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Abstract

Rate of approximation of combinations of averages on the spheres is shown to be equivalent to
K -functionals yielding higher degree of smoothness. Results relating combinations of averages on
rims of caps of spheres are also achieved.
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1. Introduction
In a recent papgBe-Da-Di] the average on a sphere of radits R?, d >2 given by

1
Vif(x) = — fde(y), V=1 xeR? (1.1)
m(t) {(yeR:|x—y|=t}
(whereda(y) is a measure invariant under rotations abeutwas shown to satisfy an
equivalence relation with the appropridtefunctionals, that is

IVef = ey =i (1 = 8l e + 21480, k0 ) = K (. 4,10, (12)

2 2
where 1< p < oo, d >2 and4 is the Laplacian i.ed = %2 4ot %2.
1 d
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The average on the rim of the cap of the sphere
Sl (xeR!: xP=x2 4+ 4x2=1)

given by

Sof(x) = }f(y)dv(y), Spl=1, xes’? (1.3)

)
m(0) {yeSd—1:x.y=cosl

(wheredy(y) is a measure on the spt € 971 : x . y = cosf)} invariant under rotation
aboutx) was shown iffBe-Da-Di] to satisfy the equivalence relation

1505 = Fllz, sy~ inf (1 = gl 503, + 021 Al s
K(f, 4,0%,, (1.4)

where I< p<oo,d >3 and/ is the Laplace—Beltrami operator givenE)f(x) = Af(lj—l)
for x e §471,
We will show here that

2 < (2
Veef@) = 7o ) (=1 ( . .)V/zf(x) (1.5)
Gy e

satisfies for/ > 2 and 1< p < oo

Ve fC) = fOllL,rey = ir;f (||f —8llz, e+ IZZIIAZgHLP(Rd))

= Ki(f, 4,1%),, (1.6)
whered’g = A(4 1g).
We will also show that
2 & (2
Se0f(x) = —— Z(—l)’ <€ _ j> Siof(x) (1.7)

20\ 4
¢ ) Jj=1

satisfies

||SE,9f(') - f(‘)”Lp(Sa’—l)

&

. ~{
inf (17 = &l s + 03 gl s-3))
= K((fﬂ Za sz)pa (18)

where tg = 4 (4 ¢ 1g).

The main thrust of this paper is that in both (1.6) and (1.8) there is no supremum sign
on the left-hand side as was the case in previous results on combinations (see for instance
[Li-Ni, Ni-Li, Ru] ). One should note that onfyelements are needed to achiéixunctionals
whose saturation rate () (or 0(92‘)).
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2. Realization, Bernstein and Jackson results oi?
To prove (1.6) we need some preliminary results that we hope will be useful elsewhere as

well. Givensn(y) € C*°(R4), n(y) = 1fory<1andy(y) = 0 for y >2, we definen, (f)
by

(1)@ = () Feo, k>0 (2.1)
where
gx) = / g(&e 2mex g, (2.2)
R4

In what follows we will use extensively the basic properties of the multivariate Fourier
transform which are given for instance in the first two chapters of Stein and /8¢ig¢e].
Setting

G(x) = / n(0)e?™ ™ dr
Rd

and following Lemma 3.17 of Stein and We[S&-We, p. 26]we haveG € L1(R%). Hence,
using[St-We, (1.6), p. 4]itis clear that there existS g (x) € L1(R?) such that

NR())x) =Gr* f(x) for feL,R, (2.3)

Gr(x) = R‘G(Rx), G(x)=G1(x) (2.4)
and

IGrllL, = 1IGlL,- (2.5)

The Bernstein-type inequality is given in the following result.

Theorem 2.1. Supposef € L,(R%), 1< p<oc andsuppf C {|x| : |x|<R}. ThenA’f
exists inL , and

145 £1l, <CRZ| £1I, (2.6)
with C independent of R anal

Proof. We note first that when we describé&and its support, we did not imply thatitis a
function, and in fact for 2 p <oo it may be just an element & (the dual taS). However,
Gg given in (2.1) and (2.3) is i1, and using[St-We, (1.9), p. 5Jon () and G (x),
and following the argument yielding z € L1, so is4*Gr(x) where4 is the Laplacian.
Moreover,

(2 (3 o(5) = oo
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and hence
1
w145 Grlly = 14°GllLy = A©).
This implies for¢ =0, 1, ...
1

<zt 14 I, SA@I fL,-

If f € L, such that supg C {|x| : |x|<R}, ng(f) = f, and hencel‘(nz f) = A°f,
and (2.6) is satisfied withh = A(¢). O

For f € Lp(Rd) we define the rate of best approximation by

E;(f)p=inf {If —hllp: h; € Lpy(RY), supp(h,”(x)) C B,}, (2.7)

whereB; = {x : |x| <A}
We can now state and prove the Jackson-type result.

Theorem 2.2. For f € L,(R%), 1< p<oo, we have

Ex(Np<inf(1f =gl + 272 Al = Ko(f, 4,272, (2.8)

Proof. We defineR; ; ,(f) for£ =1,2,..., andb>d + 2 by

b
(Rz,i,b<f))A<x):{(l—("‘r)”) f lxl<a, 2.9)
0 otherwise.

We note that whileb>d + 2 may not be necessary, it is convenient. (Uskg, ,(f) is
also just for convenience.) The function

20\b
® _ 1@ =x[7)7, xI<1,
eb(x) { 0 otherwise

satisfied| D" @y ||, < C ¢, b) for |v| <d + 1, and hence there exists; ," (x) = @¢ p(x)
such thatGy ; (&) € L1(R%), fRd Gep(&)dE =1, and moreoveGy (&) = Gy p(pl) for
any orthogonal matriy with determinant 1p € SO (d). We now have

RicalP@ =2 [ Gea(iac=m)rapan (2.10)

We recall the definition oK, (f, 4, i‘zz)p and choosg such that
If = gallp + A4 1l y <2Ke(f, 4,272 .
Using (2.10), we have

1Res(f = 81) — (f — gD, <(C + DIIf — gall p <(C + D2K,(f. 4. 27%),.
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To estimateR ) , ,(g1) — g1, We write

R ,e0(81) — g1llp < IR7,e.6(81) — Ry ep+1(8D 1 p
IR ep+16D —RAe.+1@D I p+11RAe,p1+1(80) — &1l p
= N(A)p + (4, A)p + I3(A) .

Forgi € L,(R?Y), 1<p < oo, I3(A), — 0asA — oo. Forp = oo if A°g1 € Lo,
g1 € Co(R?), and hencdz(A4), — 0 asA — oo. To estimate (1) , we write

11,
Rien(g1) — Ryept1(g1) = 2 Ayt A (R;,e5(81))

1 1

_ i ¢
=2 a2y R;.ep(A47g1)

and hence
c _
n()p< 14°1ll, <C1Ke(f. 4,272,

To estimatel>(4, A), we write

(b+1)2¢ /A ' du
R -R = —F AR —
J.0.6+1(81) — R e.p+1(81) a2t |, 1.6,6(81) 2
and as

1A Ry en(8D N p = IR e.6(A gDl
< Cldgllp.
we have
Ch+1) 1

12(;"’ A)p < (47_52)1{ /17

14°g1ll, < C2Ko(f. A, 272,
This implies
If = Roen(Dllp<C3Ke(f. 4,472, (2.11)
and hence (2.8).
Corollary 2.3. For f € L,(RY), 1<p<o0, 2>0
Ke(f. 4,072 2 1f = Roen(Dllp + A2 N4 R0 () - (2.12)

Proof. By definition the left-hand side is bounded by the right-hand side. Using (2.11), we
have to show only tha1_2‘5||A’5Ri’g,b(f)||p is bounded by the left-hand side. We recall
that

1
e AR o (f) = (41 R 0pf — Rivpirf)

and we complete the proof observing that

IRe(f) = R oo+ 1 (D p < INR e (f) = fllp + 1L = Roep41(H) ps
which, using (2.11) fob andb + 1, yields our result. [J
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Corollary 2.4. Suppose;,(f) is defined by2.1) and R , ,(f) is given by(2.9) with
b>d + 2,then

I =m O p<CIf = Rien(lp- (2.13)

Proof. Usingn; (R,.0.5(f)) = R.e.(f), We write

If =Dl = 1f = Raes () = ni(f = Raen(H)lp
S AHIGHD 1 = Raen(Hllp

sincelln, (), <Gl fll,- Thisis, in fact, the routine de la Valleé Poussin procedure.
O

Corollary 2.5. For n;(f) given by(2.1)
Ke(f. 4,072y ~ 1f = (Dl + 27201 4,(P . (2.14)

Proof. Using the definition ofK,(f, 4, )fze)p, the inequality (2.13) and the equivalence
(2.12), we have to estimate only

272 A, Flp < 2TPA R e (POl + 22044, = Raen (D)
CKo(f, 4,272, + 272 C122 I, (f) = Roen(Dllp

<
< CoKe(f, A, 072, O

3. Strong converse inequality onR?

The main result of this section is the equivalence (1.6) given in the following theorem:

Theorem 3.1.Ford>1, £ =1,2,..., t > 0, V;f given by(1.5)and 1< p <oco we
have

IVerf = Fll,en ~inf (1f =gz, + 1 14%]L,). (3.1)
For the proof we will need several lemmas.

Lemma 3.2. For an integer? we have
¢
20 2 0
2) (—1)/ cos jf = 4° sir?® — . 3.2
(%) +2xcv ([ )eoss : 32
j=1

Proof. Writing cos j0 = 3 (¢/¢ +¢~7%) and sin§ = 1 (¢/%/? — ¢=10/2), we obtain (3.2)
by simple computation. [J

Lemma 3.3. For V, ;(f) given in(1.5)
(Ve )Nx) = me(2nt|x]) f (x) (3.3)
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and

arg) 4 [t s )
1- = —) Q- d 34
"= R (Zf)/o (s 5)"a=sd' as. G4

Proof. It is known that

(Ve )N (x) = m1 (2t |x) f(x) = m(2nt|x]) f (x)
with (see[St-We, pp. 153-154]

d _d—
m) =I(3) (3) ¥JL;2<M>

Gl ) 023
= —— cosus (1—s%) 2 ds,
r(G4Hr(z) Jo

whereJ% (u) is the Bessel function given by the above formula. We now use the definition
of Vy.((f) to obtain

me(u) = ()Xe: ( J)m(ju)

= Ft ()%12( fl (%) Z( 1)/ ( )COS]us (1—s2)Z ds.

Using Lemma 3.2, we now derive (3.4)]

Lemma3.4.ForO<u<n

0< Cluzggl—mg(u)éczuzz. (3.5
Foru>n
O0<mp(u)<vge <1 (3.6)

Proof. For0< %4 < I (u < m, 0<s<1) we have(“2)2< sir? & <(%)2, which, using
(3.4), implies (3.5) (withC1 andC> depending o and?). Foru>n

2(4 ¢ 2/3 20 -
1—me(u) > d_(12) 4 / (sm 2) (1_s2)¥ ds
0
¢
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w/nl on/3
1 . 2
= Cqy— Z f (sm £) dl
u =1 n/3 2

~a [ ee o

Lemma 3.5.Forj =0,1,2,..., andu >0

\(%)jmz<u)

Proof. As m,(u) is a linear combination ofi(ku), 1<k < ¢, it is sufficient to prove (3.7)
for ¢ = 1. Recalling the definition ofx () [St-We, p. 153] & (=% Ji (1)) = —t* Jeqa (1)
and[St-We, Lemma 3.11, p. 158\ve have our result. [

gcg,j(l%d)dzl. (3.7)

Proof of Theorem 3.1.Using Corollary 2.5 and the definition of thé-functional K, ( f,
A4, t?%) ,, we have only to show for af € L,(R?) and some fixed > 0 (ask,(f, 4,1%),
~ Ki(f, 4,a=%?"),) that

If = Ver Fllp=Call f = e fllpe (3.8)

If = Ve fllp=Cat® 140, £l (3.9)
and

a0 CF) = Veutas (Dl < Cat? 1 4%, ()l p- (3.10)

To prove (3.8) it is sufficient to show

I =1y f = T =10 )T+ Veu + VE+ VAV = Ve Dl
<Callf = Veuflp (3.11)

since, asyy, andV; , are bounded multiplier operators qm;;(Rd), we have

I =00y )T+ Ve + VE +VE VIS = Ver Dl <CsILf = Ve fllp,

wherel is the identity operator. To prove (3.11) we have to show that

(1 - n(u/a))me(u)®

P = @

is a bounded multiplier o1 (R¢) (and hence oﬂp(Rd)), or|D"®(u)| < W >0

(at least forv| <d + 1, but here that restriction does not matter). While the above is known
\
and used numerous times, we show it below to help the reade®&9rgiven by

VvV .
b(x) = / B(3)eZ dy,
Rd
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which may be considered as a Fourier transform, and following the proof of Lemma 3.17
of [St-We, p. 26] we have

A\
1@,k <C D 1D* @y ga
lo] <d+1

whichimplies the sufficiency of showing thd?’ @ (u)| < W foroo > Oandv| <d+1.
We note that fotu| <1, ®(u) = 0. For|u| >1 we use Lemma 3.5, recall that the multipliers
we have are radial, and obtain

>5("21) 1 >d+%d—g

:C(v)(l—i—lul

uﬂ¢wn<cwxl+h”

andford >2we have¥ — 3>3-3=1>0.

2 2= 2
To prove (3.9) we have to show that
20, (u
]}/(u) — u ’/I(u)
1—me(u)

is a multiplier. As(%) = 0 for [u| > 2a, we just have to check thalt% and its

derivatives are bounded fou| <2a. The boundedness qf% follows from (3.5) of

Lemma 3.4 (fou < ) asCy there satisfie€’; > 0. We follow Lemma 3.3 to observe that
1— my(z) given by

or d 20 1 20 a
1—my(z) = (2) 4 / (sin ﬁ) (1—s2)dT3 ds
0 2

EESTONED

is an analytic function which, using Lemma 3.4, has a zero of ordeat®. As 0 is an
isolated zero,  my(z) # 0 for 0 < |z| <2a for somea and hence% is analytic
there, and therefor® (1) is in C*°[0, co) as required. To estimate (3.10) we have to show
that

i = =5 ()

u?t a

is a multiplier. For this we use the fact that in (3.5) of Lemma@4< oo andmg(u)n(;—’) €
C*°[0, 0c0) as proved earlier. [

4. Combinations of averages on the sphere

Our goal is to prove the equivalence (1.8) for functions on the sphere. This result is
summarized in the following theorem.
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Theorem 4.1.For f € L,(S971),d>3, 1<p<oo, £ = 1,2,..., and0 < 0<% we
have

. ~0
inf (ILf — gll, + 02114 gll)
= Ki(f, 4,0%),, (4.1)

2

IS0,/ = flip

whereSy , f is given by(1.7) andZ is the Laplace—Beltrami operator

We cannot expect (4.1) for alas Syf = Sop_¢f, and for¢ = 1 this would imply
Ki(f, 4,07, ~ Ki(f, 4, 2n—0)?) ,,and henc&1(f, 4, (2n—0)?) | <CK1(f, 4, 0%),,
which if Cis independent of, is valid only for f = const. We will prove Theorem 4.1 in
Section 5, and this section is dedicated to the numerous lemmas needed for that proof.

Lemma 4.2. The operatorSy , f is a bounded multiplier operator
oo
So.ef(x) =) ar(k, O) P f. (4.2)
k=0

wherePy f is the projection o, = {¥ : AP = —k(k +d — 2)¥}, anday(k, 0) is given
by

ar(k. 0) = (2€> Z(— )f( )Qk<cosﬂ9> (4.3)

Whel’er(I) are the ultraspherical polynomials with= 2 normalized b)Qk(l) =1

Proof. The above is just a compilation of the known factsSgif substituted in the definition
of Sy, f. (One may consulBe-Da-Di] for details onP,(Sy /) and other details.) [

Lemma 4.3. For a,(k, 0) given by(4.3)and0 < 0< 5; we have

: C o if 0<k0<1,
Aap(k, 0)] < . : .
|47 ap( | {Cej(k_]_g)/u if k@)l,
where A%y = by, Abx = by — b, Ab = A4 y), A = 452 and j is an integer
j=0.

Proof. Using (4.3), we may appliBe-Da-Di, Lemma 3.2}vith m = 1 andr0 for 6 with
r=1,...,¢toobtain

j A
47 0P (cosr0 g{CG{/(kB) for kr>1, 44
140" (cosrb)] co’ for kro<1, (4.4)

from which (4.4) follows when we recall that féaf) ~ 1, the difference between the two
estimates can be inserted in the constant.jier0 (4.4) is contained ifSz, (7.33.6), 17Q]
O
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Lemma 4.4. For a,(k, 0) given by(4.3)and0 € [0, 5] we have

1- ag(k, 0)

0<(C1<
<1 (kQ)ZZ

<Cr<o0o for 0<kf<m (4.5)
and for anyr > 0
agtk, ) <vger <1 for kB=7>0. (4.6)

Proof. We us€[Sz, (4.9.19), p. 95{o write

[k/2]

0" (cos) = >~ ak, 2v, 2) cos(k — 2v)0, 4.7)
v=0
where (usindSz, (4.9.21) and (4.7.3)]
2 k—v—H;—l v+/1'—1
alk, 2v, 1) = ( e ) ( ! ) . (4.8)

k+22—1
(%7)
Using (4.3) and (3.2), we have

¢ [k/2]

k—2
1—au(k, 0) = @ > atk. 2. i’ = iy} (4.9)
¢ v=0
[k/2]
Fork6<mwe recallthat)” a(k, 2v, /) = 1 (settingd = 0in (4.7)) and that s#f 5" 6
v=0

<sir? &£ 0< (42, and hence the right-hand side of (4.5) follows with = (2_1/3) As
£
a(k, 2v, 1) =0,
¢ [k/4]
o k=2
1—apk,0)>—— Z alk, 2v, 2y si?t =Yg,

)% 2
[k/4]

Using Zo a(k,2v,2) > B > 0, and as fow < [£], sir?® 552 0> si?® £ 0> (4%, we
Y=
have the estimat€, > %
e
lower estimate of (4.5) and obtain-d a,(k, 6) > C17% or ay(k, ) <1 — C17%, and we
may setv; ¢ =1— C17% < 1for 0 < 1<k0. Fork0>n (regardless of) we set

ﬁ > 0. To obtain (4.6) for O< 1< 7 andkf <n we use the

4t Ck—2y N2
-k, )z~ (smT@) ok, 2v. %),

(%)
¢ ) vel®
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5~ %
wherel (k, 0) = U (0<v< &L, 4 mr<(k — 209 <3 + mn), and obtain

4
1—ap(k, 0)> (i—Z) > alk.2v, 2.
l

vel (k)

Using (4.8), we have(k, 2v, 1) > % with A = A(A) > 0 whereA (/) is independent of.

As the number of elements (k) is greater tha®Bkwith B > 0 for k > kg (ko = 10 say),

(4.6) follows fork > ko. For 1<k < ko (4.6) follows directly from (4.9) (recalt € [0, 7).
O

Remark 4.5. Since forL,(5?~1) the realization
_ op 2t
Ke(f. A,n" 222 || f = Suflla+n" 2147 S, f 12

n
with S, the L, projection on sparl J Hi holds, Lemma 4.4 yields Theorem 4.1 foe= 2.
k=0
For p # 2 we still need some work.

The following lemma (or variants thereof) was used earlier (see for ins{@ade We
state the present variant for the convenience of the reader. Régall= my1 — my,
A my = A(Aj_lmk) andAOmk = mg.

Lemma 4.6. (a) For sequences; andb; we have

J .
j J j—s s
Al (agby) = ZO (S) (A7 ag) (A b j—s). (4.10)
(b) For a sequencel; satisfyingA; > A > 0
j—1

1 j o -
A < Z (j) A5 ALY AT Ay

< C max [AATH |47 Apsl

<s<j
with € = % 2/.

Proof. We obtain the identity (4.10) fgr = 0, 1 by inspection. For high¢one proves (4.10)
by mathematical induction. Part (b) follows from the observaﬂq&Ak = 1, choosing

At = ag, Ag = b in (4.10) and usingl, > A > 0. O

Perhaps the crucial estimate needed for the proof of Theorem 4.1 is given in the following
lemma.
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Lemma 4.7. Supposé) € [0, 21, a,(k, 0) is given by(4.3)and 2 = %52. Then for any
integerj, j>1,and anyr > 0 such that for0 < k0 < t we have

1—aek, 0)

p) -7
(k(k + 22)0%)¢

‘ <Cpr (k3120 4 k=770, (4.11)

Proof. We setf; (r) = Q(A)(cosw, and using (4.3), we have

(-t 02 0z
1—apk,0) = — fi ur+ - Fuge)duy - -dupe  (4.12)
(%f) —0/2 —0/2

aSQ())(COSt) Q(z)(cos(—t)). We now sefg (x) = Q](()') (x) and write fork > 2¢

a0 = Z ¢\ (cosr) > C(s, £, i)(sint)% (cost)* 2. (4.13)

max(s—¢,0) <i <[3]
Recall now, usingSz, (4.7.3) and (4.7.14)that foru > O

_ ke +2

(u+1)
2u+1 Zur1 2 &

from which we may deduce

N d § s
g0 = () o0 = G, 0 0 ), (4.14)

whereC; (1) = 22+ 1)--- (24 4+ 25 — 1) and @, (k) is a polynomial ink of degree 2.
Using (4.12) and (4.13), it is sufficient to show that fa@rk, kr <k0 < ¢z, j>1

$)
. s cost <
(smt)("Af #)<C(k I+l ki with 6 = {O sSb
(k(k +22))" 25— ), s>¢.
; ; _ o) (J-H)
Using (4.10) withay = —=—— andb; = Q,” " (cost), observing that
(k(k+24))
v( s (k) )‘< { Ck*=20=7 if s # L ors = £ andv = 0, (4.15)
k(k + 2)t Ck—1  ifs=¢andv>0
and following Lemma 3.2 of Belinsky et §Be-Da-Di] which implies
|44 QY (cosn)| < Cart, (4.16)
we recallrk < 0k < t¢ to obtain fors > ¢
(s)
(sin 2= 47 8 (COSD) | max (2022
(k(k +20))" Oy
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Fors < ¢ we use (4.15) and (4.16) to derive

(s)
cost TP . ,
8i (C0S") ‘gc( max k" +t1><C1(k‘f‘1+k‘f+1t).

‘Aj PR .
(k(k +27)) ey

This concludes the proof far>2¢. We note that for Xk <2¢ (4.11) is obvious as
(1—ae(k, 0))/(k(k + 2&)02)Z is bounded. (In any case the lemma is needed onliyfokg

for some fixedkp.) [
5. The proof of Theorem 4.1
We first state the realization result which will be used.

We define the operatoy,,(f) using the functiory(x) satisfyingn(x) € C*(Ry),
n(x) = 1for 0<x <1, andn(x) = 0 for x > 2. The operaton,,(f) is given by

a0 (f) = Y_ (@bl Pi(f) (5.)

k=0

where
£~ P
k=0

Following [Ch-Di,Di], one can obtain the realization theoremiby(f), which is a De
la Vallée Poussin-type operator.

Realization Theorem.For f € L,(S?~1) and any positive a
~ ~¢
Ke(fs 4,029, 2 1L = nag(O Ny + 1A nap (s (5.2)
whereK ( f, 4, 925)17 is given in(4.1) and is the Laplace—Beltrami operator.

The above theorem has a somewhat different statement tfi@h-iBi, Theorem 4.5pr
[Di, Theorem 7.1put the proof, and in fact the theorem itself, is the same.

Proof of Theorem 4.1.Following the proof of Theorem 3.1 and the realization result in
this section, we have to show for some positive

ILf = Se.0(H)Np=Cillf = na9(Ollp. (5.3)

1f = Seo(Hlp=C202 1A 00l (5.4)

and

17a0(f) = Se.0(1a0 () 1 p < Ca0Z 1A 1ag (F)l - (5.5)
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To prove (5.3) it is sufficient to show

1f = 0ag(F) — T+ So.0+ .+ ST —1a)(f — So.c(H)lp
<Call. pIf —So.ef 1y (5.6)

as
T+ So.e+ -+ S5 )T = 0a)(f = S0.e ()l <Csllf = Sp.e (Pl

sinceSy ¢ is a bounded operator.
To prove (5.6) we have to show that

ap(k, 0)°

pe(k, 0) = (1 - n(a@k)) m

is a multiplier operator orf € L,(54~1). We note that fok < %, 11, (k, 6) = 0. We now
recall that as the Cesaro summability of ordemwith m > % is a bounded operator
in L,(5?71), 1< p< oo, (see[Bo-Cl]), the condition foru(k) to be a bounded multiplier
operator is (sefCh-Di] or [Be-Da-Di] or numerous other places)

oo

m k+m
D14 +1u<k>|( ) <M.
k=0 "

For u(k) = p, (k. 0) we note that fok > = i.e.k0> 1 (4.6) implies
1—aptk,)=>1—vs0 > 0.

Therefore, using Lemma 4.3, we have kér>

QU

. . 1\5/
J J (=
1471y (k. 0)] < Gt ()

We choosen = [§] > 452, j =m + 1, 1 = 452 and as(k;"’) < AK™, we have

d_
‘ k+m Am“,ug(k, 9)‘ < C79[d/2]+lk[d/2](i)5(2 1
m kO

d
< C70[d/2]—5 §+641d/21-5 g+5‘

Using[d/2] — 5% + 5 < —1ford >3 andp, (k, 0) = 0 for k< 2, we have
k+1[d/2] [d/2]+1
A2k, 0)| <M.
Z ( d/2] | 1y (k, 0)|
To prove (5.5) we have to show that
1—apk, 6)

*k,0) = —— -
. (k(k +22)0)"

(a0k)



F. Dai, Z. Ditzian / Journal of Approximation Theory 131 (2004) 268—-283 283

is a multiplier, or agi, (k, 0) are finite, that forn = [%]

[2+m+1]
oA Rk O = Y Ak, 0K < M (5.7)
k=ko k=ko
with M independent of. Using Lemmas 4.7 and 4.6(a) with = M andb, =
(ktk+20)0?)
n(abk), we derive (5.7) agA"br| < C(ab)". To prove (5.4) we have to show that
k(k +22)60%)"
vk, 0) = (— Ok
we(k, 0) 1—ak.0) n(aOk)

also satisfies (5.7). We now use Lemmas 4.7 and 4.6(a) and (b) and replabeve by
a;’*. We note that Lemma 4.6(b) is applicablesas= =20 > 4 - 0 by (4.5). We

(k(k+22)0%)

further note that as; > ;' > 0 with €y of (4.5), (b) of Lemma 4.6 and mathematical
induction imply that (4.11), which was proved fay, is valid forak‘l aswell. O
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