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Abstract

We prove an extrapolation theorem for the nonlinear m-term approximation with respect to a system of
functions satisfying very mild conditions. This theorem allows us to prove endpoint Lp − Lq estimates in
nonlinear approximation. As a consequence, some known endpoint estimates can be deduced directly and
some new estimates are also obtained. Finally, applications of these new estimates are given to spherical
m-widths and m-term approximation of the weighted Besov classes.
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1. Introduction

In this Introduction, we shall describe our main results with a minimum of definitions. We
refer to the survey articles [4,15] for the background information on nonlinear approximation. We
also refer to the recent impressive paper [16] by Temlyakov for the motivations of the problems
considered in this paper.

Let {�j }∞j=0 be a sequence of L∞-functions on a probability space (�, F, dm). Given an integer
n�0, we put

�n =
⎧⎨⎩

n∑
j=0

cj�j : c0, c1, . . . , cn ∈ C

⎫⎬⎭ ,

� The work was supported in part by the NSERC Canada under Grant G121211001.
E-mail address: dfeng@math.ualberta.ca.

0021-9045/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2006.04.001

http://www.elsevier.com/locate/jat
mailto:dfeng@math.ualberta.ca


136 F. Dai / Journal of Approximation Theory 143 (2006) 135–149

�n =
{

n∑
k=1

ck�jk
: 0�j1 < j2 < · · · < jn, c1, c2, . . . , cn ∈ C

}
,

and define

Bn
p = {

f ∈ �n : ‖f ‖p �1
}
, 1�p�∞,

�0(f )p := ‖f ‖p, �n(f )p := inf
g∈�n

‖f − g‖p, n�1 for f ∈ Lp(�),

�n(B)p = sup
f ∈B

�n(f )p for a function class B ⊂ Lp(�).

We assume that the following condition is satisfied:
(A) There exists a sequence of linear operators Vn on L1(�) such that Vn(f ) ∈ �2n for

f ∈ L1(�), Vn(f ) = f for f ∈ �n, Vn(�v) ⊂ �v for v = 1, 2, . . . , and

sup
n

‖Vn(f )‖p �K1‖f ‖p for any f ∈ Lp(�), p = 1, ∞ (K1 > 1).

We point out that a condition similar to condition (A) was previously used in many papers
(see [1,16,15,13]).

One of our main purposes in this paper is to show the following extrapolation theorem.

Theorem 1.1. (i) For 1�r1 �r2 �p�∞ and 1�m�n,

�m(Bn
r2

)p �2K1

(
�m(B2n

r1
)p

)( 1
r2

− 1
p

)/( 1
r1

− 1
p

)

.

(ii) For 1�r < p�q �∞ and 1�m�n, we have

�m(Bn
r )q �C

(̃
�m(Bn

r )p
) p(q−r)

q(p−r)

provided that

sup
N �1

N−��0(B
N
r )q �K2 for some ��0,

and that
{̃
�j (B

N
r )p : 0�j �N < ∞}

is a sequence of positive numbers satisfying

�j (B
N
r )p � �̃j (B

N
r )p, 0�j �N < ∞

and

�̃[ j
2 ](B

2N
r )p �K3�̃j (B

N
r )p, 0�j �N < ∞ (K3 > 1),

where

C = max

{
(2�+1K1)

p
p−r K

(
p

p−r

)2

3 , K2

}
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and we define

p(q − r)

q(p − r)
=

{ p

p − r
if p < q = ∞,

1 if p = q = ∞.

Remarks. 1. As an immediate application of Theorem 1.1, let us consider the system
{�k}∞k=0 = {eikx}∞k=0 of exponential functions on the unit circle T. For this system, it had been
known for a long time (see [10]) that for 2�p < ∞ and 1�m�n,

�m(Bn
2 )p �C

√
p

( n

m

) 1
2
,

with C > 0 an absolute constant. Using this estimate, and invoking Theorem 1.1(ii) with r = 2,
p = 3 + log n

m
and q = ∞, we obtain

�m(Bn
2 )∞ �C′

(
C

√
p

( n

m

) 1
2
) p

p−2

�C′′ ( n

m

) 1
2
(

1 + log
n

m

) 1
2
, (1.1)

with C′′ > 0 an absolute constant.
2. The inequality (1.1) is a consequence of a much stronger result obtained by DeVore and

Temlyakov [5] in 1995 (see also Remark 3). Let � denote a topological space equipped with
a finite measure d� and let {�1, . . . ,�N } be a set of continuous functions on � satisfying the
following two conditions:

(i) max1� j �N ‖�j‖L∞(d�) �K1.

(ii) There exist a constant K2 and a set of points xj ∈ �, j = 1, . . . , M , such that for each
function P ∈ span{�j : 1�j �N}, we have

‖P ‖L∞(d�) �K2 max
1� j �M

|P(xj )|.

Under the above assumptions (i) and (ii), the following remarkable inequality was proved by
DeVore and Temlyakov [5, Theorem 3.1] in 1995:

�m(AN)∞ �CK1K2m
−1/2 log1/2(1 + M/m), (1.2)

where

AN =
⎧⎨⎩

N∑
j=1

c(j)�j ,

N∑
j=1

|c(j)|�1

⎫⎬⎭
and

�m(AN)∞ = sup
f ∈AN

inf
cj1 ,...,cjm∈C

1� j1<···<jm �N

∥∥∥∥∥f −
m∑

k=1

cjk
�jk

∥∥∥∥∥
L∞(d�)

.

Note that condition (A) is not assumed for the validity of (1.2). Using inequality (1.2), DeVore
and Temlyakov [5, Corollary 5.1] further proved the following general estimates:

�m(A�(Tn))∞ �
{

Cm
1
2 − 1

� log
1
2 (1 + nd/m) if 0 < ��1,

Cnd− d
� m− 1

2 log
1
2 (1 + nd/m) if 1 < ��∞,

(1.3)
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where 1�m�(2n + 1)d ,

A�(Tn) :=
⎧⎨⎩ ∑

k∈Zd ,|k|∞ �n

cke
ik·x : ‖(ck)‖�� �1

⎫⎬⎭ ,

and |k|∞ = max{|k1|, . . . , |kd |} for k = (k1, . . . , kd) ∈ Zd . Though our proof of the inequality
(1.1) is more direct, we are unable to apply Theorem 1.1 to deduce the estimates (1.3) for � < 2.
Another interesting proof of inequality (1.1) was given by Belinskii [1] in 1998.

3. The following interesting result was proved by Temlyakov [14, Theorem 4.2] in 1998: for
all 1�p < ∞ and 1�m�n,

C1n
1/p max

{
m

− 1
p , m− 1

2

}
��m(Bn

p)∞ �C2n
1/p max

{
m

− 1
p , m− 1

2

}
ln

3n

m
, (1.4)

where C1, C2 are two absolute positive constants, Bn
p, 1�p�∞ denotes the unit Lp-ball in the

space of trigonometric polynomials of degree at most n on the circle T, and �m is defined with
respect to the system {eikx}∞k=0 of exponential functions on T. We are unable to invoke Theorem
1.1 to deduce the upper estimates in (1.4) for 1�p < 2. Moreover, our method in this paper, in
general, does not yield desired lower estimates of �m.

A more general application of Theorem 1.1 will yield the following:

Theorem 1.2. Let {�j }∞j=0 be a sequence of orthonormal functions on (�, F, dm) satisfying (A)
and the following condition: for some 2 < p0 < ∞ and �, ��0,

‖�j‖p �
{

K4

(
1 + (p0 − p)−�

)
if 2�p < p0,

K5(j + 1)� if p = ∞,
j �0, (1.5)

where K4, K5 are independent of j, p, p0. Then for 2�p < q �∞ and 1�m�n,

�m(Bn
p)q

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C1

(√
q(1 + (p0 − q)−�)

) 2(q−p)
(q−2)p

( n

m

) q−p
(q−2)p

if 2 < q < p0,

C2p
1
p

0

( n

m
log2�

(
1 + n

m

)) p0(q−p)

pq(p0−2)
if p0 �q �∞ and p0 < 3 + log

n

m
,

C3

( n

m
log

(
1 + n

m

)) 1
p

if p0 �q �∞ and p0 �3 + log
n

m
,

where q−p
q−2 = q−p

q
= 1 for q = ∞, C1, C3 are independent of m, n, p, q, p0, and C2 is a constant

which is independent of m, n, p, q and which is uniformly bounded as p0 is bounded away from 2.

The point in Theorem 1.2 is that we do not need to assume supj ‖�j‖∞ < ∞. One typical
example of orthonormal functions satisfying all the conditions in Theorem 1.2 is the system
of normalized ultraspherical polynomials P

�
k (t)‖P �

k ‖−1
2 , � > 0, k ∈ Z+ (see [12] for precise

definition), where p0, �, � can be taken to be 2 + 1
� , �

2�+1 , �, respectively (for the proof of this
fact, see Section 4.2 of this paper).

We organize the paper as follows. Section 2 is devoted to the proof of Theorem 1.1. The proof
of Theorem 1.2 is given in Section 3. In Section 4, the final section, we apply Theorem 1.2 in
spherical m-widths and m-term approximation of the weighted Besov classes by the system of
ultraspherical polynomials.
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2. Proof of Theorem 1.1

For the proof of Theorem 1.1, we need the following lemmas.

Lemma 2.1. For u > 0, 1�r �p�q �∞ and f ∈ Lp(�), there is a decomposition
f = f1 + f2, such that

‖f1‖q � u
1
p

− 1
q ‖f ‖p,

‖f2‖r � u
1
p

− 1
r ‖f ‖p,

where we define 1
∞ = 0.

Lemma 2.1 can be easily obtained by setting

f1(t) =

⎧⎪⎨⎪⎩
f (t) if |f (t)|�u

1
p ‖f ‖p,

u
1
p ‖f ‖pf (t)

|f (t)| if |f (t)| > u
1
p ‖f ‖p,

and f2 = f − f1. We omit the details.

Lemma 2.2. For 1�m�n and 1�r < p�q �∞,

�m(Bn
r )q �2K1

(
�[m/2](B2n

r )q

)t

�[m/2](Bn
r )p,

where

t =
(

1

p
− 1

q

)/ (
1

r
− 1

q

)
.

Proof. For f ∈ Bn
r , there exists a T1 ∈ �[m/2] such that

‖f − T1‖p �(1 + ε)�[m/2](Bn
r )p,

where ε > 0 is a sufficiently small number. Using Lemma 2.1, we have, for u > 0,

f − T1 = f1 + f2, (2.1)

where

‖f1‖q � u
1
p

− 1
q ‖f − T1‖p �(1 + ε)u

1
p

− 1
q �[m/2](Bn

r )p,

‖f2‖r � u
1
p

− 1
r ‖f − T1‖p �(1 + ε)u

1
p

− 1
r �[m/2](Bn

r )p. (2.2)

For the function Vn(f2), there exists a T2 ∈ �[m/2] such that

‖Vn(f2) − T2‖q � (1 + ε)�[m/2](B2n
r )q‖Vn(f2)‖r

� K1(1 + ε)2u
1
p

− 1
r �[m/2](B2n

r )q�[m/2](Bn
r )p. (2.3)

Now let T = Vn(T1) + T2. Then T ∈ �m and by (2.1)–(2.3), it follows that

�m(f )q � ‖f − T ‖q = ‖Vn(f − T1) − T2‖q �‖Vn(f1)‖q + ‖Vn(f2) − T2‖q

� K1

(
(1 + ε)u

1
p

− 1
q + (1 + ε)2u

1
p

− 1
r �[m/2](B2n

r )q

)
�[m/2](Bn

r )p.
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Setting

u =
(
�[m/2](B2n

r )q

) 1
1
r − 1

q ,

and letting ε → 0, we obtain

�m(f )q �2K1

(
�[m/2](B2n

r )q

)t

�[m/2](Bn
r )p

with t = ( 1
p

− 1
q
)/( 1

r
− 1

q
). Lemma 2.2 then follows by taking supremum over f ∈ Bn

r on both
sides of this last inequality. �

Now we return to the proof of Theorem 1.1. We start with the proof of (i), which is simpler.
For f ∈ Bn

r2
and u > 0, by Lemma 2.1, there is a decomposition

f = f1 + f2 (2.4)

such that

‖f1‖r1 �u
1
r2

− 1
r1 , ‖f2‖p �u

1
r2

− 1
p .

For Vn(f1), there exists a Tm ∈ �m such that

‖Vn(f1) − Tm‖p �(1 + ε)‖Vn(f1)‖r1�m(B2n
r1

)p, (2.5)

where ε > 0 is sufficiently small. Now combining (2.4) with (2.5), we obtain

�m(f )p � ‖f − Tm‖p = ‖Vn(f1) + Vn(f2) − Tm‖p

� ‖Vn(f1) − Tm‖p + ‖Vn(f2)‖p

� K1

(
(1 + ε)u

1
r2

− 1
r1 �m(B2n

r1
)p + u

1
r2

− 1
p

)
.

Setting

u =
(
�m(B2n

r1
)p

) 1
1
r1

− 1
p

and letting ε → 0, we get

�m(f )p �2K1

(
�m(B2n

r1
)p

)( 1
r2

− 1
p

)/( 1
r1

− 1
p

)

.

Since f is an arbitrary element from Bn
r2

, the conclusion (i) then follows.
To show the conclusion (ii), we let t = ( 1

p
− 1

q
)/( 1

r
− 1

q
) and

C = max

{
(2�+1K1)

p
p−r K

(
p

p−r
)2

3 , K2

}
.

We then claim that for any integer k�0, the inequality

�m(Bn
r )q �C

(̃
�m(Bn

r )p
) 1−tk

1−t (n + 1)�tk , 1�m�n < ∞, (2.6)

holds, from which Theorem 1.1(ii) will follow by letting k → ∞.
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We prove the claim by induction on k. When k = 0, (2.6) is obvious since

�m(Bn
r )q ��0(B

n
r )q �K2(n + 1)�.

Next, assume the claim is true for some integer k�0. Then by Lemma 2.2 and this assumption,
it follows that

�m(Bn
r )q � 2K1

(
�[m/2](B2n

r )q

)t

�[m/2](Bn
r )p

� 2K1

(
C

(̃
�[m/2](B2n

r )p

) 1−tk

1−t
(n + 1)�tk

)t

�̃[m/2](B2n
r )p,

� C
2�+1K1K

1
1−t

3

C1−t
(n + 1)�tk+1 (̃

�m(Bn
r )p

) 1−tk+1
1−t

� C(n + 1)�tk+1 (̃
�m(Bn

r )p
) 1−tk+1

1−t ,

proving the claim for k + 1. This completes the proof.

3. Proof of Theorem 1.2

The proof relies on Theorem 1.1 and the following lemma.

Lemma 3.1. For 2�q < p0, � ⊂ Z+ with cardinality n, 1�m�n and f ∈ span{�k : k ∈ �},
we have

inf
cj1 ,...,cjm∈C

{j1,...,jm}⊂�

∥∥∥∥∥f −
m∑

k=1

cjk
�jk

∥∥∥∥∥
q

�C
√

qK4

(
1 + (p0 − q)−�

) ( n

m

)1/2 ‖f ‖2, (3.1)

where C > 0 is an absolute constant.

For the moment, we take this lemma for granted and proceed with the proof.
Lemma 3.1 implies that for 2�q < p0,

�m(Bn
2 )q �C

√
qK4

(
1 + (p0 − q)−�

) ( n

m

) 1
2
. (3.2)

Therefore, according to Theorem 1.1(i), it will suffice to prove

�m(Bn
2 )q

�

⎧⎪⎪⎨⎪⎪⎩
C2p

1
2
0

( n

m
log2�

(
1 + n

m

)) p0(q−2)

2q(p0−2)
if p0 �q �∞ and p0 < 3 + log

n

m
,

C3

( n

m
log

(
1 + n

m

)) 1
2

if p0 �q �∞ and p0 �3 + log
n

m
,

(3.3)

where C3 is independent of m, n, p0, q, and C2 is a constant which is independent of m, n, q and
which is uniformly bounded as p0 is bounded away from 2.

To show (3.3), we take 2 < p1 < p0 and use (3.2) and Theorem 1.1(ii) to obtain that
for p0 �q �∞,

�m(Bn
2 )q �C′

(√
p1

(
1 + (p0 − p1)

−�
) ( n

m

) 1
2
) p1(q−2)

q(p1−2)

.
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Setting

p1 =

⎧⎪⎨⎪⎩
p0 − min

{
(p0 − 2)/2,

(
1 + log

n

m

)−1
}

if p0 < 3 + log
n

m
,

2.5 + log
n

m
if p0 �3 + log

n

m
,

we deduce (3.3) by straightforward computation. The proof is then complete by assuming
Lemma 3.1.

Now we return to the proof of Lemma 3.1. For simplicity, in the proof below, we shall use the
notation |A| to denote the cardinality of a finite set A.

Proof of Lemma 3.1. Let {rj }∞j=0 be independent ±1-valued random variables with mean 0 on

some probability space (X, P ). We assume n
m

∼ 2l and f = ∑
k∈� ck�k . We then rewrite f as

f (t) = �(t, x) + T�(x)(t), (3.4)

where t ∈ �, x = (x1, . . . , xl) ∈ Xl and

�(t, x) :=
l∑

j=1

∑
k∈�

(1 − rk(x1)) . . . (1 − rk(xj−1))rk(xj )ck�k(t), (3.5)

T�(x)(t) :=
∑

k∈�(x)

(1 − rk(x1)) . . . (1 − rk(xl))ck�k(t), (3.6)

�(x) := {k ∈ � : (1 − rk(x1)) . . . (1 − rk(xl)) 	= 0}. (3.7)

Here and below we will employ the slight abuse of notation that (1−rk(x1)) . . . (1−rk(xj−1)) = 1
for j = 1.

It will be shown that there is a vector x∗ = (x∗
1 , . . . , x∗

l ) ∈ Xl such that

|�(x∗)| ∼ m (3.8)

and

‖�(·, x∗)‖q �CK4
√

q
(

1 + (p0 − q)−�
)

2l/2‖f ‖2, (3.9)

which combined with (3.4) and (3.6) will give (3.1).
To see this, first, by (3.7), it follows that

|�(x)| = 1

2l

∑
k∈�

(1 − rk(x1)) . . . (1 − rk(xl)),

and hence∫
Xl

|�(x)|P(dx1) . . . P (dxl) = n

2l
∼ m. (3.10)

Second, from (3.5), we have∫
Xl

‖�(·, x)‖qP (dx1) . . . P (dxl)

�
l∑

j=1

∫
Xj

∥∥∥∥∥∥
∑
k∈�

(1 − rk(x1)) . . . (1 − rk(xj−1))rk(xj )ck�k

∥∥∥∥∥∥
q

P (dx1) . . . P (dxj )
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�
l∑

j=1

∫
Xj−1

∥∥∥∥∥∥∥
⎛⎝∫

X

∣∣∣∣∣∣
∑
k∈�

(1 − rk(x1)) . . . (1 − rk(xj−1))rk(xj )ck�k

∣∣∣∣∣∣
q

P (dxj )

⎞⎠
1
q

∥∥∥∥∥∥∥
q

×P(dx1) . . . P (dxj−1)

�C
√

q

l∑
j=1

∫
Xj−1

∥∥∥∥∥∥∥
⎛⎝∑

k∈�

(1 − rk(x1))
2 . . . (1 − rk(xj−1))

2|ck|2|�k|2
⎞⎠

1
2

∥∥∥∥∥∥∥
q

×P(dx1) . . . P (dxj−1)

�C
√

q

l∑
j=1

∫
Xj−1

⎛⎝∑
k∈�

(1 − rk(x1))
2 . . . (1 − rk(xj−1))

2|ck|2‖�k‖2
q

⎞⎠
1
2

×P(dx1) . . . P (dxj−1),

where the second inequality follows by Fubini’s theorem and Hölder’s inequality, the third by
Khinchine’s inequality, and the last by Minkowski’s inequality. Hence, using (1.5) and integrating
with respect to x1, . . . , xl−1, we obtain∫

Xl

‖�(·, x)‖qP (dx1) . . . P (dxl)

�CK4
√

q
(

1 + (p0 − q)−�
)

×
l∑

j=1

∫
Xj−1

⎛⎝∑
k∈�

|ck|2(1 − rk(x1))
2 . . . (1 − rk(xj−1))

2

⎞⎠
1
2

P(dx1) . . . P (dxj−1)

�CK4
√

q
(

1 + (p0 − q)−�
)

2l/2‖f ‖2. (3.11)

Now combining (3.11) with (3.10), we conclude that there must be a x∗ = (x∗
1 , . . . , x∗

l ) ∈ Xl

such that both (3.8) and (3.9) hold. The proof is therefore complete. �

4. Applications

4.1. Spherical m-widths for the Sobolev classes on the unit sphere

Let Sd−1 denote the unit sphere of the d-dimensional Euclidean space Rd equipped with the
usual rotation invariant measure d�(x) and let Hk, k ∈ Z+, be the space of spherical harmonics
of degree k on Sd−1. Given r > 0, the Sobolev class Wr

p, 1�p�∞, is defined to be the class of

all functions f on Sd−1 of the form

f (x) =
∫

Sd−1
g(y)Fr(x · y) d�(y), x ∈ Sd−1, ‖g‖

Lp(Sd−1)
�1,

where

Fr(t) =
∞∑

k=1

(k(k + d − 2))−
r
2

(
k + d − 2

2

)
P

d−2
2

k (t),
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and P
d−2

2
k (t) denotes the usual ultraspherical polynomial of degree k normalized by

P
d−2

2
k (1) = �(k+d−2)

�(d−2)�(k+1)
.

For 1�q �∞ and a function class B ⊂ Lq(Sd−1), we define the spherical m-width dS
m(B, Lq)

by

dS
m(B, Lq) := inf

�∈Gm

sup
f ∈B

inf
fk∈Hk,k∈�

∥∥∥∥∥∥f −
∑
k∈�

fk

∥∥∥∥∥∥
q

,

where

Gm :=
⎧⎨⎩� ⊂ Z+ :

∑
k∈�

kd−2 �m

⎫⎬⎭ .

(kd−2 appears in the definition of Gm because of the fact that dim Hk ∼ kd−2.)
We point out that in the special case d = 2, dS

m is the well-known trigonometric m-width,
for which the orders of the Sobolev classes are completely known (see [10,9]). However, in the
higher-dimensional case, it seems that so far very few investigations on dS

m have been done. Our
result in this subsection is the following:

Theorem 4.1. For r >
d(d−1)

2 and 2�q �∞,

dS
m(Wr

1 , Lq) � m− r
d−1 + 1

2 .

The proof of Theorem 4.1 is based on Theorem 1.2 with �k(t) = ‖P
d−2

2
k ‖−1

2 P
d−2

2
k (t), and

follows the standard method (see [10,9]). The proof of the fact that the ultraspherical polynomials
satisfy the hypothesis of Theorem 1.2 will be given in Section 4.2.

4.2. Approximation of weighted Besov classes by ultraspherical polynomials

First, we state the definition of ultraspherical polynomials and show that they satisfy the hy-
pothesis of Theorem 1.2. For � > 0 which will be fixed throughout this subsection, we denote by
Lp,�, 1�p�∞, the space of all functions f on [−1, 1] with

∞ > ‖f ‖p,� :=

⎧⎪⎨⎪⎩
(∫ 1

−1 |f (t)|p(1 − t2)�− 1
2 dt

) 1
p

if 1�p < ∞,

ess sup
t∈[−1,1]

|f (t)| if p = ∞.

The ultraspherical polynomials P
�
k (t), k = 0, 1, . . . , t ∈ [−1, 1], are defined as usual via the

generating function

(1 − 2tz + z2)−� =
∞∑

k=0

P
�
k (t)zk,

where |z| < 1, |t | < 1. For simplicity, for the rest of the paper, we set

��
k (t) := P

�
k (t)

‖P �
k ‖2,�

.
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It is known that ��
k is an algebraic polynomial of degree k and {��

k }∞k=0 forms a complete or-
thonormal system for L2,�. Moreover, it follows from [12, p. 80, (4.7.1); p. 81, (4.7.15); p. 169,
(7.32.5)] that

|��
k (t)|�C(�) min

{
(k + 1)�, (1 − t2)−

�
2

}
. (4.1)

By (4.1) and a straightforward calculation, we deduce

‖��
k‖p,� �

⎧⎨⎩ C(�)(p0 − p)
− 1

p0 if 2�p < p0 := 2 + 1

�
,

C(�)(k + 1)� if p = ∞.

(4.2)

This means that condition (1.5) with p0 = 2 + 1
� , � = �

2�+1 and � = � is satisfied for ��
j ,

j = 0, 1, . . . . 1

In order to show that condition (A) in Section 1 is satisfied, we have to state some known results
on Cesàro summability of the ultraspherical expansions. For f ∈ L1,�, the Cesàro means C	

N(f )

of f of order 	 > −1 are defined as usual by

C	
N(f )(x) =

N∑
k=0

A	
N−k

A	
N

〈f, ��
k 〉��

k (x), x ∈ [−1, 1], N = 1, 2, . . . ,

where

A	
k = �(k + 	 + 1)

�(k + 1)�(	 + 1)

and throughout this subsection,

〈f, ��
k 〉 :=

∫ 1

−1
f (t)��

k (t)(1 − t2)�− 1
2 dt.

It is well known that (see [12, p. 273]) if 	 > � then for all 1�p�∞ and all f ∈ Lp,�,

sup
N∈N

‖C	
N(f )‖p �C(�, 	)‖f ‖p,�. (4.3)

Now we are in a position to show that condition (A) is satisfied for ��
j , j = 0, 1, . . . . Let


 ∈ C∞(R) be such that 
(t) = 1 for |t |�1, 0 < 
(t) < 1 for 1 < |t | < 2, and 
(t) = 0 for
|t |�2. Given f ∈ L1,�, define

Vn(f ) :=
∞∑

k=0




(
k

n

)
〈f, ��

k 〉��
k , n = 1, 2, . . . . (4.4)

1 For p�p0 = 2 + 1
� , by [12, p. 391, Exercise 91], we have

‖��
k
‖p
p,� �

{
log(k + 1) if p = p0,

(k + 1)�(p−p0) if p > p0.

Thus, supk∈N ‖��
k
‖p,� < ∞ if and only if 0 < p < p0 = 2 + 1

� .
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Let �n and �n be as defined in Section 1 with {�k} = {��
k }∞k=0. By (4.3) and a summation by

parts, we obtain

sup
n�1

‖Vn(f )‖p,� �C‖f ‖p,�, 1�p�∞, f ∈ Lp,�,

with C > 0 independent of f. On the other hand, by the definition (4.4), it is obvious that
Vn(f ) = f for f ∈ �n, and Vn(�v) ⊂ �v for v = 1, 2, . . . . Thus condition (A) in Section 1 is
satisfied. We will keep the notations Vn and 
 for the rest of this subsection.

In summary, we have shown that the hypothesis of Theorem 1.2 is satisfied for the normalized
ultraspherical polynomials ��

j , j = 0, 1, . . . .

Next, we give the definition of Besov classes. For �(x) = √
1 − x2 and an integer r > 0, the

Ditzian–Totik K-functional Kr,�(f, tr )p,� is defined by

Kr,�(f, tr )p,� := inf
{
‖f − g‖p,� + t r‖�rg(r)‖p,� : g(r−1) ∈ A.C.loc

}
,

where g(r−1) ∈ A.C.loc means that g is r −1 times differentiable and g(r−1) is absolutely continu-
ous in every [c, d] ⊂ (−1, 1). As is well known (see [7, Section 6.1]), for �� 1

2 , Kr,�(f, tr )p,� are
equivalent to the computable weighted Ditzian–Totik moduli �r

�(f, t)w,p with w =
(1 − x2)(�− 1

2 )/p. For � > 0, 1���∞ and 0 < s�∞, we define the Besov class B�
s (L�,�)

to be the class of all functions f on [−1, 1] such that

|f |B�
s (L�,�) := ∥∥t−�Kr,�(f, tr )�,�

∥∥
Ls([0,1], dt

t
)
�1,

where r = [�] + 1 and �(x) = √
1 − x2.

The Besov classes B�
s (L�,�) can be characterized in terms of ultraspherical expansions. In fact,

following the standard method, we have the following equivalence:

|f |B�
s (L�,�) ≈

∥∥∥∥{
2j�‖f − V2j (f )‖�,�

}
2j � r

∥∥∥∥
�s(Z+)

.

Our purpose in this subsection is to consider the asymptotic orders of the m-term approximation
of B�

s (L�,�) by ultraspherical polynomials. We define �m(f )p,� and �m(B)p,� as in Section 1
with {�k}∞k=0 = {��

k }∞k=0 and Lp(�) = Lp,�. Our main result can be stated as follows.

Theorem 4.2. Let 0 < s�∞, 1�p, ��∞ and let

�(p, �) :=

⎧⎪⎪⎨⎪⎪⎩
(2� + 1)(1/� − 1/p)+ if 1���p�2 or

1�p���∞,

max

{
2�

(
1

�
− 1

p

)
+ 1

2
,

2� + 1

�
− 2�

p

}
otherwise.

Then for � > �(p, �), we have

�m(B�
s (L�,�))p,� �

⎧⎪⎨⎪⎩
m

−�+(2�+1)( 1
� − 1

p
) if 1���p�2,

m−�+(2�+1)( 1
� − 1

2 ) if 1���2�p�∞,

m−� if s = ∞ and 2�p, ��∞
and

�m(B�
s (L�,�))p,� �Cm−� if 1�p���∞ and p < 2,

where C and the constants of equivalency are dependent only on �, p, �, s and �.
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It is interesting to compare the orders of �m(B�
s (L�,�))p,� with the corresponding orders of

Kolmogorov m-widths dm(B�
s (L�,�))p,� (for precise definition of Kolmogorov widths, we refer

to [11,13]). Indeed, it was shown in [3] that for � > �(p, �),

dm(B�
s (L�,�))p,� �

{
m

−�+( 1
� − 1

p
)+ if 1�p�� < ∞ or 1 < ��p�2,

m−�+( 1
� − 1

2 )+ if 1���p�∞ and p�2.

Therefore, in most cases, the orders of dm(B�
s (L�,�))p,� are significantly less than those of

�m(B�
s (L�,�))p,�. This is somewhat surprising since in the periodic case, for the usual Besov

classes and the system {eijx}∞j=0 of exponential functions, it was shown by DeVore and Temlyakov
[5] that dm and �m have the same orders as m → ∞.

Now we return to the proof of Theorem 4.2.

Proof of Theorem 4.2. The proof of upper estimates is based on Theorem 1.2 with {�k} = {��
k },

and in fact, runs along the same lines as that of Theorem 6.4 of [5]. We omit the details.
For the proof of the lower estimates, we first consider the case 1���p�2, from which the

case when 1���2�p�∞ will follow by the inequality ‖ · ‖p,� �C‖ · ‖2,�. Let

K2m,
(t) =
4m∑
k=0




(
k

2m

)
��

k (1)��
k (t).

By the known estimates for the Cesàro kernels (see [2, Theorem 2.1]), it follows that

‖K2m,
‖�,� �C(�, �)m(2�+1)(1− 1
� ).

So (
C′(�, �)

)−1
m−�+(2�+1)( 1

� −1)K2m,
 ∈ B�
s (L�,�). (4.5)

On the other hand, for any tm ∈ �m, by Nikolskii’s inequality for ultraspherical expansions, we
have

‖K2m,
 − tm‖p,� � C‖K2m,
 − V4m(tm)‖p,�

� Cm
(2�+1)( 1

2 − 1
p

)‖K2m,
 − V4m(tm)‖2,�

� Cm
(2�+1)( 1

2 − 1
p

) inf
�⊂[0,8m]
|�|�m

⎛⎜⎜⎝ ∑
k /∈�

0�k �2m

k2�

⎞⎟⎟⎠
1
2

� Cm
(2�+1)(1− 1

p
)
. (4.6)

The third inequality follows from the fact that ��
k (1) ∼ k�. Now a combination of (4.5) and (4.6)

gives

�m(B�
s (L�,�))p,� �Cm

(2�+1)(1− 1
p

)
m−�+(2�+1)( 1

� −1) = Cm
−�+(2�+1)( 1

� − 1
p

)
,

the same as desired in this case.
Next, we consider the case when 2�p���∞ and s = ∞. By the inequality ‖·‖p,� �C‖·‖2,�

and the embedding B�∞(L∞) ⊂ B�∞(L�,�), it will suffice to prove the lower estimate for � = ∞,
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p = 2 and s = ∞. To this end, we let 
 ∈ C∞(R) such that 0�
(x)�1 for x ∈ R, 
(x) = 1
for 1

4 �x� 1
2 and 
(x) = 0 for x /∈ (0, 1). We take an integer N so that m�c0N �m + 1 with c0

a sufficiently small absolute constant. We define


j (x) = 
(2Nx + j)

‖
(2N · +j)‖2,�
, j = −N + 1, −N + 2, . . . , N,

and

BN :=
⎧⎨⎩

N∑
j=−N+1

aj
j (x) : max−N+1� j �N
|aj |�1

⎫⎬⎭ .

Then {
j }Nj=−N+1 is an orthonormal system on ([−1, 1], (1 − x2)�− 1
2 dx) and therefore, by a

general result of Kashin [8, Corollary 2], it follows that

�m(BN)2,� �CN
1
2 . (4.7)

It will be shown that

CN−�− 1
2 BN ⊂ B�∞(L∞) (4.8)

with C > 0 an absolute constant, which combined with (4.7) will give the desired lower estimate:

�m(B�∞(L∞))2,� �CN−�− 1
2 N

1
2 ∼ m−�.

To show (4.8), we define

D� := (1 − t2)
d2

dt2 − (2� + 1)t
d

dt
. (4.9)

As is well known,

D�(��
k ) = −k(k + 2�)��

k , k = 0, 1, . . . .

In view of this fact, we also define (−D�)� (� > 0) in a distributional sense by

〈(−D�)�(f ), ��
k 〉 = (k(k + 2�))�〈f, ��

k 〉, k = 0, 1, . . . , for a distribution f.

Now by the definition, and in view of (4.9), one can easily verify that for f ∈ BN and an integer
�0 > 0,

‖D�0
� (f )‖∞ �CN2�0+ 1

2

and

‖f ‖∞ �CN
1
2 .

It then follows by Kolmogorov type inequality (see [6, Theorem 8.1]) that for f ∈ BN and an
integer �0 > �

2 ,

‖D
�
2
� (f )‖∞ �C‖f ‖

2�0−�
2�0∞ ‖D�0

� (f )‖ �
2�0 �CN�+ 1

2 .
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Therefore, by Jackson type inequality (see [6, Theorem 7.2]), we obtain, for f ∈ BN ,

N−�− 1
2 ‖f − V2j (f )‖∞ �C2−j�N−�− 1

2 ‖D
�
2
� (f )‖∞ �C2−j�, j = 0, 1, 2 . . . ,

and (4.8) then follows.
Finally, the case 2���p�∞ follows from the inequality ‖ · ‖p,� �C‖ · ‖�,� and what we

have just proved for 2�p = ��∞.
This completes the proof of lower estimates. �

Acknowledgments

The author would like to express his sincere gratitude to the anonymous referees for many
helpful comments. He also would like to thank Professor V.N. Temlyakov for kindly pointing out
an error in the first version of this paper.

References

[1] E.S. Belinskii, Decomposition theorems and approximation by a “floating” system of exponentials, Trans. Amer.
Math. Soc. 350 (1) (1998) 43–53.

[2] A. Bonami, J.L. Clerc, Sommes de Cesàro et multiplicateurs des dèveloppments en harmonique sphériques, Trans.
Amer. Math. Soc. 183 (1973) 223–263.

[3] F. Dai, On n-widths of weighted Besov classes, J. Math. Anal. Appl. 315(2) (2006) 711–724.
[4] R.A. DeVore, Nonlinear approximation, Acta Numer. 7 (1998) 51–150.
[5] R.A. DeVore, V.N. Temlyakov, Nonlinear approximation by trigonometric sums, J. Fourier Anal. Appl. 2 (1) (1995)

29–48.
[6] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81 (1998) 323–348.
[7] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, Berlin, 1987.
[8] B.S. Kashin, Approximation properties of complete orthonormal systems, Proc. Steklov Inst. Math. 3 (1987)

207–211 (English transl.).
[9] V.E. Maiorov, Trigonometric widths of Sobolev classes Wr

p in the space Lq , Mat. Zametki 40 (2) (1986) 161–173.
[10] Y. Makovoz, On trigonometric n-widths and their generalizations, J. Approx. Theory 41 (1984) 361–366.
[11] A. Pinkus, N-widths in Approximation Theory, Springer, New York, 1985.
[12] G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1975.
[13] V.N. Temlyakov, Approximation of Periodic Functions, in: Computational Mathematics and Analysis Series, Nova

Science Publishers, Inc., Commack, NY, 1993.
[14] V.N. Temlyakov, Greedy algorithm and m-term trigonometric approximation, Constr. Approx. 14 (4) (1998)

569–587.
[15] V.N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3 (1) (2003) 33–107.
[16] V.N. Temlyakov, Greedy-type approximation in Banach spaces and applications, Constr. Approx. 21 (2) (2005)

257–292.


