Banach lattice for distributional integrals

Erik Talvila
University College of the Fraser Valley
Chilliwack, British Columbia

Integrals defined by their primitives

Lebesgue

\[f \in L^1(\mathbb{R}) \quad \int_a^b f = F(b) - F(a) \quad F \in AC \]

\[F'(x) = f(x) \text{ a.e.} \]

Henstock-Kurzweil

\[f \in HK \quad \int_a^b f = F(b) - F(a) \quad F \in ACG_* \]

\[F'(x) = f(x) \text{ a.e.} \]

wide Denjoy

\[f \in D \quad \int_a^b f = F(b) - F(a) \quad F \in ACG \]

\[D_{ap}F(x) = f(x) \text{ a.e.} \]

\[C^1 \subsetneq AC \subsetneq AC^G_* \subsetneq AC^G \subsetneq C^\circ \]
Distributions

Test functions
\(\mathcal{D} = C_c^\infty(\mathbb{R}) \)

Convergence \(\phi_n \to 0 \)
There is compact \(K \) such that for all \(n \geq 1 \)
\(\text{supp}(\phi_n) \subset K \).
For each \(m \geq 0 \), \(\phi_n^{(m)} \to 0 \) uniformly on \(K \) as \(n \to \infty \).