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Geometric flows in physics

General Relativity:

Calabi flow.

} Arises from Einstein
equations for
Robinson-Trautman metric.

Flow of static metrics.

Flow of stationary
metrics.

} Parabolic flows from
Ricci flow of
Lorentzian metric.

Ricci flow on manifolds
with boundary.

}
Black hole thermodynamics.

Quantum Gravity:

Renormalization group flow for nonlinear sigma models.

∂gij

∂t
= −α′Rij −

α′

2
RiklmRj

klm + . . .
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The two problems:

Tachyon condensation: the behaviour of mass under Ricci flow of
asymptotically flat metrics.

Decay of tachyon: radiates closed string graviton modes.
RG flow emulates dynamics.
This picture suggests that mass should decay in Ricci flow.

Quasilocal mass: the behaviour of mass under the flow of static
metrics. Two cases:

Asymptotically flat manifolds with inner boundary and Bartnik’s
boundary conditions.
No inner boundary: complete manifold.
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The Ricci flow derivative of mass is zero:

Preservation of asymptotic flatness (short time existence): See
Oliynyk [arxiv:math/0607438]; Dai and Ma [arxiv:math/0510083].

ADM mass: For δ= flat background metric near infinity

M := lim
r→∞

∫
Σr

δij (∂igjk − ∂kgij) dΣk(δ)

dM

dt
= lim

r→∞

∫
Σr

δij
(
∂i
∂gjk

∂t
− ∂k

∂gij

∂t

)
dΣk(δ) ;

∂gij

∂t
= −2Rij

= −2 lim
r→∞

∫
Σr

δij (∂iRjk − ∂kRij)︸ ︷︷ ︸ dΣk(δ)︸ ︷︷ ︸
1/rn+1 · rn−1

= 0

Short talk! ...What’s the problem?
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Notions of Convergence

If M = M0 = const along the flow, limt→∞M(t) = M0.Initial data
with nonzero mass cannot converge to flat space ... in a sufficiently
strong topology (Dai and Ma).

Geometric convergence, however, requires only convergence on
bounded subsets.

Analogously, in string scenario, one does not see the mass change at
spatial infinity no matter how long one waits...mass change occurs at
null infinity.

Therefore, one should track the quasilocal mass.
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Gutperle, Headrick, Minwalla, Schomerus (GHMS, 2002)

Expanding Ricci soliton on R2 given by

ds2 = t
(
f 2(r)dr2 + r2ζ2dθ2

)
, ζ = const.

Changing coordinates to ρ = r
√

t, we get

ds2 = f 2(ρ/
√

t)dρ2 + ρ2ζ2dθ2 .

f (x) is given implicitly by(
1

ζ
− 1

)
exp

(
1

ζ
− 1− x2

2α′

)
=

(
1

f (x)
− 1

)
exp

(
1

f (x)
− 1

)
f (x)→ ζ for x ↘ 0.

f (x)→ 1 for x ↗∞.

f is monotonic on (0,∞).
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Graph of f (x) for ζ = 1/3

ds2 = t
(
f 2(r)dr2 + r2ζ2dθ2

)
= f 2(ρ/

√
t)dρ2 + ρ2ζ2dθ2

Asymptotic deficit angle is 2D
mass (hint: think of
isoperimetric deficit).

At fixed t, the ρ→∞ limit is
flat cone of deficit angle
δ = 2π(1− ζ).

At fixed ρ, the t →∞ limit is
flat space.
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Lessons Learned

Mass (deficit angle) constant along flow.

Geometric limit is flat space; mass jumps to zero.

Quasi-local mass evaporates smoothly; evaporation occurs primarily
on distance scales r <

√
t.

Agrees with qualitative “rolling tachyon” predictions in string theory.

Does similar behaviour occur in higher dimensions, where mass is not a
deficit angle?

Long time existence for nontrivial data? for realistic data?

Convergence to flat space for such data?
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Higher dimensions

Oliynyk and Woolgar [CAG 15 (2007) 535; arxiv:math/0607438]:

Assume

Rotational symmetry.

Asymptotic flatness.

No minimal hyperspheres present initially.

Then

No minimal hyperspheres ever form.

Ricci flow exists for all future time and preserves asymptotic flatness.

Mass is constant along flow.

Solution converges to flat space as t →∞.
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Basic idea:

Hamilton-DeTurck:
∂gij

∂t = −2Rij + LXgij ; with X = χ(t, r) ∂∂r .

Fixed coordinates: ds2 = f 2(t, r)dr2 + r2g(Sn−1, can)

The i = j > 1 flow equation is a linear (algebraic) equation for
∂χ/∂r , so solve for ∂χ/∂r .

Substitute result into i = j = 1 equation to get a single parabolic
equation for f :

∂f

∂t
=

1

f 2

∂2f

∂r2
− 2

f 3

(
∂f

∂r

)2

+

(
(n − 2)

r
− 1

rf 2

)
∂f

∂r

−(n − 2)

r2f

(
f 2 − 1

)
Mean curvature of spheres r = a is H = n−1

rf (t,r) ≥ const > 0∀t ≥ 0:
No minimal spheres form, coordinates good for all t ≥ 0.

Indeed, easy to show that f (t, r) ∼ 1 + const/(1 + t).
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Brown-York quasilocal mass and curvature

f is equivalent to Brown-York quasilocal mass

µ[Σ] :=

∫
Σ

(H0 − H) dΣ = cnr
n−2

(
1− 1

f (t, r)

)
Σ = sphere of coordinate radius r , cn = vol(Sn−1, can).

f and ∂f
∂r give the sectional curvatures:

κ1 = 1
rf 3

∂f
∂r = 1

cnrf
∂
∂r

µ
rn−2 : curvature in planes containing ∂

∂r .

κ2 = 1
r2

(
1− 1

f 2

)
: curvature in planes tangent to symmetry spheres.

Bianchi: ∂κ2

∂r = 2
r (κ1 − κ2).

PDE for f implies f ∼ 1 + const
(1+t) , t →∞, so µ(t, r)→ 0 ∀r .

Likewise κ1, κ2 and all derivatives → 0; flow converges geometrically
to flat space.
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Σ

(H0 − H) dΣ = cnr
n−2

(
1− 1

f (t, r)

)
Σ = sphere of coordinate radius r , cn = vol(Sn−1, can).

f and ∂f
∂r give the sectional curvatures:

κ1 = 1
rf 3

∂f
∂r = 1

cnrf
∂
∂r

µ
rn−2 : curvature in planes containing ∂

∂r .

κ2 = 1
r2

(
1− 1

f 2

)
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Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.

Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.

Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.

Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23



Rotational symmetry with a minimal sphere

Garfinkle and Isenberg

Corseted 3-spheres, normalized Ricci flow.
Collapse if corseting ratio < 0.17. Blow-up limit of critical case is
Bryant soliton.

Husain and Seahra

Schwarzschild throat.
Also see critical behaviour.

Mikula and Woolgar

Bubble nucleation.
Preliminary: No critical behaviour: Flows tends to flat space.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 13 / 23





Summary

Results:

Ricci flow preserves asymptotic flatness.

Mass is constant.

Rotationally symmetric flow:

If no initial minimal sphere is present, none forms.
Flow then exists for all t > 0 and converges to flat space as t →∞.
String theory picture qualitatively confirmed.
If minimal sphere is present initially, numerical work suggests it
evaporates.

Questions:

Can we perturb about rotational symmetry?

What other highly symmetric cases are physically interesting, and can
we find similar results in such cases?
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Bartnik’s Quasi-Local Mass

Special case—Static spacetime:

”Blob of matter”: Bounded region (B,G ) with RG ≥ 0 and boundary
(dB, h).

Consider an asymptotically flat manifold (M, g) that has (i) Rg ≥ 0
and (ii) inner boundary dM, such that the induced boundary metric
and mean curvature matches that of dB ⊂ B.

Glue dB to dM. Call (M, g) an extension of B.

Compute ADM mass of (M, g).

Infimum of the ADM mass, taken over all such extensions, is the
Bartnik mass of (B,G ).1

Question: Is the infimum ever nonzero?

Conjecture: The infimum is realized as the mass of a solution of the static
Einstein equations.

1R Bartnik, Tsing Hua Lectures on Geometry and Analysis (Int Press 1995) p 1–27
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Static metrics

Static Einstein Equations:

ds2 = −e2udτ2 + e
2u

n−2 gijdx idx j

Rij =

(
n − 1

n − 2

)
∇iu∇ju

⇒ ∆u = 0

Flow of Static Metrics (B List; PhD thesis under G Huisken):

∂gij

∂λ
= −2

(
Rij − k2

n∇iu∇ju
)

∂u

∂λ
= ∆u

Flow parameter is λ.Take k2
n = n−1

n−2 if n 6= 2, so in this case fixed points

give static Ricci-flat (n + 1)-metrics. Flow is defined for n = 2 as well,
since kn is arbitrary.
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Static Metric Flow is Ricci Flow (+ Diffeo)

Begin with metric

dS2 = Gµνdxµdxν = e2knudτ2 + gijdx idx j

with
∂u

∂τ
= 0 ,

∂gij

∂τ
= 0.

Define vector field

X := −kn∇iu
∂

∂x i
.

Apply Hamilton-DeTurck flow

∂Gµν
∂λ

= −2RG
µν + LXGµν .

This yields the static metric flow equations of the last slide.
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Rotationally Symmetric Case

What are the rotationally symmetric solutions of List’s flow?

Special case: no minimal spheres:

ds2 = f 2(λ, r)dr2 + r2dΩ2 , u = u(λ, r) .

Above condition implies manifold is noncompact, so assume
asymptotic flatness.

Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 18 / 23



Rotationally Symmetric Case

What are the rotationally symmetric solutions of List’s flow?

Special case: no minimal spheres:

ds2 = f 2(λ, r)dr2 + r2dΩ2 , u = u(λ, r) .

Above condition implies manifold is noncompact, so assume
asymptotic flatness.

Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 18 / 23



Rotationally Symmetric Case

What are the rotationally symmetric solutions of List’s flow?

Special case: no minimal spheres:

ds2 = f 2(λ, r)dr2 + r2dΩ2 , u = u(λ, r) .

Above condition implies manifold is noncompact, so assume
asymptotic flatness.

Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 18 / 23



Rotationally Symmetric Case

What are the rotationally symmetric solutions of List’s flow?

Special case: no minimal spheres:

ds2 = f 2(λ, r)dr2 + r2dΩ2 , u = u(λ, r) .

Above condition implies manifold is noncompact, so assume
asymptotic flatness.

Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 18 / 23



Rotationally Symmetric Case

What are the rotationally symmetric solutions of List’s flow?

Special case: no minimal spheres:

ds2 = f 2(λ, r)dr2 + r2dΩ2 , u = u(λ, r) .

Above condition implies manifold is noncompact, so assume
asymptotic flatness.

Assume complete manifold with no inner boundary: limiting case of
Bartnik’s problem.

Eric Woolgar (University of Alberta) Two geometric flow problems arising from the physics of mass Sept 2008 18 / 23



Problem:

Say (M, g(0)) is asymptotically flat. Are there solutions (M, g(t), u(t)) of

∂f

∂t
=

1

f 2

∂2f

∂r2
− 2

f 3

(
∂f

∂r

)2

+

(
(n − 2)

r
− 1

rf 2

)
∂f

∂r

−(n − 2)

r2f

(
f 2 − 1

)
+

k2
n

f

(
∂u

∂r

)2

∂u

∂t
= ∆u + LXu

=
1

f 2

∂2u

∂r2
+

[
1

rf 2
− 1

f 3

∂f

∂r
+

n − 2

r

]
∂u

∂r

for t ∈ [0,∞) and, if so, does (M, g(t)) converge geometrically to some
(M∞, g∞), and does u(t) converge?
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Long time existence?

Bounds on |∇u|:
List: |∇u| decays at least as 1/

√
t.

u stays smooth at origin: 1
r |∇u| < const.

Bounds on f :

Bound below: f (t, r) ≥ const depending only on initial data f (0, r)
and, for n = 2, the limit of f as r →∞.
Bound above: f (t, r) < const · (1 + t)p/2, p > 0 depends on |∇u|(0,r).
In particular, f < et .

Thus expect existence for all t > 0, but not always convergence on
Rn.
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Curvature bounds

Theorem (List): Say solution exists for t < T . If solution fails to exist at
T , then limt↗T supx∈M |Riem(t, x)| → ∞.

n > 2: Rotational symmetry: Only two sectional curvatures:

κ1 =
1

rf 3

∂f

∂r
, κ2 =

1

r2

(
1− 1

f 2

)
,

∂κ2

∂r
=

2

r
(κ1 − κ2) , Weyl = 0.

κ2 > −const/(1 + t).

n = 2: Curvature reduces to scalar curvature R.

Either case: R is bounded below, tends to positive.

R ≡ 2(n − 1)κ1 + (n − 1)(n − 2)κ2 ≥ −const/(1 + t).
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Flow of stationary metrics

Hamilton-DeTurck flow of metric

ds2 = −e
2
√

n−1
n−2

u (
dt + Aidx i

)2
+ gijdx idx j .

Following List, pull back by vector field

X := −
√

n − 1

n − 2
∇u.

Also convenient to apply gauge transformation to A. Get:

∂u

∂λ
= ∆u +

1

4

√
n − 2

n − 1
e

2
√

n−1
n−2

u|F |2 ,

∂Bi

∂λ
= −∇jFij − 2

√
n − 1

n − 2
Fij∇ju ,

∂gij

∂λ
= −2Rij + 2

n − 2

n − 2
∇iu∇ju − e

2
√

n−1
n−2

u
gklFikFjl ,

Fij [A] := ∇iAj −∇jAi .
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Alternative flow for stationary metrics

Fixed points of previous system do not obey the stationary metric
equations.

Propose instead the new flow

∂u

∂λ
= ∆u +

1

4
e2( n−1

n−2 )u|F |2 ,

∂Bi

∂λ
= −∇jFij − 2

(
n − 1

n − 2

)
Fij∇ju ,

∂gij

∂λ
= −2Rij + 2

(
n − 1

n − 2

)
∇iu∇ju

−e2( n−1
n−2 )u

[
FikFj

k − 1

2(n − 2)
gij |F |2

]
.

Fixed points correspond to stationary metrics.
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