instead the new flow

ou 1 2(2=1)u) 12
oy = Audget2lFT,
0B; : n—1 .
= JF: —2 FiV
B3 V/Fj ( _2> i Vu
% = 2RI +2 V UV u
o\ y _

n—1 1

e [F"kak T 2(n- 2)g”|F|2] |

Eric Woolgar (University of Alberta) [Two geometric flow problems arising from the Sept 2008 23 /23



-
Alternative flow for stationary metrics

o Fixed points of previous system do not obey the stationary metric
equations.

@ Propose instead the new flow

ou 1 2(2=1)u) 12
oy = Audget2lFT,
0B; : n—1 .
= JF: —2 FiV
B3 V/Fj ( _2) i Vu
% = 2RI +2 V UV u
o\ y _

n—1 1

e [F"kak T 2(n- 2)g”|F|2] |

@ Fixed points correspond to stationary metrics.
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