Parasar Mohanty, Department of Pure Mathematics, University of Waterloo, Waterloo ON, Canada N2L 3G1. email: pmohanty@math.uwaterloo.ca
Erik Talvila, Department of Mathematics and Statistics, University College of the Fraser Valley, Abbotsford BC, Canada V2S 7M8. email: Erik.Talvila@ucfv.ca

A PRODUCT CONVERGENCE THEOREM FOR HENSTOCK-KURZWEIL INTEGRALS

Abstract

Necessary and sufficient for \(\int_a^b f g_n \to \int_a^b f g \) for all Henstock–Kurzweil integrable functions \(f \) is that \(g \) be of bounded variation, \(g_n \) be uniformly bounded and of uniform bounded variation and, on each compact interval in \((a, b)\), \(g_n \to g \) in measure or in the \(L^1 \) norm. The same conditions are necessary and sufficient for \(\|f(g_n - g)\| \to 0 \) for all Henstock–Kurzweil integrable functions \(f \). If \(g_n \to g \) a.e., then convergence \(\|f g_n\| \to \|f g\| \) for all Henstock–Kurzweil integrable functions \(f \) is equivalent to \(\|f(g_n - g)\| \to 0 \). This extends a theorem due to Lee Peng-Yee.

Let \(-\infty \leq a < b \leq \infty \) and denote the Henstock–Kurzweil integrable functions on \((a, b)\) by \(\mathcal{H}K \). The Alexiewicz norm of \(f \in \mathcal{H}K \) is \(\|f\| = \sup_I |\int_I f| \) where the supremum is taken over all intervals \(I \subset (a, b) \). If \(g \) is a real-valued function on \([a, b]\), we write \(V_{[a, b]} g \) for the variation of \(g \) over \([a, b]\), dropping the subscript when the identity of \([a, b]\) is clear. The set of functions of normalized bounded variation, \(\mathcal{N}BV \), consists of the functions on \([a, b]\) that are of bounded variation, are left continuous and vanish at \(a \). It is known that the multipliers for \(\mathcal{H}K \) are \(\mathcal{N}BV \); i.e., \(f g \in \mathcal{H}K \) for all \(f \in \mathcal{H}K \) if and only if \(g \) is equivalent to a function in \(\mathcal{N}BV \). This paper is concerned with necessary and sufficient conditions under which \(\int_a^b f g_n \to \int_a^b f g \) for all \(f \in \mathcal{H}K \). One such set of conditions was given by Lee Peng-Yee in [2, Theorem 12.11]. If \(g \) is of bounded variation, changing \(g \) on a countable set will make it an element of \(\mathcal{N}BV \). With this observation, a minor modification of Lee’s theorem produces the following result.

Key Words: Henstock–Kurzweil integral, convergence theorem, Alexiewicz norm
Mathematical Reviews subject classification: 26A39, 46E30
Received by the editors December 2, 2002
Communicated by: Peter Bullen

*Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
Theorem 1. [2, Theorem 12.11] Let $-\infty < a < b < \infty$, let g_n and g be real-valued functions on $[a, b]$ with g of bounded variation. In order for $\int_a^b fg_n \to \int_a^b fg$ for all $f \in HK$ it is necessary and sufficient that

\[
\begin{align*}
&\text{for each interval } (c, d) \subset (a, b), \int_c^d g_n \to \int_c^d g \text{ as } n \to \infty, \\
&\text{for each } n \geq 1, g_n \text{ is equivalent to a function } h_n \in NBV, \\
&\text{and there is } Vh_n \leq M \text{ for all } n \geq 1.
\end{align*}
\]

(1)

We extend this theorem to unbounded intervals, show that the condition $\int_a^d g_n \to \int_a^d g$ in (1) can be replaced by $g_n \to g$ on each compact interval in (a, b) either in measure or in the L^1 norm, and that this also lets us conclude $\|f(g_n - g)\| \to 0$. We also show that if $g_n \to g$ in measure or almost everywhere, then $\|fg_n\| \to \|fg\|$ for all $f \in HK$ if and only if $\|fg_n - fg\| \to 0$ for all $f \in HK$.

One might think the conditions (1) imply $g_n \to g$ almost everywhere. This is not the case, as is illustrated by the following example [1, p. 61].

Example 2. Let $g_n = \chi_{(j2^{-k}, (j+1)2^{-k})}$ where $0 \leq j < 2^k$ and $n = j + 2^k$. Note that $\|g_n\|_\infty = 1$, $g_n \in NBV$, $Vg_n \leq 2$, and $\int_a^d g_n \leq \|g_n\| = 2^{-k} < 2/n \to 0$, so that (1) is satisfied with $g = 0$. For each $x \in (0, 1)$ we have $\inf_n g_n(x) = 0$, $\sup_n g_n(x) = 1$, and for no $x \in [0, 1]$ does $g_n(x)$ have a limit. However, $g_n \to 0$ in measure since if $T_n = \{x \in [0, 1] : |g_n(x)| > \epsilon\}$, then for each $0 < \epsilon \leq 1$, we have $\lambda(T_n) < 2/n \to 0$ as $n \to \infty$ (λ is Lebesgue measure).

We have the following extension of Theorem 1.

Theorem 3. Let $[a, b]$ be a compact interval in \mathbb{R}, let g_n and g be real-valued functions on $[a, b]$ with g of bounded variation. In order for $\int_a^b fg_n \to \int_a^b fg$ for all $f \in HK$ it is necessary and sufficient that

\[
\begin{align*}
&g_n \to g \text{ in measure as } n \to \infty, \\
&\text{for each } n \geq 1, g_n \text{ is equivalent to a function } h_n \in NBV, \\
&\text{and there is } M \in [0, \infty) \text{ such that } Vh_n \leq M \text{ for all } n \geq 1.
\end{align*}
\]

(2)

If $(a, b) \subset \mathbb{R}$ is unbounded, then change the first line of (2) by requiring $g_n \chi_I \to g\chi_I$ in measure for each compact interval $I \in (a, b)$.

Proof. By working with $g_n - g$ we can assume $g = 0$. First consider the case when (a, b) is a bounded interval. If $\int_a^b fg_n \to 0$ for all $f \in HK$, then using Theorem 1 and changing g_n on a countable set, we can assume $g_n \in NBV$, $Vg_n \leq M$, $\|g_n\|_\infty \leq M$ and $\int_a^d g_n \to 0$ for each interval $(c, d) \subset (a, b)$. Suppose g_n does not converge to 0 in measure. Then there are $\delta, \epsilon > 0$ and
an infinite index set $\mathcal{J} \subset \mathbb{N}$ such that $\lambda(S_n) > \delta$ for each $n \in \mathcal{J}$, where $S_n = \{x \in (a, b) : g_n(x) > \epsilon\}$. (Or else there is a corresponding set on which $g_n(x) < -\epsilon$ for all $n \in \mathcal{J}$.) Now let $n \in \mathcal{J}$. Since g_n is left continuous, if $x \in S_n$, there is a number $c_{n,x} > 0$ such that $[x - c_{n,x}, x] \subset S_n$. Hence, $V_n := \{[c, x] : x \in S_n \text{ and } [c, x] \subset S_n\}$ is a Vitali cover of S_n. So there is a finite set of disjoint closed intervals W such that $\lambda(V_n \setminus \bigcup_{I \in \sigma_n} I) < \delta/2$. Write $(a, b) \setminus \bigcup_{I \in \sigma_n} I = \bigcup_{I \in \tau_n} I$ where τ_n is a set of disjoint open intervals with $\text{card}(\tau_n) = \text{card}(\sigma_n) + 1$. Let

$$P_n = \text{card}\{(I \in \tau_n : g_n(x) \leq \epsilon/2 \text{ for some } x \in I)\}.$$

Each interval I in τ_n that does not have a or b as an endpoint has contiguous intervals on its left and right that are in σ_n (for each of which $g_n > \epsilon$). The interval I then contributes more than $(\epsilon - \epsilon/2) + (\epsilon - \epsilon/2) = \epsilon$ to the variation of g_n. If I has a as an endpoint, then since $g_n(a) = 0$, I contributes more than ϵ to the variation of g_n. If I has b as an endpoint, then I contributes more than $\epsilon/2$ to the variation of g_n. Hence,

$$Vg_n \geq (P_n - 1)\epsilon + \epsilon/2 = (P_n - 1/2)\epsilon.$$

(This inequality is still valid if $P_n = 1$.) But, $Vg_n \leq M$; so $P_n \leq P$ for all $n \in \mathcal{J}$ and some $P \in \mathbb{N}$. Then we have a set of intervals, U_n, formed by taking unions of intervals from σ_n and those intervals in τ_n on which $g_n > \epsilon/2$. Now, $\lambda(\bigcup_{I \in U_n} I) > \delta/2$, $\text{card}(U_n) \leq P + 1$ and $g_n > \epsilon/2$ on each interval $I \in U_n$. Therefore, there is an interval $I_n \in U_n$ such that $\lambda(I_n) > \delta/[2(P + 1)]$. The sequence of centers of intervals I_n has a convergent subsequence. There is then an infinite index set $\mathcal{J}' \subset \mathcal{J}$ with the property that for all $n \in \mathcal{J}'$ we have $g_n > \epsilon/2$ on an interval $I \subset (a, b)$ with $\lambda(I) > \delta/[3(P + 1)]$. Hence, $\limsup_{n \to \infty} \int_I g_n \geq \delta\epsilon/[6(P + 1)]$. This contradicts the fact that $\int_I g_n \to 0$, showing that indeed $g_n \to 0$ in measure.

Suppose (2) holds. As above, we can assume $g_n \in \mathcal{N}BV$, $Vg_n \leq M$, $\|g_n\|_{\infty} \leq M$ and $g_n \to 0$ in measure. Let $\epsilon > 0$. Define

$$T_n = \{x \in (a, b) : |g_n(x)| > \epsilon\}.$$

Then

$$\int_a^b g_n \leq \int_{T_n} |g_n| + \int_{(a, b) \setminus T_n} |g_n| \leq M\lambda(T_n) + \epsilon(b - a).$$

Since $\lim \lambda(T_n) = 0$, it now follows that $\int_c^d g_n \to 0$ for each $(c, d) \subset (a, b)$. Theorem 1 now shows $\int_a^b f g_n \to 0$ for all $f \in \mathcal{H}K$.

Now consider integrals on \(\mathbb{R} \). If \(\int_{-\infty}^{\infty} fg_n \to 0 \) for all \(f \in \mathcal{H} \mathcal{K} \), then it is necessary that \(\int_{a}^{b} fg_n \to 0 \) for each compact interval \([a, b]\). By the current theorem, \(g_n \to g \) in measure on each \([a, b]\). And, it is necessary that \(\int_{-\infty}^{\infty} fg_n \to 0 \). The change of variables \(x \mapsto 1/x \) now shows it is necessary that \(g_n \) be equivalent to a function that is uniformly bounded and of uniform bounded variation on \([1, \infty]\). Similarly with \(\int_{-\infty}^{1} fg_n \to 0 \). Hence, it is necessary that \(g_n \) be uniformly bounded and of uniform bounded variation on \(\mathbb{R} \).

Suppose \((2) \) holds with \(g_n \to g \) in measure on each compact interval \([a, b]\). Write \(\mathcal{L}_{\infty} \mathcal{K} = \int_{a}^{\infty} f g_n + \int_{-\infty}^{b} f g_n + \int_{b}^{\infty} f g_n \). Use Lemma 24 in [4] to write \(|\int_{-\infty}^{\infty} f g_n| \leq \| f \chi_{(-\infty, a]} \| V_{[-\infty, a]} g_n \leq \| f \chi_{(-\infty, a]} \| M \to 0 \) as \(a \to -\infty \). We can then take a large enough interval \([a, b] \subset \mathbb{R} \) and apply the current theorem on \([a, b]\). Other unbounded intervals are handled in a similar manner.

Remark 4. If \((2)\) holds, then dominated convergence shows \(\| g_n - g \|_{1} \to 0 \). And, convergence in \(\| \cdot \|_{1} \) implies convergence in measure. Therefore, in the first statement of \((2)\) and in the last statement of Theorem 3, ‘convergence in measure’ can be replaced with ‘convergence in \(\| \cdot \|_{1} \)’. Similar remarks apply to Theorem 6.

Remark 5. The change of variables argument in the second last paragraph of Theorem 3 can be replaced with an appeal to the Banach–Steinhaus Theorem on unbounded intervals. See [3, Lemma 7]. A similar remark holds for the proof of Theorem 8.

The sequence of Heaviside functions \(g_n = \chi_{(n, \infty]} \) shows \((2)\) is not necessary to have \(\int_{-\infty}^{\infty} fg_n \to 0 \) for all \(f \in \mathcal{H} \mathcal{K} \). For then, \(\mathcal{L}_{\infty} \mathcal{K} = \mathcal{L}^{\infty} f \to 0 \). In this case, \(g_n \in \mathcal{N} \mathcal{B} \mathcal{V} \) and \(V g_n = 1 \). However, \(\lambda(T_n) = \infty \) for all \(0 < \epsilon < 1 \). Note that for each compact interval \([a, b]\) we have \(\int_{a}^{b} g_n \to 0 \) and \(g_n \to 0 \) in measure on \([a, b]\).

It is somewhat surprising that condition \((2)\) is also necessary and sufficient to have \(\| f(g_n - g) \| \to 0 \) for all \(f \in \mathcal{H} \mathcal{K} \).

Theorem 6. Let \([a, b]\) be a compact interval in \(\mathbb{R} \), let \(g_n \) and \(g \) be real-valued functions on \([a, b]\) with \(g \) of bounded variation. In order for \(\| f(g_n - g) \| \to 0 \) for all \(f \in \mathcal{H} \mathcal{K} \) it is necessary and sufficient that

\[
\begin{align*}
g_n \to g & \text{ in measure as } n \to \infty, \\
\text{for each } n \geq 1, g_n & \text{ is equivalent to a function } h_n \in \mathcal{N} \mathcal{B} \mathcal{V}, \\
\text{and there is } M & \in [0, \infty) \text{ such that } V h_n \leq M \text{ for all } n \geq 1.
\end{align*}
\]

If \((a, b) \subset \mathbb{R} \) is unbounded, then change the first line of \((3)\) by requiring \(g_n \chi_{I} \to g \chi_{I} \) in measure for each compact interval \(I \in (a, b) \).
PROOF. Certainly (3) is necessary in order for \(\| f(g_n - g) \| \to 0 \) for all \(f \in \mathcal{HK} \).

If we have (3), let \(I_n \) be any sequence of intervals in \((a, b)\). We can again assume \(g = 0 \). Write \(\tilde{g}_n = g_n \chi_{I_n} \). Then

\[
\| \tilde{g}_n \|_\infty \leq \| g_n \|_\infty, \quad V \tilde{g}_n \leq V g_n + 2 \| g_n \|_\infty \quad \text{and} \quad \tilde{g}_n \to 0 \quad \text{in measure}.
\]

The result now follows by applying Theorem 3 to \(f \tilde{g}_n \).

Unbounded intervals are handled as in Theorem 3.

By combining Theorem 3 and Theorem 6 we have the following.

Theorem 7. Let \((a, b) \subset \mathbb{R}\). Then \(\int_a^b f g_n \to \int_a^b f g \) for all \(f \in \mathcal{HK} \) if and only if \(\| f(g_n - g) \| \to 0 \) for all \(f \in \mathcal{HK} \).

Note that \(\| f(g_n - g) \| \geq \| f g_n \| - \| f g \| \); so if \(\| f(g_n - g) \| \to 0 \), then \(\| f g_n \| \to \| f g \| \). Thus, (3) is sufficient to have \(\| f g_n \| \to \| f g \| \) for all \(f \in \mathcal{HK} \).

However, this condition is not necessary. For example, let \([a, b] = [0, 1]\). Define \(g_n(x) = (-1)^n \). Then \(\| g_n \|_\infty = 1 \) and \(V g_n = 0 \). Let \(g = g_1 \). For no \(x \in [-1, 1] \) does the sequence \(g_n(x) \) converge to \(g(x) \). For no open interval \(I \subset [0, 1] \) do we have \(\int_I (g_n - g) \to 0 \). And, \(g_n \) does not converge to \(g \) in measure. However, let \(f \in \mathcal{HK} \) with \(\| f \| > 0 \). Then \(\| f(g_n - g) \| = 0 \) when \(n \) is odd and when \(n \) is even, \(\| f(g_n - g) \| = \| f \| \). And yet, for all \(n \), \(\| f g_n \| = \| f \| = \| f g \| \).

It is natural to ask what extra condition should be given so that \(\| f g_n \| \to \| f g \| \) will imply \(\| f g_n - f g \| \to 0 \). We have the following.

Theorem 8. Let \(g_n \to g \) in measure or almost everywhere. Then \(\| f g_n \| \to \| f g \| \) for all \(f \in \mathcal{HK} \) if and only if \(\| f g_n - f g \| \to 0 \) for all \(f \in \mathcal{HK} \).

Proof. Let \([a, b]\) be a compact interval. If \(\| f g_n \| \to \| f g \| \), then \(g \) is equivalent to \(h \in \mathcal{NBV} \) [2, Theorem 12.9] and for each \(f \in \mathcal{HK} \) there is a constant \(C_f \) such that \(\| f g_n \| \leq C_f \). By the Banach–Steinhaus Theorem [2, Theorem 12.10], each \(g_n \) is equivalent to a function \(h_n \in \mathcal{NBV} \) with \(V h_n \leq M \) and \(\| h_n \|_\infty \leq M \). Let \((c, d) \subset (a, b)\). By dominated convergence, \(\int_c^d g_n \to \int_c^d g \). It now follows from Theorem 1 that \(\int_c^d f g_n \to \int_c^d f g \) for all \(f \in \mathcal{HK} \). Hence, by Theorem 7, \(\| f g_n - f g \| \to 0 \) for all \(f \in \mathcal{HK} \).

Now suppose \((a, b) = \mathbb{R}\) and \(\| f g_n \| \to \| f g \| \) for all \(f \in \mathcal{HK} \). The change of variables \(x \mapsto 1/x \) shows the Banach–Steinhaus Theorem still holds on \(\mathbb{R} \). We then have each \(g_n \) equivalent to \(h_n \in \mathcal{NBV} \) with \(V h_n \leq M \) and \(\| h_n \|_\infty \leq M \). As with the end of the proof of Theorem 3, given \(\epsilon > 0 \) we can find \(c \in \mathbb{R} \) such that \(\int_{-\infty}^c |f g_n| < \epsilon \) for all \(n \geq 1 \). The other cases are similar.

Acknowledgment. An anonymous referee provided reference [3] and pointed out that in place of convergence in measure we can use convergence in \(\| \cdot \|_1 \) (cf. Remark 4).
References

