11.1

10. Let \(x = t^2, \ y = t^3 \).

(a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as \(t \) increases.

(b) Eliminate the parameter to find a Cartesian equation of the curve.

Solution.

\[
\begin{array}{c|cccccc}
 t & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
x & 9 & 4 & 1 & 0 & 1 & 4 & 9 \\
y & -27 & -8 & -1 & 0 & 1 & 8 & 27
\end{array}
\]

(b) \(t = \pm \sqrt{x} \implies y = \pm x^{3/2}, \ x \geq 0, \ y \in \mathbb{R}. \) Or \(x = y^{2/3}, \ x \geq 0, \ y \in \mathbb{R}. \)

For #12 and 16

(a) Eliminate the parameter to find a Cartesian equation of the curve.

(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

12. \(x = 4 \cos \theta, \ y = 5 \sin \theta, \ -\pi/2 \leq \theta \leq \pi/2. \)
Solution.

(a) Since $\cos^2 \theta + \sin^2 \theta = 1$, we get $(x/4)^2 + (y/5)^2 = 1$, i.e., \(\frac{x^2}{16} + \frac{y^2}{25} = 1 \) which is an ellipse with the x-intercepts $x = \pm 4$, the y-intercepts $y = \pm 5$. But since $-\pi/2 \leq \theta \leq \pi/2$, we have $0 \leq \cos \theta \leq 1$ so the graph consists of only the portion on the right side of the y-axis.

(b)

\[x = \ln t, \quad \sqrt{t}, \quad t \geq 1. \]

Solution.

(a) $x = \ln t \implies t = e^x \implies y = \sqrt{e^x} = e^{x/2}, \quad x \geq 0.$

(b)

22. Describe the motion of a particle with position (x, y) as t varies in the given interval:

\[x = \cos^2 t, \quad t = \cos t, \quad 0 \leq t \leq 4\pi. \]

Solution. \(x = y^2 \) is a parabola opening to the right with the vertex $(0, 0)$. The particle starts at the point $(1, 1)$ ($t = 0$). It then moves along the parabola to
the point \((0, 0)\) \((t = \pi/2)\) down to \((1, -1)\) \((t = \pi)\), then back to \((0, 0)\) \((t = 3\pi/2)\) and to \((1, 1)\) \((t = 2\pi)\). The same motion is repeated from \(2\pi\) to \(4\pi\).

11.2

8. Find an equation of the tangent to the curve \(x = \tan \theta, y = \sec \theta\) at the point \((1, \sqrt{2})\) by 2 methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

Solution. (a)

\[
\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\sec \theta \tan \theta}{\sec^2 \theta} = \frac{\tan \theta}{\sec \theta} = \sin \theta,
\]

at \((1, \sqrt{2})\), \(1 = \tan \theta, \sqrt{2} = \sec \theta \implies \theta = \frac{\pi}{4}\) (or \(\pi/4 + 2n\pi\)),

(since \(\tan \theta > 0\) in quadrant I and III while \(\sec \theta > 0\) in quad. I and IV). Hence the slope of the tangent at \((1, \sqrt{2})\) is

\[
y' \left(\frac{\pi}{4} \right) = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},
\]

and the equation is

\[
y - \sqrt{2} = \frac{\sqrt{2}}{2}(x - 1).
\]

(b) Since \(\tan^2 \theta + 1 = \sec^2 \theta \implies x^2 + 1 = y^2\), differentiating implicitly we obtain

\[
2x = 2yy' \implies \frac{dy}{dx} = \frac{x}{y} \implies y'(1, \sqrt{2}) = \frac{1}{\sqrt{2}}
\]

which gives the same equation as in part (a).

16. Find \(dy/dx\) and \(d^2y/dx^2\) if \(x = \cos 2t, y = \cos t, 0 < t < \pi\). For which values of \(t\) is the curve concave upward?
Solution.

\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-\sin t}{-2 \sin 2t} = \frac{\sin t}{4 \sin t \cos t} = \frac{1}{4 \cos t} = \frac{1}{4} \sec t, \]

\[\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \cdot \frac{dx/dt}{dx/dt} = \frac{\frac{1}{3} \sec t \tan t}{-2 \sin 2t} = -\frac{1}{16} \frac{\sin t}{\cos^2 t \sin t \cos t} = \frac{1}{16 \cos^3 t} \text{ or } -\frac{1}{16 \sec^3 t}. \]

The curve is concave upward if \(y''(x) > 0 \) on \(0 < t < \pi \), i.e.,

\[-\frac{1}{16 \sec^3 t} > 0 \iff \sec t < 0 \iff \cos t < 0 \iff t \in (\pi/2, \pi). \]

18. Find the points on the curve \(x = 2t^3 + 3t^2 - 12t, \ y = 2t^3 + 3t^2 + 1 \) where the tangent is horizontal or vertical.

Solution. We find the derivative

\[\frac{dy}{dx} = \frac{6t^2 + 6t}{6t^2 + 6t - 12} = \frac{6(t+1)}{6(t+2)(t-1)} = \frac{t(t+1)}{(t+2)(t-1)}. \]

Horizontal tangents occur when \(y' = 0 \), i.e., \(t = 0, -1 \). So the points are

\[t = 0 \implies x = 0, \ y = 1, \ i.e., (0, 1), \]
\[t = -1 \implies x = -2 + 3 + 12 = 13, \ y = -2 + 3 + 1 = 2, \ i.e., (13, 2). \]

Vertical tangents occur at \(t = -2, 1 \) (\(y' \) does not exist there). Then the points are:

\[t = -2 \implies x = -16 + 12 + 24 = 20, \ y = -16 + 12 + 1 = -3, \ i.e., (20, -3), \]
\[t = 1 \implies x = 2 + 3 - 12 = -7, \ y = 2 + 3 + 1 = 6, \ i.e., (-7, 6). \]

34. Find the area of the region enclosed by the astroid \(x = a \cos^3 \theta, \ y = a \sin^3 \theta. \)

Solution. The graph of the astroid is
Using symmetry

\[A = 4 \int_{0}^{a} y \, dx = 4 \int_{0}^{\frac{\pi}{4}} a \sin^3 \theta (-3a \cos^2 \theta \sin \theta) \, d\theta \]

\[= -12a^2 \int_{0}^{\frac{\pi}{4}} \sin^4 \theta \cos^2 \theta \, d\theta = -12a^2 \int_{0}^{\frac{1}{4}} (1 - \cos 2\theta)^2 \cdot \frac{1}{2} (1 + \cos 2\theta) \, d\theta \]

\[= -\frac{3}{2}a^2 \int_{0}^{\frac{\pi}{4}} (1 - 2 \cos 2\theta + \cos^2 2\theta)(1 + \cos 2\theta) \, d\theta \]

\[= \frac{3}{2}a^2 \left(\frac{1}{2} \theta - \frac{1}{2} \sin 2\theta - \frac{1}{8} \sin 4\theta \right) \bigg|_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}} \left(\frac{\cos^2 2\theta}{1 - \sin^2 2\theta} \right) \cos 2\theta \, d\theta \]

\[= \frac{3}{2}a^2 \left(\frac{1}{2} \cdot \frac{\pi}{4} - 0 - 0 \right) + \frac{1}{2} \int_{0}^{0} (1 - u^2) \, du \quad (u = \sin 2\theta) \]

\[= \frac{3}{2}a^2 \cdot \frac{\pi}{4} = \frac{3}{8}a^2 \pi. \]

44. Find the length of the curve \(x = e^t + e^{-t}, \ y = 5 - 2t, \ 0 \leq t \leq 3. \)

Solution. \(\frac{dx}{dt} = e^t - e^{-t} \) and \(\frac{dy}{dt} = -2. \) So

\[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = (e^t - e^{-t})^2 + 4 = e^{2t} - 2 + e^{-2t} + 4 \]

\[= e^{2t} + 2 + e^{-2t} = (e^t + e^{-t})^2 \]

\[\therefore \ L = \int_{0}^{3} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt = \int_{0}^{3} (e^t + e^{-t}) \, dt \]

\[= e^t - e^{-t} \bigg|_{0}^{3} = e^3 - e^{-3} - 1 + 1 = e^3 - e^{-3}. \]

60. Find the area of the surface obtained by rotating the curve \(x = 3t - t^3, \ y = 3t^2, \)
\(0 \leq t \leq 1 \) about the \(x \)-axis.

Solution.

\[S = 2\pi \int_{a}^{b} y \, ds = 2\pi \int_{0}^{1} 3t^2 \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt \]

\[= 2\pi \int_{0}^{1} 3t^2 \sqrt{3^2 + (-6t)^2} \, dt \]

\[= 2\pi \int_{0}^{1} 3t^2 \sqrt{9 + 36t^2} \, dt \]

\[= 2\pi \left[\frac{t}{3} \left(3t^2 + 9 \right)^{\frac{3}{2}} \right]_{0}^{1} \]

\[= 2\pi \left(\frac{1}{3} (3 + 9)^{\frac{3}{2}} - \frac{0}{3} \right) \]

\[= 2\pi \left(\frac{1}{3} \cdot 12^{\frac{3}{2}} \right) \]

\[= 2\pi \cdot 4 \cdot 3 \]

\[= 24\pi. \]
where
\[
\left(\frac{dx}{dt}\right)^2 = (3 - 3t^2)^2 = 9 - 18t^2 + 9t^4
\]
\[
\left(\frac{dy}{dt}\right)^2 = (6t)^2 = 36t^2
\]
\[
\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 9 - 18t^2 + 9t^4 + 36t^2 = 9 + 18t^2 + 9t^4 = (3 + 3t^2)^2
\]

\[S = 2 \pi \int_0^1 3t^2(3 + 3t^2) dt = 2 \pi \int_0^1 9t^2(1 + t^2) dt\]
\[= 18 \pi \int_0^1 (t^2 + t^4) dt = 18 \pi \left(t^3 + t^5 \right)^1_0 = 18 \pi \left(\frac{1}{3} + \frac{1}{5} \right) = \frac{48 \pi}{5}. \]

66. Find the surface area generated by rotating the given curve about the y-axis.

\[x = e^t - t, \quad y = 4t^{1/2}, \quad 0 \leq t \leq 1\]

Solution. \[S = 2 \pi \int_0^1 x \, ds \text{ where } ds = \sqrt{(dx/dt)^2 + (dy/dt)^2} \, dt.\]
\[
\left(\frac{dx}{dt}\right)^2 = (e^t - 1)^2 = e^{2t} - 2e^t + 1, \quad \left(\frac{dy}{dt}\right)^2 = (2e^{t/2})^2 = 4e^t
\]

\[\therefore \quad \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = e^{2t} - 2e^t + 1 + 4e^t = e^{2t} + 2e^t + 1 = (e^t + 1)^2
\]

\[\therefore \quad S = 2 \pi \int_0^1 (e^t - t)(e^t + 1) \, dt
\]
\[= 2 \pi \int_0^1 (e^{2t} + e^t - te^t - t) \, dt
\]
\[= 2 \pi \left(\frac{1}{2}e^{2t} + e^t - (te^t - e^t) - \frac{t^2}{2} \right)^1_0
\]
\[= 2 \pi \left(\frac{1}{2}e^2 + e - e + e - \frac{1}{2} - \frac{1}{2} - 1 - 1 \right) = \pi(e^2 + 2e - 6). \]

(Here to do \[\int te^t \, dt, \text{ integration by parts was used.}\)