Covering Theorems and Integration

Erik Talvila
University College of the Fraser Valley
Abbotsford, British Columbia
This is 100km east of Vancouver.
joint work with

Peter Loeb
University of Illinois at Urbana-Champaign

Offprints
Peter A. Loeb and Erik Talvila
Covering theorems and Lebesgue integration

Peter A. Loeb and Erik Talvila
Lusin’s theorem and Bochner integration

Decorations by:
Plan of the talk:

1. Covering theorems
 (a) Compactness
 (b) Vitali Covering Theorem
 (c) Other covering theorems

2. Integration
 (a) Riemann approach to integration
 (b) Partial covers
 (c) Morse sets
 (d) Morse covering theorem

Moral: Covering theorems give us a way to define integrals. It is only necessary to find the measure of small enough “nice” sets centred on points of approximate continuity.
Compactness

$E \subset \mathbb{R}^d$ is compact:
Every open cover has a finite subcover.

This says nothing about valence, i.e.,
the number of sets covering a given point.
Vitali Covering Theorem

Vitali covering of $E \subset \mathbb{R}^d$

There is a set of closed intervals σ that form a regular, fine cover of E: For each $x \in E$

$$(\exists \rho > 0) \ (\forall \epsilon > 0) \ (\exists J = I_1 \times I_2 \times \cdots \times I_d \in \sigma)$$

$$x \in J \subset \mathbb{R}^d$$

$$0 < \frac{\max_{1 \leq i \leq d} \lambda(I_i)}{\min_{1 \leq j \leq d} \lambda(I_j)} < \rho$$

$$\max_{1 \leq i \leq d} \lambda(I_i) < \epsilon$$

Each interval $I_i \subset \mathbb{R} \ (1 \leq i \leq d)$

Vitali Covering Theorem (1908)

If σ is a Vitali covering of E then there is a sequence $\{S_n\} \subset \sigma$ such that

$$S_n \cap S_m = \emptyset \ (m \neq n)$$

$$\lambda(E \setminus \cup S_n) = 0.$$
Lebesgue differentiation theorem

Radon measure

μ is a measure such that

- Borel sets are measurable
- Compact sets have finite measure
- μ is inner regular: $\mu(E) = \sup_{K \subseteq E} \mu(K)$
- μ is outer regular: $\mu(E) = \inf_{G \supseteq E} \mu(G)$

Lebesgue differentiation theorem

$f \in L^1(\mu)$ if and only if for μ-almost all $x \in \mathbb{R}^d$

$$\lim_{r \to 0} \frac{1}{\mu(B(x, r))} \int_{B(x,r)} |f(x) - f(y)|d\mu(y) = 0$$
Besicovitch covering theorem

\(A \subset \mathbb{R}^d. \)

For each \(x \in A \) there is closed ball \(B(x, r(x)) \) with \(0 < r(x) < M. \)

There is a constant \(N, \) depending only on \(d, \) such that there are \(N \) families \(\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_N \) each \(\mathcal{B}_n \subset \{(B(x, r(x)) : x \in A\} \) is a countable set of disjoint balls. And,

\[
A \subset \bigcup_{n=1}^{N} \bigcup_{B \in \mathcal{B}_n} B.
\]

The valence of each point is at most \(N. \)

Corollary:

\(A \subset \mathbb{R}^d, \mu(A) < \infty \)

\(\sigma \) is a collection of closed balls that is a fine cover of \(A. \) Then there is a countable disjoint family of balls \(\{S_i\} \) such that

\[
\mu(A \setminus \cup S_i) = 0.
\]
Names associated with covering theorems

G. Vitali (1908) – cubes
H. Lebesgue (1910) – sets regular with respect to cubes
N. Wiener (1939) – dilations of balls
H. Whitney (1939) – cubes that get small near a boundary
A.S. Besicovitch (1945) – balls, useful for Radon measures
A.P. Morse (1947) – starlike sets in finite-dimensional spaces
A. Denjoy (1950) – metric spaces
H. Federer (1969) – Riemannian manifolds
M. de Guzmán (1975) – Vitali extensions
Riemann approach to integration

\(f: \mathbb{R} \to \mathbb{R} \)

Partition domain into intervals

\(-\infty = x_0 < x_1 < x_2 < \ldots < x_N = \infty\)

Choose tag \(z_n \in [x_{n-1}, x_n] \) for each \(1 \leq n \leq N \)

Approximate \(f \) by \(f(x) = f(z_n) \) for \(x \in [x_{n-1}, x_n] \)

\[
\int_{-\infty}^{\infty} f \, d\lambda \approx \sum_{n=1}^{N} f(z_n) [x_n - x_{n-1}]
\]

Convention: \(f(\pm\infty) := 0 \quad 0 \cdot \infty := 0 \)

Riemann integral: uniform partition of \([a, b]\)
choose \(z_n \in [x_{n-1}, x_n] \) arbitrarily
gauge $\gamma : \mathbb{R} \rightarrow \{\text{open intervals in } \mathbb{R}\}$
$\gamma(x) =$ open interval containing x

Demand: $z_n \in [x_{n-1}, x_n] \subset \gamma(z_n)$

Gives an integral that includes the Lebesgue integral on \mathbb{R}^d.
Integrates all derivatives
\[
\int_a^b f' \, d\lambda = f(b) - f(a)
\]
$\int_a^b f \, d\lambda$ can exist even if $\int_a^b |f| \, d\lambda$ does not exist.
Partial covers

Lebesgue integral [Ma, Lee, Chew RAE (1992/93)]
\[\int_a^b f \, d\lambda = A \text{ if} \]

\[(\forall \epsilon > 0) (\exists \gamma) (\exists \eta > 0)\]

for any \(\gamma \)-fine partial partition \(\mathcal{P} = \{ (z_n, I_n) \}_{n=1}^N \)

with \(\sum_{n=1}^N \lambda(I_n) > b - a - \eta \)

\[\left| \sum_{n=1}^N f(z_n) \lambda(I_n) - A \right| < \epsilon. \]
Henstock/Kurzweil integral [Chew and Lee NZJM (1994)]

\[\int_{a}^{b} f \, d\lambda \] exists if there is a finitely additive interval function \(F : \{ \text{intervals} \} \to \mathbb{R} \) such that

\[(\forall \epsilon > 0) \ (\exists \gamma) \]

for any \(\gamma \)-fine partial partition \(\mathcal{P} = \{(z_n, I_n)\}_{n=1}^{N} \)

\[\sum_{n=1}^{N} |f(z_n)\lambda(I_n) - F(I_n)| < \epsilon. \]

Errors are absolutely summable even if

\[\int_{a}^{b} |f| \, d\lambda = \infty. \]
Integration using a covering theorem

\[\Omega \subset \mathbb{R}^d \quad \mu \text{ a Radon measure} \quad \int_\Omega f \, d\mu \]

Idea: Find a countable sequence of disjoint sets \(\{S_n\} \) with \(z_n \in S_n \) and \(\mu(\Omega \setminus \cup S_n) = 0 \).

- \(z_n \) are “nice” points
- \(f(x) \approx f(z_n) \) on small enough “nice” set \(S_n \)
- \(\int_{S_n} f \, d\mu \approx f(z_n) \mu(S_n) \) and \(\int_\Omega f \, d\mu \approx \sum f(z_n) \mu(S_n) \)

Continuity at \(z \):

\[
(\forall \epsilon > 0) \quad (\exists \delta > 0) \quad (x \in B(z, \delta) \Rightarrow |f(z) - f(x)| < \epsilon).
\]

\[
\int_{B(z,\delta)} |f(x) - f(z)| \, d\mu(x) \leq \epsilon \mu(B(z,\delta))
\]

Approximate Continuity at \(z \):

\[
(\forall \epsilon > 0) \quad (\forall \eta > 0) \quad (\exists R > 0) \quad (0 < r \leq R \Rightarrow \mu(E(z,r)) < \eta \mu(B(z,r)))
\]

where \(E(z,r) = \{x \in B(z, r) : |f(z) - f(x)| \geq \epsilon\} \).
Morse sets

Fix $\rho \geq 1$.

$S(a)$ is a Morse set if there is $r > 0$ such that $S(a)$ is

nearly spherical

$B(a, r) \subset S(a) \subset B(a, \rho r)$

starlike

For each $x \in S(a)$ and $y \in B(a, r)$ the line segment $\alpha y + (1 - \alpha)x$ ($0 \leq \alpha \leq 1$) is in $S(a)$ or, the convex hull of $\{x\} \cup B(a, r)$ is in $S(a)$.
Morse covering theorem [A.P. Morse (1947), P. Loeb and E.T. (2001)]

$A \subset \mathbb{R}^d$

With each $a \in A$ associate Morse set $a \subset \hat{S}(a)$ such that

$$\sup_{a \in A} \text{diam}\{S(a)\} < M$$

There is N depending only on d such that there are A_1, A_2, \ldots, A_N subsets of A, $A_i \cap A_j = \emptyset$,

$$A \subset \bigcup_{m=1}^{M} \bigcup_{a \in A_m} \hat{S}(a)$$

and for each $1 \leq i \leq M$, $S(a) \cap S(b) = \emptyset$ for all $a, b \in A_i$.

If $\mu^*(A) < \infty$, take A_j that maximizes $\sum_{a \in A_j} \mu(\hat{S}(a))$.

There is a finite subset $\tilde{A} \subset A_j$ such that

$$\sum_{a \in \tilde{A}} \mu(\hat{S}(a)) \geq \frac{\mu^*(A)}{2M}.$$
Lemma on Morse covers

Suppose S is a fine Morse cover of $\Omega \subset \mathbb{R}^d$.

There is a sequence $\{S_n\} \subset S$ with

$S_m \cap S_n = \emptyset \ (m \neq n)$

$\mu(\Omega \setminus \bigcup S_n) = 0$ and $\mu(\bigcup S_n \setminus \Omega) < \epsilon$

if 1. S consists of closed sets
or 2. $(\forall E \in S) \mu(\Omega \cap (\overline{E} \setminus E)) = 0$
or 3. S is scaled, i.e., for each $S(a) \in S$ and $0 < p \leq 1 \ \{a + px : x + a \in S(a)\} \in S$.
Theorem:

Suppose $f : \Omega \to [0, \infty)$ and $\int_{\Omega} f \, d\mu = F \in \mathbb{R}$.

Let $\rho \geq 1$ and $\epsilon > 0$. Let S be a ρ-regular Morse cover of Ω.

There is gauge γ such that, whenever $\{S_n\}$ is a sequence in S with

$$S_n(x) \subset \gamma(x) \quad \text{and} \quad \mu(\Omega \setminus \bigcup S_n(x)) = 0$$

we have

$$\left| \sum_{n} f(x_n) \mu(S_n) - F \right| < \epsilon.$$

Proof:

$A := \{x \in \Omega : f \text{ not approximately continuous at } x\}$.

$\mu(A) = 0 \Rightarrow \int_{A} f \, d\mu = 0$

$A_n := \{x \in A : n - 1 \leq f(x) < n\}$

Take $G_n \supset A_n$ with $\mu(G_n) < \frac{\epsilon}{n2^n}$.

Take γ such that $x \in A_n \Rightarrow \gamma(x) \subset G_n$.

$$\sum_{x \in A} f(x) \mu(S) < \sum_{n=1}^{\infty} \left[n \left(\sum_{x_i \in A_n} \mu(S_i) \right) \right] \leq \sum_{n=1}^{\infty} \frac{\epsilon}{2^n}.$$
\[
\left| \int_{\Omega} f \, d\mu - \sum_n f(x_n) \mu(S_n) \right|
\]
\[
= \left| \sum_n \int_{S_n} [f(y) - f(x)] \, d\mu(y) \right|
\]
\[
\leq \sum_n \int_{S_n \setminus E_n} |f(y) - f(x)| \, d\mu(y)
\]
\[
+ \sum_n \int_{E_n} f(y) \, d\mu(y) + \sum_n f(x_n) \int_{E_n} \, d\mu(y)
\]
\[
\leq \sum_n \epsilon_n \mu(S_n) + \int_{\cup E_n} f \, d\mu + \sum_n f(x_n) \eta_n \mu(S_n).
\]

Take \(\epsilon_n = \frac{\epsilon 2^{-n}}{1 + \mu(S_n)} \)

\(\eta_n \) small enough so that \(\mu(\cup E_n) = \sum \mu(E_n) \leq \sum \eta_n \mu(S_n) \) is small and \(\int_{\eta_n \mu(S_n)} f \, d\mu < \epsilon 2^{-n} \)

\(\eta_n \leq \frac{\epsilon 2^{-n}}{[1+f(x_n)][1+\mu(S_n)]} \)
Theorem:
If there is a gauge \(\gamma \) so that whenever \(S_n(x) \subset \gamma(x) \) and \(\mu(\Omega \setminus \cup S_n) = 0 \) we have
\[
\left| \sum_{n=1}^{\infty} f(x_n) \mu(S_n) - F \right| < \epsilon
\]
then \(\int_{\Omega} f \, d\mu = F \).

Proof:
We can assume all tags \(x_n \) are points of approximate continuity.
For each \(m \geq 1 \) take gauge \(\gamma_m \) such that when \(S^m(x^m_n) \subset \gamma_m(x^m_n) \) and \(\mu(\Omega \setminus \cup S(x^m_n)) = 0 \) we have
\[
\left| \sum_{n=1}^{\infty} f(x^m_n) \mu(S(x^m_n)) - F \right| < \frac{1}{m}.
\]
Define
\[
f_m(x) = \begin{cases}
\max(f(x^m_n) - \eta^m_n, 0), & x \in S^m_n \setminus E^m_n \\
0, & \text{else}.
\end{cases}
\]
Bad set: \(E^m_n = \{ x \in S^m_n : |f(x) - f(x^m_n)| \geq \epsilon^m_n \} \)
\(\mu(E^m_n) \leq \eta^m_n \mu(S^m_n) \)

Good set: \(S^m_n \setminus E^m_n \)
Fatou’s lemma:

\[
\int_{\Omega} f \, d\mu \leq \liminf_m \int_{\Omega} f_m \, d\mu \\
\leq \liminf_m \sum_n f(x_n^m) \mu(S_n^m) \\
\leq \liminf_m \left(F + \frac{1}{m} \right) \\
= F.
\]

\[f_m \leq f\] so

\[
\int_{\Omega} f \, d\mu \geq \int_{\Omega} f_m \, d\mu \\
\geq \sum_n [f(x_n^m) - \eta_n^m] \mu(S_n^m \setminus E_n^m) \\
= \sum_n f(x_n^m) \mu(S_n^m) - \sum_n f(x_n^m) \mu(E_n^m) \\
\quad - \sum_m \eta_n^m \mu(S_n^m \setminus E_n^m) \\
\geq \left(F - \frac{1}{m} \right) - \frac{1}{m} - \frac{1}{m}.
\]

Therefore, \(\int_{\Omega} f \, d\mu = F\).
Erdős numbers

Paul Erdős

Zoltán Füredi

Peter Loeb

Erik Talvila