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BOUNDEDNESS OF PROJECTION OPERATORS
AND CESARO MEANS
IN WEIGHTED L?» SPACE ON THE UNIT SPHERE

FENG DAI AND YUAN XU

ABSTRACT. For the weight function H;’lj'll |£;|2%¢ on the unit sphere, sharp
local estimates of the orthogonal projection operators are obtained and used
to prove the convergence of the Cesaro (C,¢) means in the weighted LP space
for ¢ above the critical index. Similar results are also proved for corresponding

weight functions on the unit ball and on the simplex.

1. INTRODUCTION

For spherical harmonic expansions on the unit sphere S := {(x1, -+ ,zaq41) :
(22 4+ :c?Hl)% = 1} of R4+ it is well known that their Cesaro (C,4) means
are uniformly bounded, in terms of degrees, in the LP norm for all 1 < p < oo if
and only if § > 252 ([3]). For & below the critical index 951, C. Sogge [14] proved

2
a much deeper result that the (C,§) means are uniformly bounded on LP(S9) if
(1.1) %—%|Z# and ¢ > d(p) ::Inax{d|11—)—% - 1,0}

for d > 2 and, moreover, the condition [1/2 — 1/p| > 1/(d + 1) is not needed in
the case of d = 2. The condition § > d(p) is also known to be necessary ([3]).
Later in [I5], Sogge proved that the condition (II]) ensures the boundededness of
the Riesz means of eigenfunction expansions associated to the second-order elliptic
differential operators on compact connected C'*° manifolds of dimension d.

The purpose of the present paper is to establish analogous results for the Cesaro
means of orthogonal expansions associated with the weight function h2(z), where

d+1
(1.2) he(x) == 1_[1 |z:%, K= (K1, Kds1), 1§r¢n§ig+1 ki > 0,
1=

on the unit sphere S?, as well as for orthogonal expansions for related weight
functions (see (Z6]) and (ZI2) below) on the unit ball and on the simplex.

The function A, in (L2) is invariant under the group Z¢ and it is the simplest
example of weight functions invariant under reflection groups studied first by Dunkl
[9]. Homogeneous polynomials that are orthogonal with respect to h2 on S¢ are
called h-harmonics and their restrictions on S¢ are eigenfunctions of a second-order
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differential-difference operator, which plays the role of the ordinary Laplacian. For
the theory of h-harmonics, we refer to [I0] and the references therein. A brief
account of what is needed in this paper is given in the following section.

The convergence of h-harmonic expansions has been studied recently. In [19] it
was proved that Cesaro (C,d) means converge uniformly if § > [x| + 452, where
|k| = kK1+...4+ K441, and such a result holds for all other weight functions invariant
under reflection groups. In the case of h, in ([L2) the critical index for the (C, )
means in the uniform norm turned out to be ([11])

(1.3) §>0,:=%5+|k[— min k.

1<i<d+1
This condition is also necessary for the almost everywhere convergence of the (C, ¢)
means ([2I]). Our main result in this paper (see Theorem [B.]in Section 3) shows
that for h, in (L2), the (C,d) means of h-harmonic expansions converge in the
LP(h2; S%) norm if

(1.4) % — % > 2U:+2 and 0 > 04(p) := max{(20, + 1)|% - %\ — 1,0}

and that the condition § > d,,(p) is also necessary. Note that (I4]) agrees with (1))
when x = 0, while 6, (p) > d(p) when & > 0.

The reason that these sharp results can be established for h, in (2] lies in
an explicit formula for the kernel P, (h2;-,-) of the orthogonal projection operator
(definition in the next section), while no explicit formula for the kernel is known
for other reflection invariant weight functions. For (L2]), we have

d+1

n+ A i
(15)  Pu(hie,y) = en——— / Co~(u(a,y, 1)) [ (1 +t:)(1 = £7)=at,
wo =10 i=1
where C9 is the Gegenbauer polynomial of degree n,
(1.6) Ao i= 352+ k|, and  w(z,y,t) = ziy1ts + ...+ Tagy1Yatitars

and ¢, is the normalization constant of the weight function Hfill (14t;)(1—¢2)mi—L,

If some k; = 0, then the formula holds under the limit relation

1
lim e, [ g+ (L=t = (1)
For the spherical harmonic expansions, this kernel is the familiar P,(z,y) :=
EACN((z,y)) with A = 4L (cf. [16]), which is also called a zonal harmonic.

The simple structure of the zonal harmonics means that one can derive various
properties and estimates relatively easily. The structure of the kernel P, (h2;x,y) in
(L3 is far more complicated, making the derivation of any information from it more
difficult. There is, however, a deeper reason that the study of h-harmonic expansion
is more difficult than that of ordinary spherical harmonics. The zonal harmonics are
invariant under the rotation group O(d+1) in the sense that P, (x,y) = Pn(xg,y9)
for all g € O(d+ 1), which reflects the fact that the sphere is a homogeneous space.
The P, (h?;z,y) in (L3) is invariant under Z4, a subgroup of O(d+1), and we are
in fact working with a weighted sphere that has singularity on the largest circles
of the coordinate planes. In particular, we can no longer treat the sphere as a
homogeneous space and many of our estimates of various kernels have to be local,
depending on the location of the points.
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The difficulty manifests itself acutely in the study of the LP boundedness of
Cesaro means of h-harmonic expansions. For the ordinary spherical harmonics, the
proof of Sogge [14] relies on the sharp asymptotic bounds for the (L?, L?) norms of
the orthogonal projection operators, and a result of Bonami-Clerc [3], which says
that the sharp results for Cesaro summation on LP can be deduced from these as-
ymptotic estimates of orthogonal projections. (See also Sogge [15] for the case of
general compact manifolds.) For our study, while we can obtain global sharp asymp-
totic bounds for the LP(h%;S%) — L2(h%;S?) norms of the orthogonal projection
operators of h-harmonic expansions (see Theorem B3 in Section 3), which are in full
analogy with those of Sogge [14] for ordinary spherical harmonics, seemingly, these
global estimates are not enough for the proof of the uniform boundedness of Cesaro
means on weighted LP. (See Section 3.1 for the precise definition of LP(h2;5%).) In
order to obtain our main result on the boundedness of Cesaro means, we have to
replace the norm of the orthogonal projection operator by a local estimate of the
projection operator over a spherical cap. (See Theorem[34lin Section 3.) The latter
local result is substantially more difficult to establish, since only a part of the proof
can follow Sogge’s strategy based on Stein’s theorem on analytic interpolation and
the rest has to rely on a sharp pointwise local estimate of the kernels.

Analogues of our main results also hold for orthogonal expansions on the unit
ball and on the simplex for weight functions related to h2, including in particular
the Lebesgue measure (see Section 2). In fact, they follow more or less from the
results for h-harmonics. In particular, the same condition ([3]) guarantees the
convergence of the Cesaro means in the corresponding weighted LP space.

The paper is organized as follows: The next section contains preliminary results,
whereas the main results are stated and discussed in Section 3. The local estimate
of the projection operator is studied in Section 4. The proof of the main result for
the projection operators on the sphere is given in Section 5, while the proof of the
main result for the Cesaro means on the sphere is presented in Section 6. Finally,
the results on the ball and on the simplex are proved in Section 7.

2. PRELIMINARY RESULTS

2.1. h-spherical harmonics. We restrict our discussion to h, in ([Z). Unless
otherwise stated, the main reference for the material in this section is [I0]. An
h-harmonic is a homogeneous polynomial P that satisfies the equation Ay P = 0,
where Ay :=D? +...+Dj,, and

fl@) = flx — 2ze;)

Dif(x) = 0if(x) + Ky , 1<i<d+1,
T
ey, - ,eq+1 denoting the usual coordinate vectors in R4t The differential-
difference operators Dy,...,Dyq1 are the Dunkl operators, which commute. An

h-harmonic is an orthogonal polynomial with respect to the weight function h?(x)
on S9. Tts restriction on the sphere is called a spherical h-harmonic. Let HZ(h2)
denote the space of spherical h-harmonics of degree n on S?¢. It is known that
dim H4 (h2) = (n"':f“) - (”:fgl) Let L?(h?;S9) denote the L? space with respect

to hi on S% see Section 3.1 below for the precise definition. The Hilbert space
theory shows that

L(h3: 8% =Y "Hi(h2):  f=>_ proj,(hi; f),
n=0

n=0
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where proj,, (h2) : L2(h%;S?%) — HZ(h2) is the projection operator, which can be
written as an integral operator

proj, (h; f,x) = ay /Sd F@)Pa(hZ;z,y)hi(y)dw(y), « €S9,

where dw(y ) denotes the usual Lebesgue measure on S?, a, is the normalization

constant, a;t = [g, h (y) and P, (h2;-,-) is the reproducing kernel of H4 (h2).
The kernel satlsﬁes an expll(:lt formula

n+ A d—1
@1 Paiey) = VO G)] @) A=+,

where C? is the Gegenbauer polynomial of degree n and V;, is the so-called inter-
twining operator defined by

d+1

(22) Vﬁf(x) = CN/ f(xltla"~7xd+ltd+1) H(].-th)(l —t?)m_ldt,

[=1,1]d+1 i=1

in which ¢, is a constant such that V,.1 = 1. If some «; = 0, then the formula holds
under the limit relation

1
lim cA/ g (1 +t)(1 —t)*tdt = g(1).

A—0 4
Clearly [21]) is the same as (L3). The operator V;, is called an intertwining operator
since it satisfies D;V,, = V,.0;, 1 <j <d+ 1.

Let wy(t) := (1 —#3)*~1/2 on [~1,1]. The Gegenbauer polynomials are or-
thogonal with respect to wy. The intertwining operator can be used to define a
convolution f *, g for f € L'(h2;S?) and g € L' (wy,;[-1,1]) (20]):

(2.3) f*eg(w) == ay » FW)Vilg((z, )] (y)h2 (y)dw(y).

In particular, the projection operator proj,,(h2; f) can be written as
n+ g
Ak

This convolution satisfies the usual Young’s inequality (see [20, p.6, Proposition

2.2]). For k =0, V,; = id, it becomes the classical convolution on the sphere ([5]).
For f € L*(h2%;5%), we also have ([20])

T O (cosB)
Car(1)

where by, is the normalization constant of wjy, (¢) on [—1,1].
For § > —1, the Cesaro (C,d) means of the h-harmonic expansion is defined by

n—j+4
S’i(hivfa - ZAn _]pro.]] h,&f,l‘), Afz—j = < n_j >

(24)  proj,(h%f) = fen 25, where Z5(t) = TI2ECM (1),

(2.5)  proj,(h; f *x g) = ba, g(cos 0)(sin6)**+d6 proj, (h2; f),

The operator SS(h2) can be written as a convolution,

SN2 ) = [ on Ko(ws,),  Ki(wait) = (43) 1ZAHJ’“"

J
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Let K2 (h2;x,y) denote the kernel of S%(h?); then
Ko (h%;,y) = Vi K (wa,; ()] (1),

2.2. Orthogonal expansions on the unit ball. We denote the usual Euclidean

norm of x = (z1,--- ,24) € R by ||z]| := (22 +--- + xg)%. The weight functions
we consider on the unit ball B¢ = {xz : ||z|| < 1} € R? are defined by
d

P = Pyt k>0, we BY

(2.6) W2 (x) =[] |z
i=1
which is related to the h, in ([L2) by h2(z,/1 - |z|2) = WE(z)/1/1 - ||z|]?, in

which 1/4/1 — ||z||? comes from the Jacobian of changing variables

(2.7) ¢z € B (2,1 ||lz]]2) € S{ :={y € 5" : yas1 > 0}.

Furthermore, under the above changing variables, we have

dx
28) [ swdow)= [ (oo /T=TaP) + gla, ~VI=lP)] <~
sd Bd V1=l

The orthogonal structure is preserved under the mapping (Z7) and the study of
orthogonal expansions for W2 can be essentially reduced to that of h2. In fact, let
V(W E) denote the space of orthogonal polynomials of degree n with respect to W2
on BY. The orthogonal projection, proj,,(W2; f), of f € L2(W2; B%) onto V4(W )
can be expressed in terms of the orthogonal projection of F(x,z411) := f(x) onto
Hd+1 (h2 ):

(29)  proj,(W/7; f,x) = proj, (hi;s F,X),  with X := (2, /1 [[a[?).
This relation allows us to deduce results on the convergence of orthogonal expan-
sions with respect to W from that of h-harmonic expansions.

For d = 1 the weight W2 in (28] becomes the weight function

2.10 Wy o, (B) = [E251 (1 =222 k>0, tel-1,1],
2,Rh1

whose corresponding orthogonal polynomials, T(Lm"”), are called generalized

Gegenbauer polynomials, and they can be expressed in terms of Jacobi polyno-
mials,

A, ()\ +lu’)n — —
Cén “)(t) — ( n 1) PT(LA 1/2,u 1/2)(2t2 —1),
(2.11) Hre
’ A+
ORI = et art -1,
K 2/n+1
where (a), =ala+1)---(a+n—1).

2.3. Orthogonal expansions on the simplex. The weight functions we consider
on the simplex T¢ = {x : 2y >0,...,24 > 0,1 — |z| > 0} are defined by
d
(212) W)= 20 = faren ™2 k20,
i=1
where |z| := 1 + -+ + z4. They are related to W2, hence to h2. In fact, W7 is
exactly the product of the weight function W2 under the mapping

(2.13) i (xy,...,xq) €T (22,...,22) € BY
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and the Jacobian of this change of variables. Furthermore, the change of variables
shows
dx

(2.14) / g(x%,...,xi)dm:/ g(x1, .., 1) —.

Bd Td Xr1---Xyq
The orthogonal structure is preserved under the mapping ZI3). Let VI(WT)
denote the space of orthogonal polynomials of degree n with respect to W on T9.
Then R € V4WT) if and only if Ro € V4 (WEB). The orthogonal projection,
proj,(WI; f), of f € L2(WT;T9) onto V4(WT) can be expressed in terms of the
orthogonal projection of f o4 onto V§, (W5):

(215)  (proju(WE5£)ow) (2) = gy 3 proja, (W2 £ o, 2).

ee€Zg

The fact that proj,, (WT) of degree n is related to proj,,, (W) of degree 2n suggests
that some properties of the orthogonal expansions on B? cannot be transformed
directly to those on 7% We will also need the explicit formula for the kernel,
P,(WT;2,y), of proj, (WT; f), which can be derived from (2J]) and the quadratic
transform between Gegenbauer and Jacobi polynomials,

(2n + A )T(3)0(n + Ak)
I+ (n+ 1)

(2.16) Py (W, y) =

d+1
1 1
x c,{/ pHe—zm3) (22(z,y,t)* — 1) | |(1 — 3 at,
[~1,1]d+1

i=1

where z(x,y,t) = /21y t1 + ... + /Za¥a ta + /1 — |z|\/1 = |yl tasa.

We will also denote the Cesaro means for orthogonal expansions with respect to
a weight function W as S2(W; f) and denote their kernel as K2 (W;z,y), where W
is either W2 or WT.

2.4. Some estimates. Throughout this paper we denote by ¢ a generic constant
that may depend on fixed parameters such as x, d and p, whose value may change
from line to line. Furthermore we write A ~ B if A > ¢B and B > cA.

Let d(x,y) := arccos (z,y) denote the geodesic distance of x,y € S¢. For 0 <
0 < m, the set

c(x,0) :={y € S?:d(x,y) <0} ={y € S*: (x,y) > cosh}

is called the spherical cap centered at = with radius . It is shown in [7] that h,; is
a doubling weight and, furthermore, the following estimate holds:

Lemma 2.1. For0< 6 <7 andz = (z1, -+ ,74+1) € S%,
d+1
(2.17) / 1) ~ 0 T s+ 0,
c(x, =1

where the constant of equivalence depends only on d and k.

We refer to the remarkable paper [12] of Mastroianni and Totik for various poly-
nomial inequalities with doubling weights.
The Jacobi polynomials Py(La”B ) are orthogonal with respect to the weight

w @A () == (1 — )2 (1 + )7, te[-1,1].
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We will need the following estimate from [I7, p. 169]:

Lemma 2.2. For a > 8 andt € [0,1],

(2.18) |PLA) ()] < en™V2(1 =t 4 n2)~(@F1/2/2,

The estimate on [—1,0] follows from the fact that ple?) (t) =(-1)" y(bﬁ’a)(—t).

We will also need the estimate of the L? norm for the Jacobi polynomials ([I7,
p. 391]: for a, B, u > —1 and p > 0,

ap—2pu—2

1 n y D >p04,u;
P 2+ 2
(2.19) / ‘pT(La,m(t)} (1—t)"dt ~{n~%logn, p =Py, Pay = .
0 p 1
5, P < Paus 2

Recall that |k| = k1 + -+ -+ Kkg41 and Vj is defined in (Z2)). The following lemma
was proved in [8, Theorem 3.1].

Lemma 2.3. Assume o > max{g, || — %} Then for x,y € S%,

d+1

(2.20) ‘/ ) P (@yyity + .+ zagayaratars) [ +4) (1 —£5)~ dt
[—1,1]d+1 =1

d+1

< Cna—Z\fﬂHj:l

(lzjy;| + n7 Iz = gll +n72) 7"
(1 +nd(z, )+~

where and throughout, Z = (|z1|, ..., |za+1|) for z = (21, -+ ,2z441) € S<.

b

This lemma plays an essential role in the proof of a sharp pointwise estimate for
the kernel K2 (h2; f) in [8]. For the present paper we will only need the pointwise
estimate for P,(h2;x,y):

Lemma 2.4. Let z,y € S¢. Then
d+1 s - o\
I1;5 (g +n7 T — gl +n2) 7"
n= @77 g+ n @072

The kernel P, (W) can be derived from ([Z.21)) and will not be needed. We will
need, however, the estimate for the kernel P, (W), which is also proved in [§].

(2.21) |Pa(hi;z,y)| < ¢

Lemma 2.5. Forz = (v1,...,24) € T% and y = (y1,...,yq) € T?,
d+1 -1 —2\—Kj
(e ¢l )
(2.22) BTy < CH] 1 (VZ7; 1€ =<l ) ’
: n @I~ ¢+ n D07
where & := (/Z1, -+, /Td, /Tdr1), C = (U1, -+ /Yd> /Y1) With xap1 = 1|z

and Yar1 =1 —y|.

3. MAIN RESULTS

3.1. h-harmonic expansions. For h,; defined in (I2]), we denote the L? norm of

LP(h2;8) by ||+ lli.p,
1/p
£y = (o [ 11 0P )01))
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for 1 < p < oo and with the usual understanding that it is the uniform norm on S¢
when p = co. Recall that

Ok 1= % + K| — Kmin  With  Kpin := min k.
1<j<d+1

Our main results on the Cesaro summation of h-harmonic expansions are the
following two theorems:

Theorem 3.1. Suppose that f € LP(h?;5%), 1 < p < oo, \% — % > m and

(3.1) § > 0,(p) := max{(20, + 1)|% — 3 - 5,0}
Then SS(h2; f) converges to f in LP(h%;S9) and

sup (1S9 (h%; )llep <l f]
neN

K,p*

Theorem 3.2. Assume 1 < p < oo and 0 < § < 04(p). Then there ezists a
function f € LP(h2;8%) such that S (h2%; f) diverges in LP(h%;S%).

For k =0, h(z) = 1 and the spherical h-harmonic becomes the ordinary spher-
ical harmonics. Hence Theorem [3.1]is the complete analogue of the Sogge theorem,
while Theorem is the analogue of [3, Theorem 5.2] for spherical harmonics.

For the projection operator proj,(h?; f) we have the following theorem, which
is a complete analogue of a theorem due to Sogge [14] for spherical harmonics.

Theorem 3.3. Let d > 2 and n € N. Then

(i) for1<p< 2oetD

[proj, (b /)], p < en® P f s

with §x(p) given in BI);
(ii) for 275 <p<2,

. 11
||pr0-]n(hi; f)Hn,Q < cnok(p 2)“][”&?'
Furthermore, the estimate (i) is sharp in terms of the order of n.

The estimate in (ii) is sharp if K = 0 as shown in [I4]. We expect that it is also
sharp for k # 0 but could not prove it at this moment. For further discussion on
this point, see Remark [5.] in Section 5.

For the spherical harmonics, the above theorem is enough for the proof of the
boundedness of the Cesaro means. (See [3] and [I5].) For h-harmonics, however, a
stronger result is needed since 6, (p) > 0(p) := max{d|L — 1| — 3,0}

Theorem 3.4. Suppose that 1 < p < 20‘7:—;"22 and that f is supported in a spherical

cap c(w,0) with 6 € (n=', 7] and © € S. Then

[proj, (h2; £)|],., < en® g1+

/ h2(x) dw(x)] 1 1li.p-
(w,0)

The above theorems on the projection operators will be proved in Section 5 and
the theorems on Cesaro means will be proved in Section 6.
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3.2. Orthogonal expansions on the ball and on the simplex. Let Q% stand
for either B? or T¢ and W! stand for either W2 or W', respectively. We denote
the LP norm of LP(W<; Q%) by | - lwe ps

1/p
e = (a2 [ 172G

for 1 < p < oo and with the usual understanding that it becomes the uniform norm
on Q¢ when p = co.

Our main results on the Cesaro summation of orthogonal expansions on B¢ and
T? are the following two theorems:

Theorem 3.5. Suppose that f € LP(WS;04), 1 < p < o0, |% — % > 201+2 and
0 > 0x(p) := max{(20, + 1)|% — 3 -1 0}

Then SS (WS f) converges to f in LP(W<; Q%) and

sup |55 (Wi Hllwe p < cll flwe p-
neN

K

Theorem 3.6. Assume 1 < p < oo and 0 < § < 04(p). Then there ezists a
function f € LP(W$ Q) such that SS(WSE; f) diverges in LP (WS Q9).

For d =1 and Q = T! = [0, 1], these theorems become results for the Jacobi
polynomial expansions ([6]). For d = 1 and Q = B! = [~1, 1], these theorems be-
come results for the generalized Gegenbauer polynomial expansions with respect to
Wiy i, 0 (ZI0), which appear to be new if k1 # 0 while the case k = 0 corresponds
to the Gegenbauer polynomial expansions [2] [3]. We state the result as follows:

Corollary 3.7. Suppose that 1 < p < oo, |11; — %| > m and
d > 0(p) := max{(2max{\, u} + 1)\% -3l —3,0}
Then SS(wy u; f) converges to f in LP(wy ,.; [—1,1]) and

§
sup |15y, (wx,u5 F)llws i < €llf [l -
neN

Furthermore, the condition 6 > 6(p) is sharp.
The result analogous to Theorem [3.3] also holds for the projection operator.

Theorem 3.8. Letd > 2 and n € N. Then

(i) for1<p< 2ot

[Proj, (Wi Nllye o < en® PNl fllwe

.. 2 +1
(ii) for 225D < p <2,

1_1

Hprojn(W&f)ngg < en™( Q)Hf”WS,p'
Furthermore, the estimate in (i) is sharp.

An analogue of Theorem [3.4] also holds. We state only the one for W7 for which
we define a distance on T%,

dr(z,y) := arccos(v/T1y1 + - .. + VZa¥a + V1 — |2|/1 = |yl]),
where |z| = |z1]| + - - - + |24] for z € R?. The analogue of the spherical cap on T is
defined as cr(z,0) :={y € T : dr(z,y) < 0}.
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Theorem 3.9. Suppose 1 < p < % and f is supported in the set cr(x,6) with
0c(nt ) and x € T. Then

3

1 1
27 p
. 1
"prOJn(Wg;f)||WT , < end+P) gon(P)+3 [/ ( )W;;T(y) dy] I fllwr p-
w cp(z,0

The analogous result for B¢ holds with cr(z,6) replaced by cg(z,6) defined in

terms of dp(x,y) := arccos((z,y) + /1 — [|z[2/1 — [[y[]?).
These results will be proved in Section 7.

4. LOCAL ESTIMATE OF PROJECTION OPERATOR

The main effort in the proof of Theorem B.4] given in the next section, lies in
proving the following local estimate of the projection operator.

Theorem 4.1. Let v := % and V' := —£5. Let f be a function supported in a
spherical cap c(w,0) with § € (n=1,1/(8d)] and @ € S¢. Then
1—2

. _ok  20x+1 g
([proj, (h%s )X, ||, < enTom onss V( ) hi(x)dw(x)] 1110

Here x g denotes the characteristic function of the set E. Note the norm of the
left-hand side is taken over ¢(z, ), so that the above estimate is a local one.

Throughout this section, we shall fix the spherical cap ¢(w, #). Without loss of
generality, we may assume w = (1, ,wqt1) satisfying |oog| > 40 for 1 <k <w
and || < 46 for v < k < d+ 1. Accordingly, we define

0, ifo=d+1;

d+1
41 i
(4.1) =T S ok, dfv<dtl

i=v+1

Since 6 € (0,1/(8d)] and w € S, it follows that

. <~y <|kl— mi e
(4.2) 0 <~ <kl | Jnin K= o = 4

The proof of Theorem 1] consists of two cases, one for v < o, — dQ;I and the

other for v =0, — %, using different methods.

4.1. Proof of Theorem 1], case I: v < o, — %. The proof is long and will
be divided into several subsections.

4.1.1. Decomposition of the projection operator. Recall A\, = % + |k|. Let & €
C*°[0,00) be such that x[o,1/2)(t) < &o(t) < X[o,1)(t), and define & (t) := &o(t/4) —
&o(t). Evidently suppé; C (1/2,4) and &o(t) + Z;’il &(479%1t) = 1 whenever
t € [0,00). Define, for u € [-1,1],
n+ A
Cro(u) = ——"Cp (u)& (n?(1 —u?))
n?(1 — u?)

CnJ(U’) = By C?im(u)gl (T) ) .] = 1727 s 7Ln7
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where L,, := |log, n] + 2. By (24), proj,,(h2; f) can be decomposed as

(4.3) proj,, (h%; f) = ZYn]f, where Y, ;f = f*,Cy ;.
7=0

By the definition of the convolution, the kernel of Y, ; is Vi [C, ; ((z,-))](y).

4.1.2. Estimates of the kernels V. [Cy, j(x,-)] (y) and L™ estimate.

Definition 4.2. Given n,v € Ny, and u € R, we say a continuous function F' :
[—1,1] — R belongs to the class S} (p) if there exist functions Fj, j = 0,1,--- ,v

n [—1, 1] such that Fj(j)(t) =F(t),te[-1,1],0<j <w, and

; —p—g+j
(4.4) IFj(t)\gn*QHH(Hn 1—|t|) YL te[-1,1), j=0,1,-- .

By (2I8) and the following well-known formula [I7, (4.21.7)],
d

d—PTEC“’ﬁ) (t) = s(n+a+ s+ )P (),

it follows that c,, aP ) ¢ S?(«) for all v € Ny whenever a > (3.

(4.5)

Lemma 4.3. Assume that 6 = (61, ,0m) € R™ satisfying mini<;<m 6; > 0 and
weR. Let F € 8 (u) with v being an integer satisfying v > 2m—|—Z}n:1 0+ |p|. Let
€ be a C™ function, supported in [—8,8] and equal to a constant in a neighborhood
of 0. For p € (n=1,4], define

1—u?
G(u) := F(u)¢ e , u € [—1,1].
Then for s € [=1,1] and a = (ay,- -+ ,am) € [=1,1]™ satisfying 37", a | +|s| <1,

m B m 5 .
(4.6) /[1,1]m G(; ast; +s) 1;[ (1+1;) dt;

m
< en= 2 Plpl==2 Tl ((ay| + 0" p)~,
j=1

where |0 = 3770, 9.

Proof. Without loss of generality, we may assume that |a;| > n~lpforl1 <j<m,
since otherwise we can modify the proof by replacing s with

s+ Z ajt;.
{5:lajl<n=1p}

Let 79 € C*(R) be such that ng(t) = 1 for [t| < 3 and no(t) = 0 for [¢| > 1,
and let 11 (t) =1 —no(t). Set Bj := #‘m, j=1,---,m. Given ¢ := (1, + ,&m) €
{0,1}™, we define ¢ : [-1,1]™ — R by

1- 025
Ve(t) :=¢ (

2

1 ajt; + ) >ﬁn€]( 4')1+t)(1 tj)ajfly

P>
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where t = (¢1,- -+ , ;). We then split the integral in ([@6]) into a finite sum:
> / Z%t te)uet)di = S I
eefo,1}m 71— ec{0,1}m

Thus, it is sufficient to prove that each term J; in the above sum satisfies the desired
inequality. By symmetry and Fubini’s theorem, we need only to consider the case
when ey =---=¢,, =0and gy, 41 =--- =&, = 1 for some 0 < my; < m.

Let my and ¢ be fixed as in the last line. Fix (t1,--- ,tm,) € [-1,1]™ momen-
tarily, and write s; = z;n:ll a;t; + s. Define

¢(t):=£<1_(2j_12ajtj+s)> II m(ll; )(1+t)(1—t§)6f—1.

P j=mi+1 Y

—2
Since the support set of each n; (135) is a subset of {t; : |t;| <1— 1B;}, we can
J

use integration by parts [1] = 3770 ., ¢; times on the function F' = F‘(l‘ll‘) as in
Definition &2}, where 1 = ({41, -, €m) € N™~™1 satisfies £; > §; and [1] > p+1,

which gives

’/ 11]m—m Z a;t; +81) (t)dt‘

Jj=mi+1

0]
FEH —1,1]mm j %1:+1 Ottty pq - Oty
- 0|
S ‘aj|7£j/ ‘ﬂll( a]t +81)H 7 ‘dt

jzlﬂ:!Jrl 1,1 ,;Jrl O ittty oy - bty
Since ¢ is supported in (—8, 8), the integrand of the last integral is zero unless
(4.7) 82 >1— ‘ S anti+ 51‘

k=mi+1

m
>1— Y k] = lsal+ (1= [t5)las] > lag|(1 = [t5]),

k=my+1
for all mi+1 < j < m; that is, |;J| < 8(1—ltj]) "t for j = my+1, -+, m. Also, recall
that £ is constant near 0. Hence, taking the k-th partial derivative with respect to
tj, the & part of ¢ is bounded by ¢(1 — tj)’k. Also bounded is the same derivative
of the 1, part of ¢ since Bj_1 < (1 —#5)~" in the support of 7;. Consequently, by
the Lebnitz rule, we conclude

ol m
| <o 1L o

j=mi+1

in the support of the integrand. Next, since p > n~! and 1| > p+ 1, [@1) together
with (£4]) implies

m
_1_
’Fm( > aktk+31)‘§0n 21

k=my+1

pHm 2t
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It follows that

/[—1,1]7"7"1
m 1,2

< Cn*%*\upfﬂféﬂl\ H / ! (1— tj)‘Sj*fj*l dt;
j=mi+170

oM g1

dt
Myl Ofmt,,

YD SRR [

j=mi+1

m
_1_ 1 6, —4;
< 3= ,—p—5+1] I | Boi %
scn P '

j=mi+1
m
Sl | (T
j=mi+1
where o = 37" . 9;. Thus, since
1=t s
2\8;—1
ve(®) =00 [Tm (52 )0+ -,
j=1
—¢?
and 79 (13:]) is supported in {t; : 1—B; < |¢;| < 1}, integrating with respect to

t1,-+ ,tm, over [—1,1]™ yields

J. < /
[71’1]7”'1

i} 1—t2
< [0 ( 5 J) (1+1t5)(1—3)%tat;
J

F(Y ajty+5)o(t) dtyy i1 - dt
/[1,1]m—m1 (; 773 ) (t) mi+1 m

=1
m mi
—1i_ -1 5 §:i—1
<ottt ] ol [ (1 )ty
Jj=mi+1 j=1 1-B;<|t;|<1
m
1 1 .
< en 4195153 ] o, 5,
j=1
where we have used |a;|% < 1 in the second step. This completes the proof. O

Using the relation between the Gegenbauer and the Jacobi polynomials, we have
G VS V) 1—u?
Cnj(u) = an Py 277 2 (u)g (W ;
_ )\.+l . (AN_%7)\N_%)
where £ = &; or &, and |a,| < en?+T2. Hence, using the fact that ¢, . Pn
€ 8Y(Ax — 3) for all v € N, Lemma 3 has the following corollary.

Corollary 4.4. Forz,y € S and j =1,2,...,L,,

d+1
Vi [ Co (e D] )] < en? 12D T (] +2m2) ™

i=1




3202 FENG DAI AND YUAN XU

Recall that c(co, ) is a fixed spherical cap, § € [n~!, 7] and v = 74, is defined in
([@1). We are now in a position to prove the following L estimate:

Lemma 4.5. If f is supported in c(w,0), then
d—1 -1

sup (Vo ()(a)] < en 14272 0CT 0050 [ R0 den(a)]
z€c(w,h) c(w,0)

Proof. Note that if € ¢(w,0), then |z, — w;| < ||z — w| < d(z,w) < 6 so that
31| < |ai] < Blomy| for 1 < i < w, and |a;| < 56 for v+ 1 < i < d+ 1. It follows
from Corollary 4] that, for any z,y € ¢(w,0),

v d+1
Vi {Cn,j(@ww (y)’ < end=127 9@ D2 ey 2% [ n2eo2—dm
=1

1=v+1

d+1
< cnd_12_j(%+7)(n9)27 H(|wz| 1)

i=1

de1 —1
< cnd_12_](d7+7)(n9)276‘d [/ h2(z) dw(z)} )

a &(w,0)

where the last step follows from the relation (ZI7). This implies that

swp Vas(N@I swp [ @IV Gl )] ) 20) dotr)
z€c(w,h) zec(w,0) Jc(w,0)
(d—1 -1
< cnd—l+2’)’2*](7+7)92’7+d {/ hi(.’L‘) dw(m)} Hf”n,la
c(w,0)
which is the desired inequality. O

4.1.3. L? estimates. We prove the following estimate:

Lemma 4.6. For any f € L*(h%;S%),

¥Yni (Dlle2 < en™ 27| fllx2.

Proof. For simplicity, we shall write £; = & for j > 1. Also let A = X, in this
proof. From (ZI) and the definition of Y}, ; in (&3)), it follows that each Y}, ; is a
multiplier operator,

Yo (f) =D mn (k) projy(h: f),
k=0

where the equality is understood in a distributional sense, and

2

T . 2
t
mp (k) = cn,k/o C’,i‘(cost)C,?(cost)gj (”4jl_r11 ) sin ¢ dt

with |, | < enk=2**1. Hence, it is enough to prove

(4.8) sup |my, j (k)| < en=127.
k
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If k> 2, then using the fact that |(sin #)*C; (cos8)| < ecn*~1, a straightforward
computation gives

T 2 .2
t
1005 (K)] < [ / [CA(cos )G (cost)g; (” = )\sm”tdt
0

451
s
< C/
0

n?sin?t 27
& <4]71> dt < c
where the last step follows easily using the support of &;.
For k < %, we shall use the following formula (cf. [I, p. 319, Theorem 6.8.2]):
min{k,n}

i=0

where
(4 14 A= 20) )iV Vi (2N )i (k + 1 — 20)!
(k+n+X—dil(k—i)l(n — ) (MNetn-i (2N k4n-20
For k < n/4, it is easy to see that
(i, ko) ~ <(i + D(min{k,np =i+ )(k+n—i+ 1))*1
k4+n—2i+1
(4.10) ~ DM E - )AL

a(i, k,n) =

Consequently, it follows that for k < n/4,

k
[, ()] < enk ™Y (i 4 1)A1

i=0
™ 2 12
t
x (k—1i+ 1)’\_1‘/0 Cpynai(cost)E; <n4jml ) sin”tdt‘
1 2 2
A+l A—2A-2) 0 (A=), 21 ‘
<ot [P s (o e
Then using the estimate (2.I8]) we obtain
Mn0(k) < cn”‘/ (1—1|s)* 2ds<en .
1—|s|<en—2

If j > 1, then for all ¢ € N, it follows that

d@ 2 1— 2 i 9J 2A—1-2¢
w <£1 <n (4]‘_15 )> (1 - 82))\ 2)‘ S c <n> )

since 1 —s2 ~ (%)2 in the support of £1; consequently, we obtain by integration by
parts, (£5) and [2I]) that
M, (k) < en*tat

1 0 2 2
A—3—t2-1-0 d_ n?(1—s?) TN }
% 3n/4r§nyg}£5n/4}/1Pm+e (s) ds? & 451 (1-s7)""2)ds

< 21 A=)9ip—1 < c29n 1

upon choosing ¢ > X, Thus, in both cases, we get the desired estimate. ([
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4.1.4. Proof of Theorem II] case I: v < o,, — “5t. Recall v = % We set, in
this subsection,

A= [ @ dow).
(,0)
Recall the decomposition ([@3]). For a generic f, we set

Tojf = Yo i (fXe(w,0))Xe(,0)5 0<j< Ly

Clearly, if f is supported in c¢(w, ) and = € ¢(w, ), then T, ; f(x) = Y, ; f(z).
Using Lemmas and [£.6] we have

_ _s(d=1 _
(4.11) [ Tj flloe < en®Ta=127 3 FNGTAA=Y £y )Lt
1T fllez < en™ 27| fXe(m.0)lln.2-

2420, )

Hence, by the Riesz-Thorin convexity theorem, we obtain (recall v = % Tor

_ (4 (d+1 1 2y+d _2
(412) Tl < en” 20 ORI () 2 AE 1
On the other hand, using (Z.I1), Holder’s inequality and ([2I7), we obtain

_ 1 i d=1 _ 1
T Fllar < 1T fllae A < en® 4123 (540024 A3 fy ol

(4.13) < en 127 ) () A £

Now assume that f is supported in ¢(w, #) and ¥ <#< ZJTO for some 1 <
jo < L,. Using ([£3) and Minkowski’s inequality, we have

2jo Ly
pr0j (025 Xt le < N Tsflber + S Tl =5 S + 5o
Jj=0 Jj=2jo+1

For the first sum X7, we use ([£12) to obtain

2jo
B1 < o (nf) A | e, Yo 2O D)
j=0
205+1

S cnlig,{ 9 or+1 Al_% ||f||l€,l/7

since 7 < 0y, — ‘12;1 readily implies that 1 — (% +7)=2L= > 0. For the second sum

ox+1
Y5, we use ([AI3]) to obtain

Yy < Cnfl(ne)ZerdAlf%Hmey Z ij(d—;lﬂ)
i=2jo+1

_ _ 2 _ 20,5+1 2
<en™ (mO) A fllkw < enTH(nf) T AT fle

= enT 5w 0T AL flle,

where in the third inequality we have used the fact that nf > 1.

Putting the above together proves Theorem [Tl in the case v < o, — ‘12;1. (]
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4.2. Proof of Theorem H.1], case 2: v = o, — %=1, Recall that |ow;| > 46 for

1<j<wu, |wj| <40 forv+1<j<d+1,and 7y =5 ZZ?+11)+1KJ In this case,
either v = 1 and |w1| = maxi<j<q+1 o] > \/ﬁ; orv>2and K1 = -+ = Ky = 0.

Therefore, by (2.17), we have

[ m2@)dota) ~ 0f(] fmy )02 ~ g2
c(w,0)

j=1
Hence, Theorem 1] in this case is equivalent to the following proposition:

Proposition 4.7. Let f be supported in c(w,0) with @ € (n=1,1/(8d)] and let

20,42 /. UV
s and v' := ;*5. Then

V= 1

||proj,, (hZ; f)Xc(w,e)H,ﬂ),, < enT50 || flw.

To prove Proposition 7], we use the method of analytic interpolation [16]. For
z € C, define

(A1) Pifle) = (e G)(w) = an [ FOVa ]G )] w)h ) doty)

for z € S¢, where
n -+ A

on—(ox+1)z
2

(4.15) GZ(t) = (0, +1)(1 — 2) ROM(t) (1 — 12 +n?)

K

From (24), it readily follows that

Patr f = proj, (hZ; f).

For the rest of this subsection, we shall use ¢, to denote a general constant satisfying
ler| < (14 |7])¢ for some inessential positive number .

4.2.1. Estimate for z =14 1ir.
Lemma 4.8. Fort € R,
IPa fllez < erllfllez-
Proof. From ([@I4), (£I5) and [23), it follows that
projy,(h; Py "7 f) = Ju(k) proju(his ), k=0,1,---,
where

(k) == O(1)nk =2 =F1 ’/ C (cost) O (cost)(sin? £ 4+ n2) "2+ (sin t) > dt

and 7/ = — 2t

7. Therefore, it is sufficient to prove
(4.16) [Jn(B)| < c¢ry Vk,n € N.
For k < %, (&I6) can be shown as in the proof of Lemma In fact, using

(#9) and (EI0), we obtain

[T (k)| < c|r|n?=+3

-3) 2 —2\— 1 4ir’ 2\ A — =
1—5s"+ 2 1-— T2 (s,
3n/4r<nna£§5n/4’/ (8)( i " ) ( ° ) i
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which is controlled by

1-n=2

Aut3—L Ae—3—A—35-0)
w2 Pm+€ (8)

cr+cermn max /
3n/4<m<5n/4 ) _q14p-2
X d—z ((1 — 52+ n*2)*%+”/(1 — 52)’\”’%) ’ ds
dst

<c

using integration by parts £ > A, times. This proves ([I6) for k£ < 7.

For k > %, (@I6) can be established exactly as in [14, pp. 54-55] (see also

[18, pp. 76-81]). For completeness, we sketch the proof as follows. Since ij\ (t) =
1 1 .
O(1)* 3 P22 (1) and PP (<1) = (~1)7 P (1), we can write

4n~1 5
To(k) = O(1)k s+ Ephetd [/ +/ }P,g*“*%’“*?(cost)
0 4n—1
X P,(L)‘”_%’/\“_%) (cost)(sin®t +n~2) "2 (sin )= dt
=: ml(k) + ng(k‘)

Since |Pj(a’a)(t)\ < ¢j“, a straightforward calculation shows that |J,, 1(k)| < ¢,. To
estimate Jp 2(k), we need the asymptotics of the Jacobi polynomials as given in
[T, p. 198],

Pj(a’ﬁ)(cost) — 3573 (sin L) "7 3 (cos L) P72 [cos(Nyt + 7a) + O(1) (jsint) 1]

for j7' <t <m—j ', where N; = j + %‘M and 7, = —Z (o + 3). Applying this
asymptotic formula with a = 3 = A\, —1/2, we obtain, for £ > % and dn~l <t < R

k_’\“+%n)‘”+%P,§)\”_%’/\“_%)(cost) y(z)\”_%’/\“_%)(cost)(sint)2’\“
1
=0(1) [cos((k —n)t) + cos((k +n+ 2X\.)t — A,ﬂr)} +0 (E)

using the cosine addition formula. Also, note that

1 ER R 2,3 1 gl
_ =t 12T Lo+ 0 (A3, anTl<t< =,
(sin2t+n*2> ®) ( ) - T2

It follows that
El .
| Jn,2()| < ¢ + ¢; sup 27’/ LT ikt dt’
4n—1
< c; + crsup

LeR
b . -/
/ e’Lt dtZz‘r
a<b'Ja

This proves the desired inequality (I8]) for &k > 7. O

<e;r.

4.2.2. Estimate for z = irt.
Lemma 4.9. If 7 € R and [ is supported in c(w,0), then

sup [P f(2)| < exn”| fll1,n-
z€c(w,h)
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Proof. Since f is supported in ¢(w, #), we have

sip [PT(F)(@)] < sup /( IV (67 )] )] 220) deto)

z€c(w,0) z€c(w,h)

<Nl sup |Vie [GY ({2, )] ()]

z,y€c(w,0)
Thus, it is sufficient to prove
(4.17) Vi [G7 ({2, )] ()] < ern= for all z,y € c(w, 0).

We note that ([fIT) is trivial when kmyi, = 0 since in this case |G [|o < c,ntr =
c-n%=. So we shall assume Ky, > 0 for the rest of the proof.
To prove [@IT), we claim that it is enough to prove that

1
(4.18) ‘/lGinT(at—l—s)(l — 211 4ty de| < eonee,

whenever |a| > €4 > 0, |a| + |s| < 1, § > Kmin, where ¢, is independent of s.

To see this, let z,y € c(w,f) and without loss of generality, assume w; =
maxi<j<dt+1 |@;|. Then wy > 1/v/1 + d, which implies that |z1|, |y1| > 1/vVd+1—
0 >1/v/d+1—1/(8d) > 0, so that |z1y1| > €4 > 0. Thus, invoking (£I8) with
a=1x1y1,0 =K1 and s = Zj:; tjx;y; gives

1 d+1
[ Gr(Xmmits) - 8y 1+ ) dn| < eon.
1 -
j=1

The desired inequality (£I7) then follows by the Fubini theorem and the integral
representation of V; in (2:2). This proves the claim.
For the proof of (£I8), by symmetry, it is sufficient to prove

1
(4.19) ‘/1 G (at + s)(1 — t)°7E(t) dt| < c,n",

where ¢ is a C° function supported in [—3, 1], whenever |a| > 4 > 0, |a| + |s] < 1
and 0 > Kmin-

Let 1o € C*°(R) be such that x;
Set, in this subsection,

117 <o < X[-1,1), and let ny(2) == 1 = no(t).

B n~t+/1—la+ s
= ™ .
We then split the integral in (£I9) into a sum Iy(a, s) + I1(a, s) with
1
: 1-1¢
I(a,s) = / G (at + 9y (T2D) (1 -0 ey, j=0.1.
. B

It is easy to verify that 1 + ny/1—|at + s| ~ 1 + ny/1 — |a+ s| whenever t €

[1 — B,1] N [—1,1]. Therefore, for 1 — B <t < 1, using (ZI8)),

|GinT(at +35)| < an*‘“(n_l ++/1—Jat + 5|)_’\“+‘7"” < cn%s BT min

which implies that

1
iT 5— O PO—Kmin Or
|Io(a,s)|§c/ G (at + 5)|(1 — )1 dt < en? BS—Rmm < eps.

max{1-B,— 3
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To estimate I (a, s), we write
-1

G (at + sy (S 1) (L 0770 = e PO P a1 ),

1
where |¢,| < ¢,n*+t2 and

Zn _Trtlis (1—t
1

o(t):=(1—(at+s)+n"2)7F 2 7)5(15)(1 — g,

Recall |a| > €4 > 0. Using integration by parts ¢ times gives

1
IIu(a, 8)] < et i /
—1

If -1 <t <1-B/2, then 1—|at+s| > 1—|a|—|s|+(1—|t|)|a|] > c¢(1—t) > ¢B > cn2,
which implies, in particular, (1 — (at+ s)? +n_2)_1 < ¢(1 —t)~t. Since ¢ is
supported in (—%,1 — £), which gives B! < (1 — )7, it follows from Leibniz’
rule that

_1_ .
P a4 9)| 100 1) dt.

1O t)] < er (1 — |at + ) F (1 — )41
Therefore, choosing ¢ > 2§ and recalling that § > Kmin, we have by (28] that

1—-B
2 o+t
2

I(a,5)| gcTnA»—ff/ (1—|at+3|)

(L)

[

A—L lal ontl Am o 51y
<emn ”_/ (I-la+s|4+u) 2 “2u " "“du.

Bla|
2

Using the fact that (1 —|a + s| +uw)* < ¢((1 — |a + s|)® + u®) we break the last
integral into a sum J; + Jo, where
J1 ScTn)"‘_e/ (1- |a+s\)ﬂ#_%u5_l_édu

Bla]
2

S CTn)\N_e(l _ |CL + s|)aK2+Z—AT"B§—K S CTn)\N_enK_é(nB)éJro-N_)\N

= cTn)‘m_(s(nB)(s_Kmin S CTTL>‘“_6 S CT,’,LO'k

and

oo
o+4£ A o —4 A
Jo < cTn’\“_e/ w0 du < epnM BT T

Bla|

Fmin—*¢

2
= c;n* 0 (n?B) T (nB)? T Fmin < e M0 < epnfn.

Putting the above together, we obtain the desired estimate [@I9) and complete
the proof of Lemma O

4.2.3. Proof of Proposition .7l Define

Tzf = nU“(Zil)Pi(ch(w’G))Xc(wﬁ)7 0 < Rz < 1.
By Lemmas and .8 we have

1T fllez < erllfllne and (T flloo < crllfllm-

These allow us to apply Stein’s interpolation theorem [I6], p. 205] to the analytic
family of operators 7%, which yields

IT 55 fllnar < el flln-
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Consequently, using the fact that

T1+2” f =n" THox ,Pnl+an (ch(wﬁ))Xc(w,G) =n o pI‘Ojn(hi; ch(w,G))Xc(wﬁ)v
we have proved Proposition (4.7 O

5. BOUNDEDNESS OF PROJECTION OPERATOR

The objective of this section is to prove Theorems and [3.4

5.1. Proof of Theorem [B.4l Assume that f is supported in a spherical cap
¢(w, ). Without loss of generality, we may assume 6 < 1/(8d), since otherwise
we can decompose f as a finite sum of functions supported on a family of spherical
caps of radius < 1/(8d).

We start with the case p = 1. By the definition of the projection operator, it
follows from the integral version of the Minkowski inequality and orthogonality that

1/2
. 2
Iroin 2 ez < s ([P0 ) i) dote) 1

y€ec(w,l

) 1/2
=( s PahEwy) e
yEC(w,G)

Using the pointwise estimate of the kernel in (221)) and the fact that nf > 1, we
then obtain

d+1
. d—1 1N — e
1proj, (h2; Allez < ens sup [[ (sl + 0" )1 fllan
yEc(w,H)jZI
d—1 d—1 d+1
<en'= (m0) = sup  [[(ysl+60) " fllan
vee(=.0) j1

W=

< cnregeet /( 1) ) 1l

where the last step follows from (ZI7). This proves Theorem B4 for p = 1.
Next, we use Holder’s inequality and Theorem [£1] to obtain

Iproj, (hizs £z 2 = / F(y) proj, (b )(y)hi(y) dw(y)
c(w,0)

1
o7

<l (f_ TProia (0250 W) i)

20,41

o 1-3
<ansio R [ m@ao@)] IR,
c(w,0) ’

1 _ _ 20,12
which proves Theorem [B.4] for p = v = et

Finally, Theorem [3.4] for 1 < p < v follows by applying the Riesz-Thorin con-
vexity theorem to the linear operator g — proj,, (h?; X e(w,0))- O

5.2. Proof of Theorem[3.3l TheoremB.3|(i) follows directly by invoking Theorem
@1 with # = 7. Theorem (ii) follows from the Riesz-Thorin convexity theorem
applied to the boundedness of f + proj, (h2; f) in (2,2) and in (v, 2).
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We now prove that the estimates are sharp. We start with a duality result whose
proof is standard:

Lemma 5.1. Assume 1 <p<2<qg<oo and ]% + % = 1. Then the following are
equivalent:

(i) [[proj,, (his F)llk2 < Allfllkp:
(i) [l proj, (hZ; Hllkg < Allfllk,2-

To prove the sharpness of the estimates, we can assume without loss of generality
that Kmin = k1. For the case in Theorem B3] (i) we define

fu(x) := Py (h2;x,e), e=(1,0,0,...,0).

Since f, € HET(h2), we have

1/q
01030 (125 £l = U fulla = ( [ 120252 ) o0))

Thus, it is sufficient to show that, for n sufficiently large,

20,541

(5.1) 1 fallog ~ 0755 | fullee  for g > 22t

Indeed, setting p = ¢/(¢ — 1) and using Lemma 5.1l (5.I]) shows that

. _20k+1 2041 (;,Lﬂ
1 pr0dn (B2 fu)llwz ~ €n® 25 fullap = enC7 O G E50) 11,

which proves the sharpness of (i).

Recall that C,(ﬁ’” )(t) denotes the generalized Gegenbauer polynomial. It is con-
nected to C by an integral formula, which implies by (L5) that

n+ A\
Ak

Py(hsw,e) = O (a1).

Hence, using (ZTIT)), in terms of Jacobi polynomials we have

(5.2) Pon(h2;z,€) = O(l)na~+%Péok—%,m—%)@x? —1).

Since this is a function that only depends on x1, a standard change of variables
leads to

T 11 :
| fanllg ~ n7=* 2 (/ T 2)(2cos291)‘f|cos9|2”1(sine)2"~d0>
0

) 1 (ond i) ) ) 1/q
~nonts (/ |Pn KT 2 (t>|qw(0k—§,ﬁ1—§)(t>dt>
-1
20441
~ 7T T
where in the last step we have used (2.I9)) and the condition ¢ > 2(oy + 1)/0, >
(201, +1) /0y to conclude that the integral on [0, 1] has the stated estimate, whereas
the integral over [—1, 0], using pl?) (t) = P,(Lﬁ’a)(ft), has an order dominated by
the integral on [0,1]. For ¢ = 2, using (5.2)), we get

1
| F2nlln2 = (Pan(hig e, €)) * ~ 7.

Together, these two relations establish (51) for even n. The proof for odd n is
similar. (]
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Remark 5.1. For the ordinary spherical harmonics, the sharpness of part (ii) in
Theorem B3] was proved in [14] with the help of the function (z; + iz3)™. For
h-harmonics, it is then natural to consider the function

F(x) = Vi[(x1 + iz2)"], z e RY,

where V,, is the intertwining operator associated with h2 and Z¢. Since the Dunkl
operator commutes with V;, so is the h-Laplacian, which leads to A,V [(x1 + i2z2)"]
= V.. [A(x1 + iz2)"] = 0, proving that F,(z) is an h-harmonic of degree n. Fur-
thermore, since V,; is a product form, it follows from [10, Prop. 5.6.10] that

F(r) = an(l’% + mg)n/Q

n+ 2k2 + 0, 71 (Ka+1,k1) 71

707(1@,&1) 1 )4z C ARG e
2kg + 2K (x/xl—I—xQ 2t Va? + 3

where a,, is a constant given explicitly in [10] and d,, = 2k if n is even and §,, = 0
if n is odd. This explicit formula allows us to compute the norm || F,, ||, explicitly.
For example, using [10, Lemma 3.8.9], we have immediately that

/ [P () |02 (@) deo( / [Fo ()70 25 [ 2 (1= [l #1245 s e,

where, since F,, depends only on (x1,x2), we have abused notation somewhat by
using F), () in the right-hand side as well. The above integral can then be evaluated,
by @2II)) and in polar coordinates, by using (2I9)). The result, however, does not
yield the sharpness of (ii) in Theorem B3 when x # 0.

6. BOUNDEDNESS OF CESARO MEANS

In this section we prove Theorems [B.J] and By a standard duality argument,
it suffices to prove these theorems for 1 < p < 2. We shall assume 1 < p < v :=

2;'3:'22 and § > 0, (p) for the rest of this section.

6.1. Proof of Theorem [3.31 We follow essentially the approach of [15], although
there are still several difficulties that need to be overcome.

6.1.1. Decomposition. Let oo € C°°[0,00) be such that xj0,1] < o < X[o,2], and
let (t) := po(t) — po(2t). Clearly, ¢ is a C*°-function supported in (3,2) and
satisfying >~ ; ¢(2Vt) = 1 for all ¢ > 0. Setting

y 2°(n — j)\ A
4 i J
(6.1) Shali) = (=)
we define
f_E pro-]j hkmf) U:0,17---,|_10g27lj+2.

Since ZLlogz nJ+2gp <w> =1for 0 < j < n —1, it follows that the Cesaro
means are decomposed as

llog, n]+2

(6.2) Sphisf) =Y. Snuf+ 45 pran<hH,f>

v=0
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Using Theorem and the fact that § > d,(p), we have

1 . _ . (p)—
a7l p10j, (A% fllwp < en™° | proj, (h%; f)llez < en™ P2 f ey < el fllwp-

On the other hand, using summation by parts £ > 1 times shows that
f ZAZ( )AZ ISZ 1(h2 f)

where A denotes the forward difference and A**! := AAf. Since §2’U(j) =0
whenever n — j > 5745 or n — j < 5337, it is easy to verify by the Leibniz rule that

L
2'U
(6.3) ‘N(sgw(j))] <2 (;> ., WleN 0<j<n.

Hence, choosing ¢ > )\, and using the fact that S%(h2; f) is bounded in L?(h2; S9)
forall 1 <p <ooif £ > \;, we conclude that for v =0 and 1,

n
— — /—
150 ol < en™ D58 B Dl < ellFlep-

§=0
Therefore, by ([6.2), it is sufficient to prove that
(6.4) 1550 (Dllwp < 27N fllaps v =2,---, [logyn] +2,

where ¢ is a sufficiently small positive constant depending on § and p, but inde-
pendent of n and v.

6.1.2. Estimate of the kernel of S;;v. Let

n

)=S0 o)

j=0 K

The definition shows that S;;Uf f*. D2
by

so that the kernel of SJ  f is defined

n,v?

K3 () = Vi [D3, (G, )] ).
Lemma 6.1. Let 2 < v < |logyn| + 2. Then for any given positive integer £,
K (@, y) 2 (y) < en2°E170) (14 nd(, )~
where 2 = (|z1|,- -+ , |zas1|) for z = (21, , zq41) € RITL,
Proof. We first define a sequence of functions {an v ¢(-)}72, b
an00(7) = 207+ A) S5, (3),

Un,v l(]) an,’u,l(j + 1) (>0
Y+l 22l =Y

Following the proof of Lemma 3.3 of [, pp. 413-414], we can write, for any integer
£>0,

(65) = C;{Zanvf

An v, 041 (])

I'(j+ 2\ +£)P(AN+€—%,AN—% t)
LG+ +3) 7 ’
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so that

(J+2X: +90) Artt—1 -1
K (z,y) —C;{Zanvf T_'_)VK[P]‘ (<$a>)}(y)

Note that anve(j) = 0if j+£ < (1 — 51 )n or j > (1 — 51 )n, so that the sum is
over j ~ n. Furthermore, it follows from the definition, (6.3]) and Leibniz rule that

) v i+0
(6.6) ’Alamue(j)‘ < 27Vl <;) , i, 0=0,1,--

Consequently, using the pointwise estimate of (2:20), it follows by (G.6l) that

[12) (| +ntd(z,5) +n2)—r

< en2 e t2e=1-2lx] .
‘ (x Yy | cn Z |an7’u,é(.7>| (1+nd(x7y)),\n+g,|,ﬂ|

Joon
n—jr2
2U

d+1 s
CndQv(tha)H L (lzjy;| +n7td(@,g) +n72) "%
(L + nd(z, )
< en®2" TR 2 () (14 nd(z,g)

where in the last inequality we have used the fact that

d+1

[ eyl +n7td@ g) +n7%) 7" < ch2(y)d(z, 7)),

j=1
which follows since if |y;| > 2d(z,7), then |z; — y;| < d(Z,y) < |y;]/2 so that
ly;|? < 2|xjy;|, whereas if |y;| < 2d(z, ), then |y;|? < 2(n=1d(z, 7)) nd(z, 7). This
completes the proof of Lemma [6 O

Corollary 6.2. For any v > 0 there exists an €y > 0 independent of n and v such
that

sup KD ()| B2 (y) dw(y) < c27V°.

zeS? Ay: d(z,5)>20+Vv /n}

Proof. Invoking Lemma [6.T] with £ > A\, +1
estimated is bounded by

P
fy b

1
dov(L—1-9)
c sup n“2 / p— =
zeSd {y: d(z,5)>20+V)v /n} (1 + nd(x,y))”d Al

™ e)d—l
< 21)(2—1—5) / n(n do
= C @4v /n (1 4 na)[+d7)\k71

< CQv(Zflféf(lJr'y)(Zf)\,{fl)) _ CQ*’UEO’

dw(y)

which proves the corollary. (I

6.1.3. Proof of (64). Now we are in a position to prove (6.4]). Recall that
(6.7) Sy of = > S2 () proj, (hZ; f).
(I1-27vtn<j<(1-27""1)n

Assume § > d,(p), and let v > 0 be sufficiently small so that 6 > d.(p) +
v (8(p) + 3). Set v1 =v(1+7). Let A be a maximal %—separable subset of S%;
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that is, ming4eren d(w, w’) > 2‘71 and 5% C Jy ey e, %) Define
fol@) = @)Xz @AY Alw) = Y w2 (@)
weA

Then evidently 1 < A(z) < ¢, z € 5%, |fo| < c|f], and f(z) =>4 fw(x). Using
the Minkowski inequality, we obtain

1570 (Nl < D 188 (o)l

weA

Thus, it is sufficient to show that for each @w € A, we have

(6.8) 1570 (fo) lnp < 277 fooln,p-
To this end, we denote by c¢*(w, 217! /n) the set

c*(w, M) ={ze s dz @) <2"/n}

and further define J(v,n) = {j : (1 —27"*)n < j < (1 —27v"1)n}. Using (6.1)
and orthogonality, we obtain

18,0 F=dllne = (D2 188, ()Pl prog, (ks f)I22)

j€J(v,n)
Hence, by Hélder’s inequality, Theorem B4 and (217), and (63]) with ¢ = 0,

1

(/ 158 (F=) ()P 12 (@) deo())”
c*(w,2v111 /n)
> 188G Plproj, (0 f2)I2 )

1
< C(/ vy+1 hi(x) dw(x))p
c(w,2°111 /n) j€J(v,n)

1
<O (7180, 60P) el

j€J(v,n)

< 27 (0@ FD) | £ [lep = 27750 foo |l

_1
2

Finally, using Holder’s inequality, we obtain, for x ¢ c¢*(w, 2171 /n),

1S3 = | [ Fe ) )2 ) o)
{y:d(w,y)<2v1/n}

p

_WIPIK? (2, y)|h2(y) d
< (/{y d(m)zzvl/n}lf (WP 1Ko (2, y) [ (y) w(y))

p—1
<(/ KL el ) o)
{y: d(g,2)>2°1/n}

which, together with Corollary 6.2 implies

( /Sd\c* (o) |90 (f) (@) B () dw(x))

1

_ _1 P

<t s (D o (. )2 (@) () [ ol
yesd N {a: d(z,5)>2v1 /n}

<27 fo llw.p-

Putting the above together, we deduce the desired estimate (G.8]), hence (6.4)),
and complete the proof of Theorem Bl O

B l=
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6.2. Proof of Theorem

6.2.1. Main body of the proof. For the proof of Theorem [B.I] we follow the approach
in [2], which can be traced back to [I3]. We start with the following lemma.

Lemma 6.3. If Q is a polynomial of degree n on R4, then for 1 < p < oo,
Qoo := max |Q(x)| < en'
zeS

Proof. Let S, (h?; f) denote the partial sum operator of the h-harmonic expansion.
Then S, (h%; Q) = Q. The kernel of S,,(h%; f) is

Ko (his@,y) ZPk Wiwy),  Puhiizy) =) Yi(@)Y]()
J

where {Y}; forms an orthonormal basis of HITE(R2). Tty € S? and |y| =

maxi<j<d+1Yj, then |y¢] > 1/v/d+ 1. Hence, the pointwise estimate of (Z2I])
implies that |P,(h2;x, )| < en??=. By the Cauchy-Schwarz inequality, we obtain

n

| (h2;2,y)| < ZPk (W22, 2)% Po(h2i9,9)* < ¢S k27 < en?on L,
k=0
Consequently, we conclude that

1@l = 15,02 Qllc = |l || QU (0523012 ()

Furthermore, we clearly have ||Qllcc < [|Qllcc, and the case 1 < p < oo follows
immediately from interpolation of these two cases. O

< en? Q.-

oo

Proof of Theorem B2l Our main objective is to show that

(6.9) sup [y (h%; Pllwp < el fllkp
neN
does not hold if 1 <p < % or p> %. Let
20, +1 q p1 20, +1
= an = = .
b 0. —0 « pr—1 op+1+446

It is sufficient to prove that (6:9) does not hold for p;, since it then follows from
the Riesz-Thorin convexity theorem that ([69) fails for p; < p < oo and the fact
that (6.9) fails for 1 < p < ¢; follows by duality.

Let e € S% be fixed. Define a linear functional 7 : L? + R by

TOf == SO (h%; f,e _aﬁ/ f(@)KS(h2;z,e)h? (x)dw(z).

Since this is an integral operator, a standard argument shows that
1 1
s 5
1Ty = 1K (s, €)llge —+ = =1,
p q
where ||T9]|,., = SUD| £, =1 |T2 f|. On the other hand, by Lemma 6.3 if (6.9)
holds, then we will have

I To /1 = 1S7(h%: fe)l < 157 (A% f)lln.co
< en®o VRN SD (0 )l < en®O D2 £l .
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Consequently, the above two equations show that we will have
1 1
(6.10) K2 (R2; - €)|lng < enPontD/e s 2 = =1,
P q
To complete the proof of Theorem 3.2 we show that (610 does not hold for p = p;.
For this purpose we use the explicit formula for K2 (h2;x,e) for e = e; (see, for
example, [I1]), where ey, ..., e4+1 denote the usual coordinate vectors in R4+ and

Kg(hiv L, ej) = Kg(wkn—fijﬁj; 171‘j))

where K3 (wy ,;s,t) denotes the (C,d) kernel of the generalized Gegenbauer poly-
nomials with respect to the weight function (2I0)). Hence, we have

1
/\Kg(hi;x,ej)\qhi(x)dw(x):c/ |2 (w5 1o )| Wiy o ()
Sd 1

Consequently, choosing j such that k; = kmin, we see that the proof of Theorem
follows by applying Proposition below to ¢ = 0, and p = Kpin- O

Proposition 6.4. Let w,,,, be the weight function in (ZI0) and o > p > 0. Define

1
) i= [ 5.0 "0, ()

20+1
o+1+5

Qi,ql (wa',p.? 1) 2 Qi,ql (w,LL,O'v 0) 2 Cn(20+1)ql/pl logn'

Then for 1 =

The proof of this proposition is given in the following subsection.

6.2.2. Proof of Proposition [6.4. The case of ¢ = 1 and § = o has already been
established in [, [I1]. We follow the approach in [§] and briefly sketch the proof.

Using the sufficiency part of Corollary B.7, we can follow exactly the deduction
in [I1l p. 293] to obtain

P (wmu; 1) > P° (wu,a; 0) = cn(gﬂtﬂué)m

n,q1 n,q1
Y (otutttota—1)

x/ / ORI (o) (1 — 2R s
0

-1
As a result, we see that Proposition is a consequence of the lower bound of a
double integral of the Jacobi polynomial given in the next proposition.

q1

211 — 27 2dt + O(1).

Proposition 6.5. Assume o,u0 > 0 and 0 < 6 < o+ pu. Let a = o+ p+ 9,
b=c+p—1and q = 22t Then

o+14+6 "
1
(6.11) /
0

Proof. Denote the left-hand side of (GI1]) by I, q,. First assume that 0 < p < 1.
Following the proof of [8], we can conclude that

q1

1 1 1
/P,EaJrf’bJrf)(st)(l752)”*1ds £21(1 — £2)7 24y
-1

> cn~(Wt1/2a logn.

w/

4
Ty 2 en /2 [ M ()] sin 67 d — O(1)En
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where

q1

5 /4 T—a¢ 2 4 2 p\u—1
O T
n ¢

1 (sin §)at1(cos §)b+1

and M, (¢) := K, (¢) + G, () satisfies
Kn(¢) 2 en™ ¢~ (1 +cos(2Ng +27)),  n~'<¢<e,

for a sufficiently small absolute constant ¢ > 0, where N = n + “T*b + 1 and
v=—-%(a+1~—p),and

Gu(@)| < en”l¢t 702 Tt < g <m/4

From these estimates and the fact that ¢;(c + 1+ d) = 20 + 1, it follows that

/ K@) (sin6)27d6 > en~ / | GRTREE (1 cos(2N 4 27)do

€
=cn M / ¢ (1 + cos(2N¢ + 2v))*dp > en ' log n,
n-1

where in the last step we used (1+ A)? > 14+ ¢ A for A € [—1, 1] and the fact that
fs ¢~ L cos(2Np+27v))dg < c upon using integration by parts once. Furthermore,

n—1

3 ¢20‘+q1 (,u—a'—é—Q)dd)

/ G (6)| (sin )27 dg < en— /

- n

€
— en~ @ / Al e L
n—1

Together, these estimates yield that for 0 < p < 1,

w/4
[ @) sin s = cn-ot g,

Moreover, the remainder E, 4, term can be estimated as follows:

5 /4 /4 a
En,ql < C?’Liéql/ / 9}1«71172(9 _ ¢)u71d9 (]52061(]5
n—1 ¢
5 /4
<en 2 ¢(u—0—6—2)q1+20d¢
n—1

3 1
—sn1—qi(p=1) —_ .= (kt+3)q
<en im0l — op=it)a

where in the second step, we divided the inner integral into two parts, over [¢, 2¢]
and over [2¢, /2], respectively, to derive the stated estimate.

Putting these two terms together, we conclude the proof for the case 0 < u < 1.
The case p = 1 can be derived similarly upon taking an integration by parts for
the inner integral in (G.IT). The case p > 1 reduces to the case 0 < p < 1 upon
taking integration by parts | ] times as in [§]. O
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7. PROOF OF THEOREMS ON THE BALL AND ON THE SIMPLEX

7.1. Proof of results on the unit ball. Under the mapping ¢ : z € B?

(z,v/1—||z]|?) € S¢ in &), orthogonal polynomials with respect to W,/ in (2.6))
can be deduced from h-spherical harmonics that are even in z441. Moreover, the
connection (29) shows that the (C,d) means SS(WE; f) is related to SS(h2; F) by

SSWE: fo) = S(h2; F,X), X = (2,y/1— |z]2),

where F(z,2411) := f(z) for x € B? and (z,7441) € S% Consequently, by (Z38),
Theorem with Q = B follows immediately from Theorem 3.1

The proof of Theorem follows almost exactly as that of Theorem We
have in this case ([11, pp. 287-288])

Kn(W,f;x7ej) = Kfl(wxn,ﬁjm; 1,z;), 1<j<d,
Kn(WnB7$7O) = Kfz(wkd-ph/\n*lid-;—ﬂ ||.Z‘||,0)

Hence, by (28], we can again reduce the proof of Theroem 3.8l to the lower bound
of (I)fl)q(wg)u, 1) and @i,q(wmg, 0), which follows again from Proposition

7.2. Proof of results on the simplex.

7.2.1. Projection operator. Under the mapping ¢ : x € T — (22,... ,xi) € BY,

orthogonal polynomials with respect to W on T and those with respect to W2
on B? are related. In particular, we have the connection between proj,, (WI; f) and
projs,, (WB; for)) given in (ZI5]), from which the result on the projection operators
can be readily derived.

In fact, if || proj,, (W2; Niwe p < Anllfllws,p, then by (ZI5) and 1),
103, (W,'s F)lwrp = [l o3, (W5 £) 0 ¥llwesy

1 .
= 2—dH > projy, (WF; f o, -E)H
e€Zg
< H prOjZn(WnB;fow)”WKB;p
< A2an o w”WB;p = A27l||fHWg;p7

K

WEBip

from which Theorem B8 for Q = T follows immediately from the case Q = B.
Furthermore, since the distance dr(z,y) on T¢ is related to the geodesic distance
on S¢ by

dr (W(@),6() =d(X,Y), X =(2V/I=elP), ¥ = (svVI-vP).

from (Z8) and (2I4)) it follows readily that

/CT(x,e) Wy (@)de = / hi(y)dw(y),

c(X,0)

where X = (‘/azl, /T, /1 — |:1:|> . Consequently, we conclude that Theorem
follows from Theorem 3.4
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7.2.2. Cesaro means. Since the connection (Z.I5]) relates the projection operator of
degree n for W to the projection operator of degree 2n for W2, we cannot deduce
results for the Cesaro means So (W f) from those of SS(WE; f) directly. We can,
however, follow the proof of the theorems for the h-harmonics. Below we give a
brief outline on how this will work.

Proof of Theorem with Q = T. We follow the decomposition in the subsection
6.1.1 to define

n
55 (WZL f Z§5 J) proj; ( WE. f), v=12,...,|logyn| + 2.
j=0
The same argument shows that it suffices to prove the analogue of (6.4,

(7.1) 150 (W5 Ollwrp < 27l lwryp,  v=2,..., [logan) +2.
Denote the kernel of S5 ,(WT; f) by K3 ,(WT;z,y). Then we have by ([ZI6) that

d+1
K5 (W, y) = cn/ D3 (WT522(2, 5,62 — 1) [[ (1 — 2)at,
[-1,1]e+t i=1
where
n 2 + )G+ A _11
D5 WT #) Z (25 )r (2) '(] i k)P.(/\k 272)(15).
()\ + 1)F(] + 5) J

Consequently, defining analogues of an e by

ap,0(i) = (25 +M)S5, (),
of ( ) _ an,v,@(j) . an,v,i(j + 1)
DY DS WY A VINID 'S WY D L

we can then write, again following the proof of Lemma 3.3 of [4], that

n

D5 (WTs1) Z ST+ 2X, +€)P;Ak+e——,——)()
= (j—|-/\ +3)

The estimate (6.6]) holds exactly for a,, ¢(j). Thus, to follow the proof of Lemma
[6.1 we need to estimate

d+1

(7.2) /[ L Pj(Ak—M_%’_%)(QZ(CC,y, t)2 —1) H(l _ t?)’“_ldt'

i=1

Using the fact that P\ /% (2¢2—1) can be written in terms of P\ ([I7, (4.1.5)]),
we can estimate (7.2)) again by Lemma 220l The result is

KD (W5 2,y)| [WE ()] < en2? =179 (14 nd(z, 7))
which implies that the analogue of Corollary holds; that is, for any « > 0 there
is an €9 > 0 such that

sup Ko (W5, y) W (y)dy < 2700,

zeTd /{y:dT(r,y)ZQ(lJﬂ’)’Y/n}
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In order to prove (7)), we then define A to be a maximal separate subset of T
exactly as the one we defined in Subsection 6.1.3, except with d(w, w’) replaced by
dr(z,2"). Define

F(@) = F@)X ooy @A A=Y X2

yeEA

Then the same argument shows that it suffices to show that

1550 W5 f)llwz p < 27 fyllwp-

This last inequality can be established exactly as in (68]) and there is no need to
introduce the additional set ¢*(w,0). O

Proof of Theorem 3.6l We first note that the analogue of Lemma [6.3] holds; that
is, for 1 < p < o0,

. (2Un+1)/17
1@l := max [Q(z)] < cn 1Qllwz

for any polynomial of degree n on R?. Furthermore, following the proof of Theorem
[32] it is sufficient to prove that

(7.3) IR (W5 ) g < en®o=F072, =1,

Q|

1
p
20,

+
+

where y € T is fixed, does not hold for p = p; := —5. To proceed, we then

express K2 (WT) in terms of the kernel for the Jacobi polynomlal expansions (111
p. 290])
KE (Ws,e5) = K

n

(w(z\nfnj*%,mj*%); 1,2z, — 1) . 1<j<d,
KAWE32,0) = K (w535 D;1,1 — 2a])

from which we can deduce by changing variables that
R Vs )| WE )
= c/ ‘Kﬁ <w(”\“_””_%"‘j_%); 1,t) ’q w(’\“_”f_%’”j_%)(t)dt
-1

for 1 < j <d, and also for j = d+1 if we agree that e;11 = 0. As a result, we have
reduced the problem to that of Jacobi polynomial expansions, so that the desired
result follows from [6]. O
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