

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 131 (2004) 268-283

www.elsevier.com/locate/jat

Combinations of multivariate averages

F. Dai, Z. Ditzian*,1

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received 10 February 2004; received in revised form 31 August 2004; accepted in revised form 22 October 2004

Communicated by Vilmos Totik

Abstract

Rate of approximation of combinations of averages on the spheres is shown to be equivalent to K-functionals yielding higher degree of smoothness. Results relating combinations of averages on rims of caps of spheres are also achieved.

© 2004 Elsevier Inc. All rights reserved.

MSC: 41A17; 41A63; 26B33; 46E35

Keywords: Averages on spheres; K-functionals; Strong converse inequalities

1. Introduction

In a recent paper [Be-Da-Di] the average on a sphere of radius t in R^d , $d \ge 2$ given by

$$V_t f(x) = \frac{1}{m(t)} \int_{\{y \in R^d : |x-y|=t\}} f(y) \, d\sigma(y), \quad V_t 1 = 1, \quad x \in R^d$$
(1.1)

(where $d\sigma(y)$ is a measure invariant under rotations about *x*) was shown to satisfy an equivalence relation with the appropriate *K*-functionals, that is

$$\|V_t f - f\|_{L_p(\mathbb{R}^d)} \approx \inf\left(\|f - g\|_{L_p(\mathbb{R}^d)} + t^2 \|\mathcal{A}g\|_{L_p(\mathbb{R}^d)}\right) \equiv K(f, \mathcal{A}, t^2)_p, \quad (1.2)$$

where $1 \le p \le \infty$, $d \ge 2$ and Δ is the Laplacian i.e. $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}$.

^{*} Corresponding author. Fax: +1 780 492 6826.

E-mail address: dfeng@math.ualberta.ca (F. Dai), zditzian@math.ualberta.ca (Z. Ditzian).

¹ Supported by NSERC Grant of Canada A4816.

The average on the rim of the cap of the sphere

$$S^{d-1} = \{x \in \mathbb{R}^d : |x|^2 = x_1^2 + \dots + x_d^2 = 1\}$$

given by

$$S_{\theta}f(x) = \frac{1}{m(\theta)} \int_{\{y \in S^{d-1}: x \cdot y = \cos \theta\}} f(y) \, d\gamma(y), \quad S_{\theta}1 = 1, \quad x \in S^{d-1}$$
(1.3)

(where $d\gamma(y)$ is a measure on the set { $y \in S^{d-1} : x \cdot y = \cos \theta$ } invariant under rotation about *x*) was shown in [Be-Da-Di] to satisfy the equivalence relation

$$\begin{split} \|S_{\theta}f - f\|_{L_{p}(S^{d-1})} &\approx \inf\left(\|f - g\|_{L_{p}(S^{d-1})} + \theta^{2}\|\widetilde{\Delta}g\|_{L_{p}(S^{d-1})}\right) \\ &\equiv K(f, \widetilde{\Delta}, \theta^{2})_{p}, \end{split}$$
(1.4)

where $1 \le p \le \infty$, $d \ge 3$ and $\widetilde{\Delta}$ is the Laplace–Beltrami operator given by $\widetilde{\Delta} f(x) = \Delta f\left(\frac{x}{|x|}\right)$ for $x \in S^{d-1}$.

We will show here that

$$V_{\ell,t}f(x) = \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell-j} V_{jt}f(x)$$
(1.5)

satisfies for $d \ge 2$ and $1 \le p \le \infty$

$$\|V_{\ell,t}f(\cdot) - f(\cdot)\|_{L_p(\mathbb{R}^d)} \approx \inf_{g} \left(\|f - g\|_{L_p(\mathbb{R}^d)} + t^{2\ell} \|\mathcal{\Delta}^{\ell}g\|_{L_p(\mathbb{R}^d)} \right) \\ \equiv K_{\ell}(f, \mathcal{\Delta}, t^{2\ell})_p,$$
(1.6)

where $\Delta^{\ell}g = \Delta(\Delta^{\ell-1}g)$.

We will also show that

$$S_{\ell,\theta}f(x) = \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell-j} S_{j\theta}f(x)$$
(1.7)

satisfies

$$\begin{split} \|S_{\ell,\theta}f(\cdot) - f(\cdot)\|_{L_p(S^{d-1})} &\approx \inf_g \left(\|f - g\|_{L_p(S^{d-1})} + \theta^{2\ell} \|\widetilde{\varDelta}^{\ell}g\|_{L_p(S^{d-1})} \right) \\ &\equiv K_{\ell}(f,\widetilde{\varDelta},\theta^{2\ell})_p, \end{split}$$
(1.8)

where $\widetilde{\varDelta}^{\ell}g = \widetilde{\varDelta} \ (\widetilde{\varDelta}^{\ell-1}g).$

The main thrust of this paper is that in both (1.6) and (1.8) there is no supremum sign on the left-hand side as was the case in previous results on combinations (see for instance [Li-Ni, Ni-Li, Ru]). One should note that only ℓ elements are needed to achieve *K*-functionals whose saturation rate is $O(t^{2\ell})$ (or $O(\theta^{2\ell})$).

2. Realization, Bernstein and Jackson results on R^d

To prove (1.6) we need some preliminary results that we hope will be useful elsewhere as well. Given $\eta(y) \in C^{\infty}(R_+)$, $\eta(y) = 1$ for $y \leq 1$ and $\eta(y) = 0$ for $y \geq 2$, we define $\eta_R(f)$ by

$$\left(\eta_R(f)\right)^{\wedge}(x) = \eta\left(\frac{|x|}{R}\right)\widehat{f}(x), \quad R > 0,$$
(2.1)

where

$$\widehat{g}(x) = \int_{R^d} g(\xi) e^{-2\pi i \, \xi \cdot x} \, d\xi.$$
(2.2)

In what follows we will use extensively the basic properties of the multivariate Fourier transform which are given for instance in the first two chapters of Stein and Weiss [St-We]. Setting

Jetting

$$G(x) = \int_{R^d} \eta(t) e^{2\pi i t x} dt$$

and following Lemma 3.17 of Stein and Weiss [St-We, p. 26], we have $G \in L_1(\mathbb{R}^d)$. Hence, using [St-We, (1.6), p. 4], it is clear that there exists $G_R(x) \in L_1(\mathbb{R}^d)$ such that

$$\eta_R(f)(x) = G_R * f(x) \quad \text{for} \quad f \in L_p(R^d),$$
(2.3)

$$G_R(x) = R^d G(Rx), \quad G(x) = G_1(x)$$
 (2.4)

and

$$\|G_R\|_{L_1} = \|G\|_{L_1}.$$
(2.5)

The Bernstein-type inequality is given in the following result.

Theorem 2.1. Suppose $f \in L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$ and $\operatorname{supp} \widehat{f} \subset \{|x| : |x| \leq R\}$. Then $\Delta^{\ell} f$ exists in L_p and

$$\|\Delta^{\ell} f\|_{p} \leqslant C R^{2\ell} \|f\|_{p} \tag{2.6}$$

with C independent of R and p.

Proof. We note first that when we described \widehat{f} and its support, we did not imply that it is a function, and in fact for $2 it may be just an element of <math>\mathcal{S}'$ (the dual to \mathcal{S}). However, G_R given in (2.1) and (2.3) is in L_1 , and using [St-We, (1.9), p. 5] on $\eta(t)$ and G(x), and following the argument yielding $G_R \in L_1$, so is $\Delta^{\ell} G_R(x)$ where Δ is the Laplacian. Moreover,

$$\left(-4\pi^2 \left(\frac{|x|}{R}\right)^2\right)^{\ell} \eta\left(\frac{|x|}{R}\right) = \frac{1}{R^{2\ell}} \left(\varDelta^{\ell} G_R\right)^{\wedge}(x)$$

and hence

$$\frac{1}{R^{2\ell}} \| \varDelta^{\ell} G_R \|_{L_1} = \| \varDelta^{\ell} G \|_{L_1} = A(\ell).$$

This implies for $\ell = 0, 1, \ldots$

$$\frac{1}{R^{2\ell}} \| \varDelta^{\ell} \eta_R f \|_{L_p} \leqslant A(\ell) \| f \|_{L_p}.$$

If $f \in L_p$ such that supp $\widehat{f} \subset \{|x| : |x| \leq R\}$, $\eta_R(f) = f$, and hence $\Delta^{\ell}(\eta_R f) = \Delta^{\ell} f$, and (2.6) is satisfied with $C = A(\ell)$. \Box

For $f \in L_p(\mathbb{R}^d)$ we define the rate of best approximation by

$$E_{\lambda}(f)_{p} = \inf \left\{ \|f - h_{\lambda}\|_{p} : h_{\lambda} \in L_{p}(\mathbb{R}^{d}), \text{ supp } \left(h_{\lambda}^{\wedge}(x)\right) \subset B_{\lambda} \right\},$$
(2.7)

where $B_{\lambda} \equiv \{x : |x| \leq \lambda\}.$

We can now state and prove the Jackson-type result.

Theorem 2.2. For $f \in L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, we have

$$E_{\lambda}(f)_{p} \leq \inf_{g} \left(\|f - g\|_{p} + \lambda^{-2\ell} \|\Delta^{\ell}g\|_{p} \right) \equiv K_{\ell}(f, \Delta, \lambda^{-2\ell})_{p}.$$

$$(2.8)$$

Proof. We define $\mathcal{R}_{\lambda,\ell,b}(f)$ for $\ell = 1, 2, ...,$ and $b \ge d + 2$ by

$$\left(\mathcal{R}_{\lambda,\ell,b}(f)\right)^{\wedge}(x) = \begin{cases} \left(1 - \left(\frac{|x|}{\lambda}\right)^{2\ell}\right)^{b} \widehat{f}(x) & |x| \leq \lambda, \\ 0 & \text{otherwise.} \end{cases}$$
(2.9)

We note that while $b \ge d + 2$ may not be necessary, it is convenient. (Using $\mathcal{R}_{\lambda,\ell,b}(f)$ is also just for convenience.) The function

$$\Phi_{\ell,b}(x) = \begin{cases} (1-|x|^{2\ell})^b, & |x| \leq 1, \\ 0 & \text{otherwise} \end{cases}$$

satisfies $\|D^{\nu}\Phi_{\ell,b}\|_{L_1} \leq C(\ell, b)$ for $|\nu| \leq d+1$, and hence there exists $G_{\ell,b}^{\wedge}(x) = \Phi_{\ell,b}(x)$ such that $G_{\ell,b}(\xi) \in L_1(\mathbb{R}^d)$, $\int_{\mathbb{R}^d} G_{\ell,b}(\xi) d\xi = 1$, and moreover $G_{\ell,b}(\xi) = G_{\ell,b}(\rho\xi)$ for any orthogonal matrix ρ with determinant 1, $\rho \in SO(d)$. We now have

$$\mathcal{R}_{\lambda,\ell,b}(f)(\xi) = \lambda^d \int_{\mathbb{R}^d} G_{\ell,b}\big(\lambda(\xi - \eta)\big) f(\eta) \, d\eta.$$
(2.10)

We recall the definition of $K_{\ell}(f, \Delta, \lambda^{-2\ell})_p$ and choose g_1 such that

$$||f - g_1||_p + \lambda^{-2\ell} ||\Delta^\ell g_1||_p \leq 2K_\ell(f, \Delta, \lambda^{-2\ell})_p.$$

Using (2.10), we have

$$\|\mathcal{R}_{\lambda,\ell,b}(f-g_1) - (f-g_1)\|_p \leq (C+1)\|f-g_1\|_p \leq (C+1)2K_\ell(f,\Delta,\lambda^{-2\ell})_p.$$

To estimate $\mathcal{R}_{\lambda,\ell,b}(g_1) - g_1$, we write

$$\begin{split} \|\mathcal{R}_{\lambda,\ell,b}(g_{1}) - g_{1}\|_{p} &\leq \|\mathcal{R}_{\lambda,\ell,b}(g_{1}) - \mathcal{R}_{\lambda,\ell,b+1}(g_{1})\|_{p} \\ &+ \|\mathcal{R}_{\lambda,\ell,b+1}(g_{1}) - \mathcal{R}_{\Lambda,\ell,b+1}(g_{1})\|_{p} + \|\mathcal{R}_{\Lambda,\ell,b+1}(g_{1}) - g_{1}\|_{p} \\ &\equiv I_{1}(\lambda)_{p} + I_{2}(\lambda,\Lambda)_{p} + I_{3}(\Lambda)_{p}. \end{split}$$

For $g_1 \in L_p(\mathbb{R}^d)$, $1 \leq p < \infty$, $I_3(\Lambda)_p \to 0$ as $\Lambda \to \infty$. For $p = \infty$ if $\Delta^{\ell} g_1 \in L_{\infty}$, $g_1 \in C_0(\mathbb{R}^d)$, and hence $I_3(\Lambda)_p \to 0$ as $\Lambda \to \infty$. To estimate $I_1(\lambda)_p$ we write

$$\mathcal{R}_{\lambda,\ell,b}(g_1) - \mathcal{R}_{\lambda,\ell,b+1}(g_1) = \frac{1}{\lambda^{2\ell}} \frac{1}{(-4\pi^2)^\ell} \Delta^\ell \left(\mathcal{R}_{\lambda,\ell,b}(g_1) \right)$$
$$= \frac{1}{\lambda^{2\ell}} \frac{1}{(-4\pi^2)^\ell} \mathcal{R}_{\lambda,\ell,b}(\Delta^\ell g_1)$$

and hence

$$I_1(\lambda)_p \leqslant \frac{C}{\lambda^{2\ell}} \| \Delta^\ell g_1 \|_p \leqslant C_1 K_\ell(f, \Delta, \lambda^{-2\ell})_p.$$

To estimate $I_2(\lambda, \Lambda)_p$ we write

$$\mathcal{R}_{\lambda,\ell,b+1}(g_1) - \mathcal{R}_{\Lambda,\ell,b+1}(g_1) = \frac{(b+1)2\ell}{(-4\pi^2)^\ell} \int_{\lambda}^{\Lambda} \Delta^\ell \mathcal{R}_{\mu,\ell,b}(g_1) \frac{d\mu}{\mu^{2\ell+1}}$$

and as

$$\| \Delta^{\ell} \mathcal{R}_{\mu,\ell,b}(g_1) \|_p = \| \mathcal{R}_{\mu,\ell,b}(\Delta^{\ell} g_1) \|_p$$

$$\leq C \| \Delta^{\ell} g_1 \|_p,$$

we have

$$I_{2}(\lambda, \Lambda)_{p} \leqslant \frac{C(b+1)}{(4\pi^{2})^{\ell}} \frac{1}{\lambda^{2\ell}} \| \Delta^{\ell} g_{1} \|_{p} \leqslant C_{2} K_{\ell}(f, \Delta, \lambda^{-2\ell})_{p}.$$

This implies

$$\|f - \mathcal{R}_{\lambda,\ell,b}(f)\|_p \leqslant C_3 K_\ell(f, \varDelta, \lambda^{-2\ell})_p$$
(2.11)

and hence (2.8). \Box

Corollary 2.3. For $f \in L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, $\lambda \geq 0$ $K_{\ell}(f, \Delta, \lambda^{-2\ell})_p \approx ||f - \mathcal{R}_{\lambda,\ell,b}(f)||_p + \lambda^{-2\ell} ||\Delta^{\ell} \mathcal{R}_{\lambda,\ell,b}(f)||_p.$ (2.12)

Proof. By definition the left-hand side is bounded by the right-hand side. Using (2.11), we have to show only that $\lambda^{-2\ell} \| \Delta^{\ell} \mathcal{R}_{\lambda,\ell,b}(f) \|_p$ is bounded by the left-hand side. We recall that

$$\frac{1}{\lambda^{2\ell}} \Delta^{\ell} \mathcal{R}_{\lambda,\ell,b}(f) = (-4\pi^2)^{\ell} (\mathcal{R}_{\lambda,\ell,b}f - \mathcal{R}_{\lambda,\ell,b+1}f)$$

and we complete the proof observing that

$$\|\mathcal{R}_{\lambda,\ell,b}(f) - \mathcal{R}_{\lambda,\ell,b+1}(f)\|_p \leq \|\mathcal{R}_{\lambda,\ell,b}(f) - f\|_p + \|f - \mathcal{R}_{\lambda,\ell,b+1}(f)\|_p$$

which, using (2.11) for b and b + 1, yields our result. \Box

Corollary 2.4. Suppose $\eta_{\lambda}(f)$ is defined by (2.1) and $\mathcal{R}_{\lambda,\ell,b}(f)$ is given by (2.9) with $b \ge d+2$, then

$$\|f - \eta_{\lambda}(f)\|_{p} \leqslant C \|f - \mathcal{R}_{\lambda,\ell,b}(f)\|_{p}.$$

$$(2.13)$$

Proof. Using $\eta_{\lambda}(\mathcal{R}_{\lambda,\ell,b}(f)) = \mathcal{R}_{\lambda,\ell,b}(f)$, we write

$$\|f - \eta_{\lambda}(f)\|_{p} = \|f - \mathcal{R}_{\lambda,\ell,b}(f) - \eta_{\lambda} (f - \mathcal{R}_{\lambda,\ell,b}(f))\|_{p}$$
$$\leq (1 + \|G\|_{1}) \|f - \mathcal{R}_{\lambda,\ell,b}(f)\|_{p}$$

since $\|\eta_{\lambda}(f)\|_{p} \leq \|G\|_{1} \|f\|_{p}$. This is, in fact, the routine de la Valleé Poussin procedure.

Corollary 2.5. For $\eta_{\lambda}(f)$ given by (2.1)

$$K_{\ell}(f, \Delta, \lambda^{-2\ell})_p \approx \|f - \eta_{\lambda}(f)\|_p + \lambda^{-2\ell} \|\Delta^{\ell} \eta_{\lambda}(f)\|_p.$$
(2.14)

Proof. Using the definition of $K_{\ell}(f, \Delta, \lambda^{-2\ell})_p$, the inequality (2.13) and the equivalence (2.12), we have to estimate only

$$\begin{split} \lambda^{-2\ell} \| \varDelta^{\ell} \eta_{\lambda} f \|_{p} &\leq \lambda^{-2\ell} \| \varDelta^{\ell} \mathcal{R}_{\lambda,\ell,b}(f) \|_{p} + \lambda^{-2\ell} \| \varDelta^{\ell} \big(\eta_{\lambda}(f) - \mathcal{R}_{\lambda,\ell,b}(f) \big) \|_{p} \\ &\leq C K_{\ell}(f, \varDelta, \lambda^{-2\ell})_{p} + \lambda^{-2\ell} C_{1} \lambda^{2\ell} \| \eta_{\lambda}(f) - \mathcal{R}_{\lambda,\ell,b}(f) \|_{p} \\ &\leq C_{2} K_{\ell}(f, \varDelta, \lambda^{-2\ell})_{p}. \end{split}$$

3. Strong converse inequality on R^d

The main result of this section is the equivalence (1.6) given in the following theorem:

Theorem 3.1. For d > 1, $\ell = 1, 2, ..., t > 0$, $V_{t,\ell}f$ given by (1.5) and $1 \le p \le \infty$ we have

$$\|V_{\ell,t}f - f\|_{L_p(\mathbb{R}^d)} \approx \inf_g \left(\|f - g\|_{L_p} + t^{2\ell} \|\Delta^{\ell}g\|_{L_p} \right).$$
(3.1)

For the proof we will need several lemmas.

Lemma 3.2. For an integer ℓ we have

$$\binom{2\ell}{\ell} + 2\sum_{j=1}^{\ell} (-1)^j \binom{2\ell}{\ell-j} \cos j\theta = 4^\ell \sin^{2\ell} \frac{\theta}{2}.$$
(3.2)

Proof. Writing $\cos j\theta = \frac{1}{2} (e^{ij\theta} + e^{-ij\theta})$ and $\sin \frac{\theta}{2} = \frac{1}{2i} (e^{i\theta/2} - e^{-i\theta/2})$, we obtain (3.2) by simple computation.

Lemma 3.3. For $V_{\ell,t}(f)$ given in (1.5)

$$(V_{\ell,t}f)^{\wedge}(x) \equiv m_{\ell}(2\pi t|x|)\widehat{f}(x)$$
(3.3)

and

$$1 - m_{\ell}(u) = \frac{2\Gamma(\frac{d}{2})}{\Gamma(\frac{d-1}{2})\Gamma(\frac{1}{2})} \frac{4^{\ell}}{\binom{2\ell}{\ell}} \int_{0}^{1} \left(\sin\frac{us}{2}\right)^{2\ell} (1 - s^{2})^{\frac{d-3}{2}} ds.$$
(3.4)

Proof. It is known that

$$(V_t f)^{\wedge}(x) = m_1(2\pi t |x|) \hat{f}(x) = m(2\pi t |x|) \hat{f}(x)$$

with (see [St-We, pp. 153–154])

$$m(u) = \Gamma\left(\frac{d}{2}\right) \left(\frac{u}{2}\right)^{-\frac{d-2}{2}} J_{\frac{d-2}{2}}(u)$$

= $\frac{2\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)\Gamma\left(\frac{1}{2}\right)} \int_{0}^{1} \cos us \ (1-s^{2})^{\frac{d-3}{2}} ds,$

where $J_{\frac{d-2}{2}}(u)$ is the Bessel function given by the above formula. We now use the definition of $V_{\ell,t}(f)$ to obtain

$$\begin{split} m_{\ell}(u) &= \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^{j} \binom{2\ell}{\ell-j} m(ju) \\ &= \frac{2\Gamma(\frac{d}{2})}{\Gamma(\frac{d-1}{2})\Gamma(\frac{1}{2})} \int_{0}^{1} \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^{j} \binom{2\ell}{\ell-j} \cos jus \ (1-s^{2})^{\frac{d-3}{2}} ds. \end{split}$$

Using Lemma 3.2, we now derive (3.4). \Box

Lemma 3.4. For $0 < u \leq \pi$

$$0 < C_1 u^{2\ell} \leq 1 - m_\ell(u) \leq C_2 u^{2\ell}.$$
(3.5)

For $u \ge \pi$

$$0 < m_{\ell}(u) \leqslant v_{d,\ell} < 1. \tag{3.6}$$

Proof. For $0 < \frac{us}{2} < \frac{\pi}{2}$ $(u < \pi, 0 \le s \le 1)$ we have $(\frac{us}{\pi})^2 \le \sin^2 \frac{us}{2} \le (\frac{us}{2})^2$, which, using (3.4), implies (3.5) (with C_1 and C_2 depending on d and ℓ). For $u \ge \pi$

$$1 - m_{\ell}(u) \ge \frac{2\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)\Gamma\left(\frac{1}{2}\right)} \frac{4^{\ell}}{\binom{2\ell}{\ell}} \int_{0}^{2/3} \left(\sin\frac{us}{2}\right)^{2\ell} (1 - s^{2})^{\frac{d-3}{2}} ds$$
$$\ge \frac{2\Gamma\left(\frac{d}{2}\right)4^{\ell}\left(\frac{1}{2}\right)^{\frac{d-3}{2}}}{\Gamma\left(\frac{d-1}{2}\right)\Gamma\left(\frac{1}{2}\right)\binom{2\ell}{\ell}} \int_{0}^{2/3} \left(\sin\frac{us}{2}\right)^{2\ell} ds$$
$$\equiv C_{d,\ell} \int_{0}^{2/3} \left(\sin\frac{us}{2}\right)^{2\ell} ds$$
$$= C_{d,\ell} \frac{1}{u} \int_{0}^{\frac{2}{3}u} \left(\sin\frac{\zeta}{2}\right)^{2\ell} d\zeta$$

F. Dai, Z. Ditzian / Journal of Approximation Theory 131 (2004) 268-283

$$\geq C_{d,\ell} \frac{1}{u} \sum_{b=1}^{[u/\pi]} \int_{\pi/3}^{2\pi/3} \left(\sin \frac{\zeta}{2}\right)^{2\ell} d\zeta = C_{d,\ell} \frac{1}{u} \left[\frac{u}{\pi}\right] \left(\frac{1}{2}\right)^{2\ell} \frac{\pi}{3} \geq C_{d,\ell} > 0. \qquad \Box$$

Lemma 3.5. For $j = 0, 1, 2, ..., and u \ge 0$

$$\left| \left(\frac{d}{du}\right)^{j} m_{\ell}(u) \right| \leqslant C_{\ell,j} \left(\frac{1}{1+u}\right)^{\frac{d-1}{2}}.$$
(3.7)

Proof. As $m_{\ell}(u)$ is a linear combination of m(ku), $1 \le k \le \ell$, it is sufficient to prove (3.7) for $\ell = 1$. Recalling the definition of $J_k(t)$ [St-We, p. 153], $\frac{d}{dt}(t^{-k}J_k(t)) = -t^{-k}J_{k+1}(t)$ and [St-We, Lemma 3.11, p. 158], we have our result. \Box

Proof of Theorem 3.1. Using Corollary 2.5 and the definition of the *K*-functional $K_{\ell}(f, \Delta, t^{2\ell})_p$, we have only to show for all $f \in L_p(\mathbb{R}^d)$ and some fixed a > 0 (as $K_{\ell}(f, \Delta, t^{2\ell})_p \approx K_{\ell}(f, \Delta, a^{-2\ell}t^{2\ell})_p$) that

$$\|f - V_{\ell,t}f\|_p \ge C_1 \|f - \eta_{a/t}f\|_p,$$
(3.8)

$$\|f - V_{\ell,t}f\|_p \ge C_2 t^{2\ell} \|\Delta^\ell \eta_{a/t}f\|_p,$$
(3.9)

and

I

$$\|\eta_{a/t}(f) - V_{\ell,t}\eta_{a/t}(f)\|_p \leqslant C_3 t^{2\ell} \|\Delta^\ell \eta_{a/t}(f)\|_p.$$
(3.10)

To prove (3.8) it is sufficient to show

$$\| (I - \eta_{a/t}) f - (I - \eta_{a/t}) (I + V_{\ell,t} + V_{\ell,t}^2 + V_{\ell,t}^3 + V_{\ell,t}^4) (f - V_{\ell,t} f) \|_p \\ \leq C_4 \| f - V_{\ell,t} f \|_p$$
(3.11)

since, as $\eta_{1/t}$ and $V_{\ell,t}$ are bounded multiplier operators on $L_p(\mathbb{R}^d)$, we have

$$\|(I - \eta_{a/t})(I + V_{\ell,t} + V_{\ell,t}^2 + V_{\ell,t}^3 + V_{\ell,t}^4)(f - V_{\ell,t}f)\|_p \leq C_5 \|f - V_{\ell,t}f\|_p,$$

where I is the identity operator. To prove (3.11) we have to show that

$$\Phi(u) = \frac{(1 - \eta(u/a))m_{\ell}(u)^5}{1 - m_{\ell}(u)}$$

is a bounded multiplier on $L_1(\mathbb{R}^d)$ (and hence on $L_p(\mathbb{R}^d)$), or $|D^{\nu}\Phi(u)| \leq \frac{C}{(1+|u|)^{d+\alpha}}, \alpha > 0$ (at least for $|\nu| \leq d+1$, but here that restriction does not matter). While the above is known and used numerous times, we show it below to help the reader. For $\stackrel{\vee}{\Phi}(x)$ given by

$$\stackrel{\vee}{\Phi}(x) = \int_{R^d} \Phi(y) e^{2\pi i x y} \, dy,$$

which may be considered as a Fourier transform, and following the proof of Lemma 3.17 of [St-We, p. 26], we have

$$\| \stackrel{\vee}{\Phi} \|_{L_1(R^1)} \leqslant C \sum_{|\alpha| \leqslant d+1} \| D^{\alpha} \Phi \|_{L_1(R^d)},$$

which implies the sufficiency of showing that $|D^{\nu}\Phi(u)| \leq \frac{C}{(1+|u|)^{d+\alpha}}$ for $\alpha > 0$ and $|\nu| \leq d+1$. We note that for $|u| \leq 1$, $\Phi(u) = 0$. For $|u| \geq 1$ we use Lemma 3.5, recall that the multipliers we have are radial, and obtain

$$|D^{\nu}\Phi(u)| \leq C(\nu) \left(\frac{1}{1+|u|}\right)^{5\left(\frac{d-1}{2}\right)} = C(\nu) \left(\frac{1}{1+|u|}\right)^{d+\frac{3}{2}d-\frac{5}{2}}$$

and for $d \ge 2$ we have $\frac{3d}{2} - \frac{5}{2} \ge 3 - \frac{5}{2} = \frac{1}{2} > 0$. To prove (3.9) we have to show that

$$\Psi(u) = \frac{u^{2\ell}\eta\left(\frac{u}{a}\right)}{1 - m_{\ell}(u)}$$

is a multiplier. As $\eta(\frac{u}{a}) = 0$ for |u| > 2a, we just have to check that $\frac{u^{2\ell}}{1-m_{\ell}(u)}$ and its derivatives are bounded for $|u| \leq 2a$. The boundedness of $\frac{u^{2\ell}}{1-m_{\ell}(u)}$ follows from (3.5) of Lemma 3.4 (for $a \leq \frac{\pi}{2}$) as C_1 there satisfies $C_1 > 0$. We follow Lemma 3.3 to observe that $1 - m_{\ell}(z)$ given by

$$1 - m_{\ell}(z) = \frac{2\Gamma(\frac{d}{2})}{\Gamma(\frac{d-1}{2})\Gamma(\frac{1}{2})} \frac{4^{2\ell}}{\binom{2\ell}{\ell}} \int_0^1 \left(\sin\frac{zs}{2}\right)^{2\ell} (1 - s^2)^{\frac{d-3}{2}} ds$$

is an analytic function which, using Lemma 3.4, has a zero of order 2ℓ at 0. As 0 is an isolated zero, $1 - m_{\ell}(z) \neq 0$ for $0 < |z| \leq 2a$ for some a and hence $\frac{z^{2\ell}}{1 - m_{\ell}(z)}$ is analytic there, and therefore $\Psi(u)$ is in $C^{\infty}[0,\infty)$ as required. To estimate (3.10) we have to show that

$$\Psi_1(u) = \frac{1 - m_\ell(u)}{u^{2\ell}} \eta\left(\frac{u}{a}\right)$$

is a multiplier. For this we use the fact that in (3.5) of Lemma 3.4 $C_2 < \infty$ and $m_\ell(u)\eta(\frac{u}{a}) \in$ $C^{\infty}[0,\infty)$ as proved earlier. \Box

4. Combinations of averages on the sphere

Our goal is to prove the equivalence (1.8) for functions on the sphere. This result is summarized in the following theorem.

Theorem 4.1. For $f \in L_p(S^{d-1})$, $d \ge 3$, $1 \le p \le \infty$, $\ell = 1, 2, ..., and 0 < \theta \le \frac{\pi}{2\ell}$ we have

$$\|S_{\theta,\ell}f - f\|_{p} \approx \inf \left(\|f - g\|_{p} + \theta^{2\ell} \|\widetilde{\Delta}^{\ell}g\|_{p} \right)$$

$$\equiv K_{\ell}(f, \widetilde{\Delta}, \theta^{2\ell})_{p},$$
(4.1)

where $S_{\theta,\ell} f$ is given by (1.7) and $\widetilde{\Delta}$ is the Laplace–Beltrami operator.

We cannot expect (4.1) for all *t* as $S_{\theta}f = S_{2\pi-\theta}f$, and for $\ell = 1$ this would imply $K_1(f, \widetilde{\Delta}, \theta^2)_p \approx K_1(f, \widetilde{\Delta}, (2\pi-\theta)^2)_p$, and hence $K_1(f, \widetilde{\Delta}, (2\pi-\theta)^2)_p \leqslant CK_1(f, \widetilde{\Delta}, \theta^2)_p$, which if *C* is independent of θ , is valid only for f = const. We will prove Theorem 4.1 in Section 5, and this section is dedicated to the numerous lemmas needed for that proof.

Lemma 4.2. The operator $S_{\theta,\ell}f$ is a bounded multiplier operator

$$S_{\theta,\ell}f(x) = \sum_{k=0}^{\infty} a_{\ell}(k,\theta) P_k f, \qquad (4.2)$$

where $P_k f$ is the projection on $H_k = \{\Psi : \widetilde{\Delta} \Psi = -k(k+d-2)\Psi\}$, and $a_\ell(k, \theta)$ is given by

$$a_{\ell}(k,\theta) = \frac{-2}{\binom{2\ell}{\ell}} \sum_{j=1}^{\ell} (-1)^{j} \binom{2\ell}{\ell-j} \mathcal{Q}_{k}^{\lambda}(\cos j\theta),$$
(4.3)

where $Q_k^{\lambda}(t)$ are the ultraspherical polynomials with $\lambda = \frac{d-2}{2}$ normalized by $Q_k^{\lambda}(1) = 1$.

Proof. The above is just a compilation of the known facts on $S_{\theta} f$ substituted in the definition of $S_{\theta,\ell} f$. (One may consult [Be-Da-Di] for details on $P_k(S_{\theta} f)$ and other details.)

Lemma 4.3. For $a_{\ell}(k, \theta)$ given by (4.3) and $0 < \theta \leq \frac{\pi}{2\ell}$ we have

$$|\Delta^{j}a_{\ell}(k,\theta)| \leqslant \begin{cases} C \ \theta^{j} & \text{if } 0 < k\theta \leqslant 1, \\ C \ \theta^{j} \left(\frac{1}{k\theta}\right)^{\lambda} & \text{if } k\theta \geqslant 1, \end{cases}$$

where $\Delta^0 b_k = b_k$, $\Delta b_k = b_{k+1} - b_k$, $\Delta^j b_k = \Delta(\Delta^{j-1}b_k)$, $\lambda = \frac{d-2}{2}$ and j is an integer $j \ge 0$.

Proof. Using (4.3), we may apply [Be-Da-Di, Lemma 3.2] with m = 1 and $r\theta$ for θ with $r = 1, ..., \ell$ to obtain

$$|\Delta^{j} Q_{k}^{(\lambda)}(\cos r\theta)| \leqslant \begin{cases} C \theta^{j} / (k\theta)^{\lambda} & \text{for } kr\theta \ge 1, \\ C \theta^{j} & \text{for } kr\theta \leqslant 1, \end{cases}$$
(4.4)

from which (4.4) follows when we recall that for $k\theta \approx 1$, the difference between the two estimates can be inserted in the constant. For j = 0 (4.4) is contained in [Sz, (7.33.6), 170].

Lemma 4.4. For $a_{\ell}(k, \theta)$ given by (4.3) and $\theta \in [0, \frac{\pi}{2}]$ we have

$$0 < C_1 \leqslant \frac{1 - a_\ell(k, \theta)}{(k\theta)^{2\ell}} \leqslant C_2 < \infty \quad for \quad 0 < k\theta \leqslant \pi$$

$$\tag{4.5}$$

and for any $\tau > 0$

$$a_{\ell}(k,\theta) \leqslant v_{d,\ell,\tau} < 1 \quad for \quad k\theta \geqslant \tau > 0.$$

$$(4.6)$$

Proof. We use [Sz, (4.9.19), p. 95] to write

$$Q_k^{(\lambda)}(\cos \theta) = \sum_{\nu=0}^{[k/2]} \alpha(k, 2\nu, \lambda) \cos (k - 2\nu)\theta, \qquad (4.7)$$

where (using [Sz, (4.9.21) and (4.7.3)])

$$\alpha(k, 2\nu, \lambda) = \frac{2\binom{k-\nu+\lambda-1}{k-\nu}\binom{\nu+\lambda-1}{\nu}}{\binom{k+2\lambda-1}{k}}.$$
(4.8)

Using (4.3) and (3.2), we have

$$1 - a_{\ell}(k,\theta) = \frac{4^{\ell}}{\binom{2\ell}{\ell}} \sum_{\nu=0}^{\lfloor k/2 \rfloor} \alpha(k, 2\nu, \lambda) \sin^{2\ell} \frac{k - 2\nu}{2} \theta.$$

$$(4.9)$$

For $k\theta \leq \pi$ we recall that $\sum_{\nu=0}^{\lfloor k/2 \rfloor} \alpha(k, 2\nu, \lambda) = 1$ (setting $\theta = 0$ in (4.7)) and that $\sin^{2\ell} \frac{k-\nu}{2} \theta \leq \sin^{2\ell} \frac{k}{2} \theta \leq (\frac{k\theta}{2})^{2\ell}$, and hence the right-hand side of (4.5) follows with $C_2 = \frac{1}{\binom{2\ell}{\ell}}$. As $\alpha(k, 2\nu, \lambda) \geq 0$,

$$1 - a_{\ell}(k, \theta) \ge \frac{4^{\ell}}{\binom{2\ell}{\ell}} \sum_{\nu=0}^{\lfloor k/4 \rfloor} \alpha(k, 2\nu, \lambda) \sin^{2\ell} \frac{k - 2\nu}{2} \theta.$$

Using $\sum_{\nu=0}^{\lfloor k/4 \rfloor} \alpha(k, 2\nu, \lambda) > \beta > 0$, and as for $\nu < \lfloor \frac{k}{4} \rfloor$, $\sin^{2\ell} \frac{k-2\nu}{2} \theta \ge \sin^{2\ell} \frac{k}{4} \theta \ge (\frac{k\theta}{2\pi})^{2\ell}$, we have the estimate $C_1 \ge \frac{\beta}{\binom{2\ell}{\ell}} \frac{1}{\pi^{2\ell}} > 0$. To obtain (4.6) for $0 < \tau \le \pi$ and $k\theta \le \pi$ we use the lower estimate of (4.5) and obtain $1 - a_\ell(k, \theta) \ge C_1 \tau^{2\ell}$ or $a_\ell(k, \theta) \le 1 - C_1 \tau^{2\ell}$, and we may set $\nu_{d,\ell,\tau} = 1 - C_1 \tau^{2\ell} < 1$ for $0 < \tau \le k\theta$. For $k\theta \ge \pi$ (regardless of τ) we set

$$1 - a_{\ell}(k, \theta) \ge \frac{4^{\ell}}{\binom{2\ell}{\ell}} \sum_{\nu \in I(k)} \left(\sin \frac{k - 2\nu}{2} \theta \right)^{2\ell} \alpha(k, 2\nu, \lambda),$$

where $I(k, \theta) = \bigcup_{m=0}^{\left[\frac{k\theta}{2\pi} - \frac{1}{2}\right]} \{v : 0 \le v \le \left[\frac{k}{2}\right], \frac{\pi}{4} + m\pi \le (k - 2v)\frac{\theta}{2} \le \frac{3\pi}{4} + m\pi\}, \text{ and obtain}\}$

$$1 - a_{\ell}(k, \theta) \geq \frac{2^{\ell}}{\binom{2\ell}{\ell}} \sum_{\nu \in I(k)} \alpha(k, 2\nu, \lambda).$$

Using (4.8), we have $\alpha(k, 2\nu, \lambda) \ge \frac{A}{k}$ with $A = A(\lambda) > 0$ where $A(\lambda)$ is independent of k. As the number of elements in I(k) is greater than Bk with B > 0 for $k \ge k_0$ ($k_0 = 10$ say), (4.6) follows for $k \ge k_0$. For $1 \le k < k_0$ (4.6) follows directly from (4.9) (recall $\theta \in [0, \frac{\pi}{2}]$).

Remark 4.5. Since for $L_2(S^{d-1})$ the realization

$$K_{\ell}(f, \Delta, n^{-2\ell})_2 \approx ||f - S_n f||_2 + n^{-2\ell} ||\widetilde{\Delta}^{2\ell} S_n f||_2$$

with S_n the L_2 projection on span $\bigcup_{k=0}^{n} H_k$ holds, Lemma 4.4 yields Theorem 4.1 for p = 2. For $p \neq 2$ we still need some work.

The following lemma (or variants thereof) was used earlier (see for instance [Da]). We state the present variant for the convenience of the reader. Recall $\Delta m_k = m_{k+1} - m_k$, $\Delta^j m_k = \Delta (\Delta^{j-1} m_k)$ and $\Delta^0 m_k = m_k$.

Lemma 4.6. (a) For sequences a_k and b_k we have

$$\Delta^{j}(a_{k}b_{k}) = \sum_{s=0}^{j} {j \choose s} (\Delta^{j-s}a_{k})(\Delta^{s}b_{k+j-s}).$$
(4.10)

(b) For a sequence A_k satisfying $A_k \ge A > 0$

$$\begin{split} |\Delta^{j} A_{k}^{-1}| &\leq \frac{1}{|A_{k}|} \sum_{s=0}^{j-1} {j \choose s} |\Delta^{s} A_{k}^{-1}| |A^{j-s} A_{k+s}| \\ &\leq C \max_{0 \leq s \leq j} |\Delta^{s} A_{k}^{-1}| |\Delta^{j+s} A_{k+s}| \end{split}$$

with $C = \frac{1}{A} 2^j$.

Proof. We obtain the identity (4.10) for j = 0, 1 by inspection. For higher *j* one proves (4.10) by mathematical induction. Part (b) follows from the observation $A_k^{-1}A_k = 1$, choosing $A_k^{-1} = a_k, A_k = b_k$ in (4.10) and using $A_k \ge A > 0$. \Box

Perhaps the crucial estimate needed for the proof of Theorem 4.1 is given in the following lemma.

Lemma 4.7. Suppose $\theta \in [0, \frac{\pi}{2}]$, $a_{\ell}(k, \theta)$ is given by (4.3) and $\lambda = \frac{d-2}{2}$. Then for any integer $j, j \ge 1$, and any $\tau > 0$ such that for $0 < k\theta < \tau$ we have

$$\left| \Delta^{j} \frac{1 - a_{\ell}(k,\theta)}{(k(k+2\lambda)\theta^{2})^{\ell}} \right| \leq C_{\ell,\tau,j}(k^{-j+1}\theta + k^{-j-1}).$$

$$(4.11)$$

Proof. We set $f_k(t) = Q_k^{(\lambda)}(\cos t)$, and using (4.3), we have

$$1 - a_{\ell}(k,\theta) = \frac{(-1)^{\ell}}{\binom{2\ell}{\ell}} \int_{-\theta/2}^{\theta/2} \cdots \int_{-\theta/2}^{\theta/2} f_{k}^{(2\ell)}(u_{1} + \dots + u_{2\ell}) du_{1} \cdots du_{2\ell} \quad (4.12)$$

as $Q_k^{(\lambda)}(\cos t) = Q_k^{(\ell)}(\cos(-t))$. We now set $g_k(x) = Q_k^{(\lambda)}(x)$ and write for $k \ge 2\ell$

$$f_k^{(2\ell)}(t) = \sum_{s=1}^{2\ell} g_k^{(s)}(\cos t) \sum_{\max(s-\ell,0) \leqslant i \leqslant [\frac{s}{2}]} C(s,\ell,i)(\sin t)^{2i}(\cos t)^{s-2i}.$$
 (4.13)

Recall now, using [Sz, (4.7.3) and (4.7.14)], that for $\mu > 0$

$$\frac{d}{dx}Q_k^{(\mu)}(x) = \frac{k(k+2\mu)}{2\mu+1}Q_{k-1}^{(\mu+1)}(x),$$

from which we may deduce

$$g_k^{(s)}(x) = \left(\frac{d}{dx}\right)^s \mathcal{Q}_k^{(\lambda)}(x) = C_s(\lambda)\varphi_s(k)\mathcal{Q}_{k-s}^{(\lambda+s)}(x), \tag{4.14}$$

where $C_s(\lambda) = (2\lambda + 1) \cdots (2\lambda + 2s - 1)$ and $\varphi_s(k)$ is a polynomial in k of degree 2s. Using (4.12) and (4.13), it is sufficient to show that for $2\ell \leq k$, $kt \leq k\theta < \ell\tau$, $j \geq 1$

$$(\sin t)^{\delta} \left| \Delta^j \frac{g_k^{(s)}(\cos t)}{\left(k(k+2\lambda)\right)^{\ell}} \right| \leq C(k^{-j+1}t+k^{-j-1}) \quad \text{with} \quad \delta = \begin{cases} 0, & s \leq \ell, \\ 2(s-\ell), & s > \ell. \end{cases}$$

Using (4.10) with $a_k = \frac{\varphi_s(k)}{(k(k+2\lambda))^\ell}$ and $b_k = Q_{k-s}^{(\lambda+s)}(\cos t)$, observing that

$$\left| \Delta^{\nu} \left(\frac{\varphi_s(k)}{k(k+\lambda)^{\ell}} \right) \right| \leqslant \begin{cases} Ck^{2s-2\ell-\nu} & \text{if } s \neq \ell \text{ or } s = \ell \text{ and } \nu = 0, \\ Ck^{-\nu-1} & \text{if } s = \ell \text{ and } \nu > 0 \end{cases}$$
(4.15)

and following Lemma 3.2 of Belinsky et al. [Be-Da-Di] which implies

$$|\Delta^{\mu} Q_{k-s}^{(\lambda+s)}(\cos t)| \leqslant C_1 t^{\mu}, \tag{4.16}$$

we recall $tk \leq \theta k \leq \tau \ell$ to obtain for $s > \ell$

$$(\sin t)^{2(s-\ell)} \left| \Delta^{j} \frac{g_{k}^{(s)}(\cos t)}{\left(k(k+2\lambda)\right)^{\ell}} \right| \leq C_{2} \max_{\substack{0 \leq v \leq j \\ v \in \mathbb{Z}_{+}}} t^{2(s-\ell)} k^{2s-2\ell-v} t^{j-v} \leq C_{3} k^{-j+1} t.$$

For $s \leq \ell$ we use (4.15) and (4.16) to derive

$$\left| \Delta^j \frac{g_k^{(s)}(\cos t)}{\left(k(k+2\lambda)\right)^\ell} \right| \leq C \Big(\max_{\substack{0 \leq \nu \leq j \\ \nu \in \mathbb{Z}_+}} k^{-\nu-1} t^{j-\nu} + t^j \Big) \leq C_1 \Big(k^{-j-1} + k^{-j+1} t \Big)$$

This concludes the proof for $k \ge 2\ell$. We note that for $1 \le k \le 2\ell$ (4.11) is obvious as $(1 - a_\ell(k, \theta))/(k(k+2\lambda)\theta^2)^\ell$ is bounded. (In any case the lemma is needed only for $k \ge k_0$ for some fixed k_0 .)

5. The proof of Theorem 4.1

We first state the realization result which will be used.

We define the operator $\eta_{a\theta}(f)$ using the function $\eta(x)$ satisfying $\eta(x) \in C^{\infty}(R_+)$, $\eta(x) = 1$ for $0 \le x \le 1$, and $\eta(x) = 0$ for $x \ge 2$. The operator $\eta_{a\theta}(f)$ is given by

$$\eta_{a\theta}(f) = \sum_{k=0}^{\infty} \eta(a\theta k) P_k(f)$$
(5.1)

where

$$f \sim \sum_{k=0}^{\infty} P_k(f).$$

Following [Ch-Di,Di], one can obtain the realization theorem by $\eta_{a\theta}(f)$, which is a De la Vallée Poussin-type operator.

Realization Theorem. For $f \in L_p(S^{d-1})$ and any positive a

$$K_{\ell}(f, \widetilde{\Delta}, \theta^{2\ell})_p \approx \|f - \eta_{a\theta}(f)\|_p + \theta^{2\ell} \|\widetilde{\Delta}^{\ell} \eta_{a\theta}(f)\|_p,$$
(5.2)

where $K_{\ell}(f, \tilde{\Delta}, \theta^{2\ell})_p$ is given in (4.1) and $\tilde{\Delta}$ is the Laplace–Beltrami operator.

The above theorem has a somewhat different statement than in [Ch-Di, Theorem 4.5] or [Di, Theorem 7.1] but the proof, and in fact the theorem itself, is the same.

Proof of Theorem 4.1. Following the proof of Theorem 3.1 and the realization result in this section, we have to show for some positive *a*

$$\|f - S_{\ell,\theta}(f)\|_p \ge C_1 \|f - \eta_{a\theta}(f)\|_p,$$

$$(5.3)$$

$$\|f - S_{\ell,\theta}(f)\|_p \ge C_2 \theta^{2\ell} \|\widetilde{\Delta}^\ell \eta_{a\theta}(f)\|_p$$
(5.4)

and

$$\|\eta_{a\theta}(f) - S_{\ell,\theta}(\eta_{a\theta}(f))\|_p \leqslant C_3 \theta^{2\ell} \|\widetilde{\varDelta}^\ell \eta_{a\theta}(f)\|_p.$$
(5.5)

To prove (5.3) it is sufficient to show

$$|f - \eta_{a\theta}(f) - (I + S_{\theta,\ell} + \ldots + S_{\theta,\ell}^4)(I - \eta_{a\theta})(f - S_{\theta,\ell}(f))||_p \leq C_4(\ell, p) ||f - S_{\theta,\ell}f||_p$$

$$(5.6)$$

as

$$\|(I+S_{\theta,\ell}+\cdots+S_{\theta,\ell}^4)(I-\eta_{a\theta})(f-S_{\theta,\ell}(f))\|_p \leq C_5 \|f-S_{\theta,\ell}(f)\|_p$$

since $S_{\theta,\ell}$ is a bounded operator.

To prove (5.6) we have to show that

$$\mu_{\ell}(k,\theta) = \left(1 - \eta(a\theta k)\right) \frac{a_{\ell}(k,\theta)^5}{1 - a_{\ell}(k,\theta)}$$

is a multiplier operator on $f \in L_p(S^{d-1})$. We note that for $k \leq \frac{1}{a\theta}$, $\mu_\ell(k, \theta) = 0$. We now recall that as the Cesàro summability of order *m* with $m > \frac{d-2}{2}$ is a bounded operator in $L_p(S^{d-1})$, $1 \leq p \leq \infty$, (see [Bo-Cl]), the condition for $\mu(k)$ to be a bounded multiplier operator is (see [Ch-Di] or [Be-Da-Di] or numerous other places)

$$\sum_{k=0}^{\infty} |\varDelta^{m+1}\mu(k)| \binom{k+m}{m} < M$$

For $\mu(k) = \mu_{\ell}(k, \theta)$ we note that for $k \ge \frac{1}{a\theta}$ i.e. $k\theta \ge \frac{1}{a}$ (4.6) implies

$$1 - a_{\ell}(k, \theta) \ge 1 - v_{d,\ell} > 0.$$

Therefore, using Lemma 4.3, we have for $k\theta \ge \frac{1}{a}$

$$|\Delta^{j}\mu_{\ell}(k,\theta)| \leq C_{6}\theta^{j} \left(\frac{1}{k\theta}\right)^{5\lambda}$$

We choose $m = \left[\frac{d}{2}\right] > \frac{d-2}{2}$, j = m+1, $\lambda = \frac{d-2}{2}$ and as $\binom{k+m}{m} \leqslant Ak^m$, we have $\left|\binom{k+m}{m} \Delta^{m+1} \mu_\ell(k,\theta)\right| \leqslant C_7 \theta^{\left[\frac{d}{2}\right]+1} k^{\left[\frac{d}{2}\right]} \left(\frac{1}{k\theta}\right)^{5\left(\frac{d}{2}-1\right)}$ $\leqslant C_7 \theta^{\left[\frac{d}{2}\right]-5\frac{d}{2}+6} k^{\left[\frac{d}{2}\right]-5\frac{d}{2}+5}.$

Using $[d/2] - 5\frac{d}{2} + 5 < -1$ for $d \ge 3$ and $\mu_{\ell}(k, \theta) = 0$ for $k \le \frac{1}{a\theta}$, we have

$$\sum \binom{k+[d/2]}{[d/2]} \left| \Delta^{[d/2]+1} \mu_{\ell}(k,\theta) \right| \leq M$$

To prove (5.5) we have to show that

$$\mu_{\ell}(k,\theta) = \frac{1 - a_{\ell}(k,\theta)}{\left(k(k+2\lambda)\theta^2\right)^{\ell}} \eta(a\theta k)$$

is a multiplier, or as $\mu_{\ell}(k, \theta)$ are finite, that for $m = \lfloor \frac{d}{2} \rfloor$

$$\sum_{k=k_0}^{\infty} |\Delta^{m+1} \mu_{\ell}(k,\theta)| k^m = \sum_{k=k_0}^{\left[\frac{2}{a\theta} + m + 1\right]} |\Delta^{m+1} \mu_{\ell}(k,\theta)| k^m < M$$
(5.7)

with *M* independent of θ . Using Lemmas 4.7 and 4.6(a) with $a_k = \frac{1-a_\ell(k,\theta)}{\left(k(k+2\lambda)\theta^2\right)^\ell}$ and $b_k = \eta(a\theta k)$, we derive (5.7) as $|\Delta^r b_k| \leq C(a\theta)^r$. To prove (5.4) we have to show that

$$\mu_{\ell}'(k,\theta) = \frac{\left(k(k+2\lambda)\theta^2\right)^{\ell}}{1 - a_{\ell}(k,\theta)} \eta(a\theta k)$$

also satisfies (5.7). We now use Lemmas 4.7 and 4.6(a) and (b) and replace a_k above by a_k^{-1} . We note that Lemma 4.6(b) is applicable as $a_k = \frac{1-a_\ell(k,\theta)}{\left(k(k+2\lambda)\theta^2\right)^\ell} \ge A > 0$ by (4.5). We further note that as $a_k^{-1} \ge C_1^{-1} > 0$ with C_1 of (4.5), (b) of Lemma 4.6 and mathematical induction imply that (4.11), which was proved for a_k , is valid for a_k^{-1} as well. \Box

References

- [Be-Da-Di] E. Belinsky, F. Dai, Z. Ditzian, Multivariate approximating averages, J. Approx. Theory 125 (2003) 85–105.
- [Bo-Cl] A. Bonami, J.L. Clerc, Sommes de Cesàro et multiplicateur de developpement en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973) 223–262.
- [Ch-Di] W. Chen, Z. Ditzian, Best approximation and *K*-functionals, Acta Math. Hungar. 75 (1997) 165–208.
 [Da] F. Dai, Some equivalence theorems with *K*-functionals, J. Approx. Theory 121 (2003) 143–157.
- [Di] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81 (4) (1998) 323–348.
- [Li-Ni] P.I. Lizorkin, S.M. Nikol'skii, Symmetric averaged difference on the sphere, Soviet Math. Dokl. 38 (1988) 251–254.
- [Ni-Li] S.M. Nikolskii, P.I. Lizorkin, Approximation of functions on the sphere, Izv. AN SSSR, Ser. Math. 51 (3) (1987) 635–651.
- [Ru] K.V. Rustamov, On equivalence of different moduli of smoothness on the sphere, Proc. Stekelov Inst. Math. 204 (3) (1994) 235–260.
- [St-We] E.M. Stein, G. Weiss, Introduction to Fourier Analysis in Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.
- [Sz] G. Szëgo, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 1959.