Math 113/114—Solutions to Final Exam Sample Problems

1. Find v/
(a) ¥ = (=1 —32?)sec?(2? — 1) + (1 —z — 23) - 2sec?(z? — 1) tan(2? — 1)(2z).
3sec 3z
— 1,7
(b) Iny =Inzln(tan(3z)) = vy = ln(tan (32)) + ~an3z

y' = (tan3z)"* [ln(tan 3x) 31nxsec 3;5]

x tan 3z
(c) ¥ = 3(tan® V2% — sinz)(sec? Va2 —sinz) - 3(2? — sin )72 (22 — cos x)
(d) Iny = 3In(sinz) + 3 In(32° + 1) — 2®Ine — 5In(2 — 5z?)

N 1, 3cosx n 1 152% 92 5(—10x)
- - _gp2 2%
y) T Tsinz 2325 + 1) 2 — b2
.3 4
a5 +1 15 50
O A T AP L S
e?’ (2 — bx2)° 2(3z5+1) 2 — 52

(e) y' = [sec?(z? —sin V1 — 22)*](4(2? — sin V1 — 23)3){22 — (cos V1 — 23)1 (1 - 23)~ 2 (—322)}

(f) Diff. implicitly, [cos(z — y?)](1 — 2yy') =22 —y + 2y =
2z — y — cos(z — y?)

) B 2 _
(—=2ycos(z —y*) +2)y’ =2z —y —cos(z —y*) = y' = x — 2y cos(xz — y?)

(g) We use logarithmic differentiation: taking natural log, we get Iny = (tan x) In(sec x)

tanz[(sec? x) In(sec x) + tan® x

1 1
= —y = (sec?z)In(secx) + tanz secrtanz = y' = (secx)
Y secx
(h) Diff. implicitly. e®¥(y + zy’) —2yy' = 1 =
L yery
X

Ty Yy, _ r_ 1 Ty _ r_ 1 _ xy r_ x I
ye™ +xe™y' = 2yy = - = (we )y = ¢ —ye™ =y P

2. Evaluate the limits.
(a)

lm (- Vi) = lim VT D@+ Ve b ot )
22—z —z-1 ) z(-1-1)
= lim = lim z

e R P T Y

, z(-1-1) ~1
= lim Z

1
TRl 1+t ) P2

1—cosz ., (1—cosxz)(l+ cosx) ) 1—cos?x
im ———— = lim . = lim —
z—0 zsin2z  =—0 xsin2z(l+ cosx) z—0 zsin 2z(1 + cosx)
i sin® z g L SRz 1 1 L1 1
= lim = lim — - . . — — . . T
z—0 x2sinzcosx(l +cosz) 2—02 x  cosx 1+4cosxz 2 2 4
(© in3 in3 indz 3 2 3
sin 3z sin 3z sin3z 3z x
=i 2z = li iy ccos2r=1-2-1-1=2.
im0 tan2z | am0sm2r o em0 3z 20 sm2x 2 2



(d)
. NV2x—x . 2z —2)(V22r+2) . 2z — z2
lim = lim = lim
e—2 T —2 =2 (x—-2)(V2x+2z) -2 (z—2)(V2xr+2x)
x(2 — x) ) x 2 1
= hm = lim = = —_.
=2 —(2—2)(V2z+2) —2—(V2rx+z) —(2+2) 2
(e)
lim L lim __ lim S S . -2
m—»—oo1/x2+1 T——00 /$2(1+wiz) T——00 _x /1+$L2 -1
(since Va2 = —z, z <0).
(f)
lim 1—4m+x3_ lim IB(#_%—FD— lim (1%_;_24_1)— 00
m—>—oo3CC2—CC+4 T——00 I2( —%—F;—g) _1_’_00 3 %‘i‘% ’
since 1/2" — 0 as & — —o0.
3. Evaluate the integrals.
(a) s ey
1—22_3 3 12
/75” o dx:/(x—% —423)dr =325 —4- 225 + C =325 — =25 + C.
x3 7 7
(b)

1 1 1
/xsin(l —22%) dx = ~1 /sinudu = Zcosu—&—C’ = Zcos(l —229)+C  (u=1-22% du= —4xdr).

(c) Let u=1+cos2x, du = —2sin2zdzx. 2 =0 = u=2, v =% = u= ;.

fu . 1 2
5 sin2x 1 f2du 1 (% _, 1 1 1 2-1 1
-  dr=-—= - == uw 2du==--2u2 :\/5——:—:—'
o V14 cos2x 2 /5 Vu 2/% 2 1 2 V2 V2
(d)
2 1 2 3423 3.2 2
/ |3:v—1|dx:/ —(31‘—1)d$+/(31‘—1)d$:|:$—i [i—x
1 2 2 1
0 0 3 0 3
1 3 1 3 31 1 13
—_-_2.Z 249224 - =22
3 29+2 29+3 3
(e)

1




(f) Let u =2+ cos? 6, du = —2 cosfsin 0 df.

: 2 92 1 2 1w 1 2 )3

sin 6 cos 0(2 + cos” 0) d@:—§ u du:—§~?+C:—6(2—|—cos 0)° +C.
(g) Let u = tan 7z, du = 7sec? 7Tz dx. Then

T etan 7z oy
/ P dx = / sec? Tz "™ dy
o cos?Tx 0

1t 7
:—/ e du x:0:>u:tanO:0;x:E:>u:tan—7rz—1
7 Jo 4 4

1[0 1 1° 1 1 1
= —— ud :——u = —— 0— -1 = — — 1—— .

7/16 YT e e 7( e>
3

.4 3 i

x®sin” —z’sin* x

Tt is an odd function since f(—z) = ——— = —f(x). So
x

(h) Note that f(x) =

M

(z®+1)2 + C.

Ne) i)

1 112 2 2
(j) Let u=2— 2z, du = —dx.
/x\/2—xdx:—/(Q—u)\/ﬂdu:—/@u%—u

4 2 : 4 2 :
——(gu%—gu%> +C:—§(2—x)%+5(2—x)%+0.

Nleo
S~—
U
<

(k) Let u =3+ 7tanbz. So du = 35sec? 5z dz. Then

sec? 5 1 du 1 1
s dr =g [ — = gnful+C = oo In|3+ Ttanba| + C.
/3+7tan5z v 35/ u 35 n fu| + 35 n|3 + 7tanbz| +

U]
/(1+ecosm)sin:vdx:/(sin:v—&—e””sinx)dx: —cosx—/e“du (u=cosz, du = —sinxdz)
=—cosz —e"+C = —cosx — e 4+ C.

(m) First let w=mlnz, du = Z dv. Then

/e cos?(mInx) sin(r In z) e 1 /71' o st
1 z T Jo

-1
:——/ t2dt (t =cosu, dt = —sinudu and cos0 =1, cosm = —1)
T J1

1/t 2 ! 243
:—/ tht:—/tht:——
0 T Jo T3

Lo 2

025_ 3n




(a) f(an‘):/t V14 thdt.

anx

tanx

d [? d d [ d
ﬂ@:@/’\ﬂ+#ﬁ:—% m+ﬁﬁ:—%/\ﬂ+#ﬁﬂg
tan x 2 2
PLC. —V1+utsec?r = —v1+tan*z sec® z.

0
(b) f(x) :/ cost? dt.
cot?(1—tan )
d 0 d cot?(1—tan x)
f(z) = —/ cost? dt = ——/ cost? dt
dx cot?(1—tanx) dx 0
d [ d
iy cost? dt - i (where u = cot?(1 — tan )
0

FLC. —(cosu?)2(cot(1 — tanz))(— csc?(1 — tanx))(— sec? z)

= —2cos(cot?(1 — tanz)) cot(1 — tan z)(csc?(1 — tan x)) sec? x.

5. We first graph the function and the region.

y=x 2-2x

-1 ///‘

1 0 1 23 0 23
Az/ |x2—2x|d1‘:/ ($2—2$)d1‘—/($2—2$)d1‘:— e
-1 -1 0 3 —1 3

-1 1 1 1
- ol 4l=i41-Z41=2
g tl-gtl=g+l-g+

6. We wish to maximize the volume of the cylinder, i.e., V = mr2h.

/

A 20°h
i — 20 cm L\

T
Iﬂl h
—F—

—— 5

5cm

|

From the diagram we have

2O_h::%2:$20—h:4rzﬁ»h:20—4r

r




Then

V =7r?(20 — 4r) = 4wr?(5 —r) = 4n(5r* —13), 0<r<5
Differentiating,
v ,
= = 47 (10r — 3r%) = 4mr(10 — 3r).
r

So the critical points are r = 0, 10/3. We will use the Extreme Value Theorem to verify:

2
10 10 10 100 5 20007

2000
So the maximum volume of the cylinder is o T emd.

7.

y=16-x

We wish to maximize the area A = 2xy. Then
dA
A =2zy = 2x(16 — 2?) = 2(16z — 2°) — = 2
x

To find the critical points let dA/dx = 0 so that 22 = 16/3 = = = 4/+/3. Let’s use the first derivative
test to verify:

(16 — 3z7%).

4 dA . .
< — = T >0 = A increasing
T

V3
dA

x> ﬁ = T <0 = A decreasing.

So the area is a maximum at z = 4/+/3. Then y = 16 — (16/3) = 32/3. The dimensions of the rectangle are
8/v/3 by 32/3.

8. We wish to maximize the area A = 4zy = 4xv/r? — 2.

y

)(2+y2 =2
el N
~ 2K

dA 4
an 22 o 2y
o 4/ 7 x+2(r x*)

[N

4(r? — 222
(—22) = 4(r® — x2)_%(r2 —2? —2?) = Ar —2) = xz)'
r?—x
Setting dA/dx = 0, we get 2 = r/+/2. Let’s use the first derivative test to verify: if 0 < x < 7/+/2, then

dA/dx > 0 and if 7/v/2 < x, then dA/dx < 0. So A is increasing on the left 7//2 and decreasing on the
right of r/\/§, so A is a maximum when z = 7’/\/§



Then y = 4/72 — % = \/é = % So it is a square with 2r/v/2 by 2r//2.

9. The statement of the Mean Value Theorem: If a function f is continuous on [a,b] and differentiable on
(a,b), then there is a number ¢ € (a,b) such that f'(c) = [f(b) — f(a)]/(b—a), a #b.
Then since 1 < f/(z) < 4 for all x € (2,5), f is differentiable on (2, 5), then f is continuous on [2,5]. Then
by the Mean Value Theorem there exists a number ¢ € (2,5) such that f/(c) = w But 1 < f/(c) < 4.
So1< BB <y — 3<f(5) - f(2) < 12.

10. Step 1: Let f(z) = 3z 4+ 2cosz + 5. The function is continuous everywhere since it is the sum of
everywhere-continuous polynomial and sine functions. We note that

f(=m)=3(—m)+2cos(—m)+5=-3r—2+5=-31+3 <0,
f(0)=0+2cos0+5=7>0,

so that f(—m) < 0 < f(0). Then by the Intermediate Value Theorem, there is a number ¢ € (—,0) such

that f(c) =0, i.e., there is a root & = ¢ of the equation.

We now show that there is exactly one real root. Assume that there are two roots, a and b such that
a <b. Then f(a) =0 = f(b). By Step 1, f is continuous on [a,b]. f'(z) =3 —2cosz so f is differentiable
on (a,b). Then by Rolle’s Theorem, there is a number d € (a, b) such that f'(d) =0, i.e. 3—2cosd = 0. But
this equation has no solution since —1 < cosd < 1 and hence f’(d) > 0. This is a contradiction to Rolle’s
Thm. Therefore, there cannot be two roots of the given equation.

11. f(z) = 4cosx on [0,F]. Using zj = §,%,%, %5, Note that the width Az is not the same for all the
subintervals. Ary = &, Az = 75, Arg = {5, and Azy = F.
y=4cos x
FEYE
6 4 3 2
So
* * * * — (T (™ ™ (™ ™ (™ il
A f@) Az + f(23) Avs + f(z5)Azs + flz1) Ay = f((i) (6) +f(4) (12) +f(3) (12) +f(2) (
T T T T T T T ™ 2T \/§ T \/5 w1
=g (teong) + 55 (4eos7) + 5 (4eon g ) + § (4eosg) = F 5+ 5 T +53+0

23 V2 o« 14+2vV34+2
——6 7T+?7T+g: 76 .

12. f(z)=2+2a%on [1,3]. 2} =x; = 1+ iAz =1+ 2 where Az = 2.
y

f(x)=2+32

[\

X




~ lim 2 n 4 nn+1) 4 nr+1)2n+1)
n—oo n, n 2 n?2 6
~ fim [6—1— 4(n+1) n 4n+1)(2n + 1)}

. 1 4 1 1 4 38

, (=1 —22@-1) (z-Dz-1-22] -1-z —(z+1)
- (=11 I N CEE Ve PR
v —@—=1P4+(x+1)-3x—-1) (z—1)2[—(z—1)+3(x+1)]
. (z— 1P - (z—1F
o+ 1+3x+3  22+4 2 +2)
o @=Dr @-Df (@-DY
(b) y=2av9 — 2.
y = 9—x2+§(9—z)*%( 2z) = (9-#)*%9-#-#):%,
J = —42v/9 =22 — (9 - 222)1(9 — 2?)"3 (—22)
9— 22
_ —w(9-a?) 3[40 —a?) - (9-227)]  —a(36 —4a® —9+22%) _ x(22° —27)
9—a? (9 —a22)3 (9—a2)3

14. y = 2v/9 — 22. So the domain is [—3, 3] and the function is continuous there. So by the Extreme Value
Thm, there is an absolute max. and absolute min. on [—3,3]. Using the result of #12(b), the critical
points are x = :I:%, +3.

At x = -3, y:0,
at r =3,

a““’:%’ y= WE f\[

. : o 9 —_3 io 9 — 3
So the absolute min. value is satz = 73 and absolute max. value is satz = Nk



8

15. The domain of f is z # 1 or (—o0, 1) U (1,00). Using the results of 12(a), the critical point is x = —1.

—(z+1) (z-1)° ¥ y
(—o0,—1) + — — decreasing
(-1, 1) — — + increasing
(1, 00) — + — decreasing
So y is decreasing on (—oo, —1) U (1,00) and increasing on (—1,1). A local min. at x = —1, y = —1/4.
No local maximum. From y” above possible inflection point is at = —2.
e+2 (a-1t y” y
(—00,-2) - + — conc. down
(-2, 1) + + +  conc. up
(1, 00) + + +  conc. up.
Hence, the inflection points occur at x = —2, y = —2/9.
We now look for asymptotes.
T = ) % 0

B (z—12 L (z=1)2 = N (1—1)p T a-o02 0.

8

So y = 0 is a horizontal asymptote.
lim ———— =o0 (since z — 1 and (x —1)? — 0 pos.)

lim ——— = o (since  — 1 and (z — 1)? — 0 pos.).

So x =1 is a vertical asymptote.

0 1

-2,-2
-2.-29) (=1,-1/4)

x=1

16. See the figure below. Then we are given that dV/dt = 2 cm?/min, dr/dt = 1 cm/min. We wish to find
dh/dt when 7 =5 and V = 60.

av dr  ,dh
2 2
= mrh Gl orh 422
V=mnr T [ rha +7r dt}
dh AV dr dh 1 [dV dr
— w8 oD e e i
w Tt dt at  rn {dt T



Now when r =5 and V = 60, h = 12/5m, then

dh 1

12 2—24 22
S ==
25T 257

5T
So the height is decreasing at a rate of % cm/min.

17. See the figure below. Let x be the length of the shadow cast by the building and 6 the angle of elevation

of the sun.

400
8¢
We are given % = —0.25 rad/h and wish to find % when 6 = 7/6.
400 9 A0 400 dz
tan9—7 — sec HE__?E
dz 2 5, df
. E = —4—00 sec” 0 E
We will now find z when 6 = 7/6,
400 400 400
6 T tan § —=
3
Then )
d 4002 - 3 2 1
T sec? T (—0.25) = 400(3) <—3> (Z) — 400 ft/h.

dt 400 6



