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Abstract. The best rate of approximation of functions on the sphere by
spherical polynomials is majorized by recently introduced moduli of smoothness.
The treatment applies to a wide class of Banach spaces of functions.

1. Introduction
For B, a Banach space of functions on the sphere
St ={z=(21,...,2q) s 23 +... + 25 =1},

new moduli of smoothnessw”(f,t) ; were recently introduced in [8]. w"(f,t) 5
is given by

(1.1) w"(f,t)B:sup{HA;fHB:peOt}, t=0
where A, f(2) = f(pr) — f(z), Apf(x) = Ap(A5~ f(x),

(1.2) O, = {pESO(d) : max p:v~:c§cost}

reSd—1
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172 F. DAI and Z. DITZIAN

and SO(d) is the collection of d x d orthonormal real matrices with determi-
nants equal to 1.
Some results were proved aboutw”(f,t) 5 in [8] under the condition on B

(13) 1£6) 5 = 17O 5 ¥0 e SO@

i.e. an operation by an element of SO(d) is an isometry, and in most situa-
tions under the condition

(1.4) [ f(o)=FfO)|lz =0 as [p—1]—=0

where |p — > = max ((pz —nz) - (pr —nz)). (Note that max (pz - z) =
resSe-

cost is equivalent to |p — I| < 2‘ sin%‘.) Of course when (1.4) fails, we may
consider By, the subspace of B for which (1.4) is satisfied, and majorizing by
w"(f,t) g, the interesting situation is when f € By, since otherwise w"(f,t) 5
is not o(1) as t — 0.

The space Hj, of spherical harmonic polynomials of degree k, is defined
by

(1.5) Hy={p: Ap=—k(k+d—2)p}

where A is the Laplace—Beltrami differential operator given, using the Lapla-
. o 82 82
ClanA(A—a—ﬁ—%——F@),by

(1.6) Af(z) = AF(z), for ze€S™' where F(z)=f (\;) .

The Laplace-Beltrami operator is the tangential component of the Laplacian
on S9!, We denote by

L) Bu(f)p= inf{Hf — 9l ¥ € Bspan ( U H)}

k<n

the rate of best n-th degree spherical harmonic approximation to f in the
Banach space B.

We do not assume Hyp C B for all k, in spite of the fact that in many
familiar cases this is so, since we do not use this fact. A simple example that
such an assumption is not always satisfied is

co dg oo dg
B = {f € Ly(S4 Yy f= Z Zak,ij,j’Z Zai,j < OO}

k=t j=1 k=t j=1
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where Y}, ; is an orthonormal basis of Hy,.
A Jackson-type estimate (or inequality) is

(13) Eu(fp <0 (1 i)B

We also assume B C L1 (S%1) with

(1.9)
1Nz, (sa-1y = I fllp for f € B, and g =0 a.e. in 541 implies ||g|| 5 = 0.

Traditionally, the second part of (1.9) is not stated but is implicit (see [10]
on S%1 and [11, p. 15] on T). As it is used in our paper, perhaps it is better
to state it explicitly.

For B = L,(S971), 1 £ p < o0, the Jackson inequality (1.8), using the
moduli given in (1.1) was proved in [9] (and in casep = oc for By = C(S971)).
Here we use the recent innovations in [6] and [10] as well as some new ideas to
give a simpler proof of the Jackson-type inequality which is at the same time
applicable to a much wider class of spaces than just Lp(Sd_l). A method
using a Marchaud-type inequality to convert a Jackson-type inequality for
r=1or r =2 to a Jackson-type inequality for higher r given here may also
be useful for other situations.

We find it surprising that the proof for evend (of S¢~1) is simpler and
yields a more general result than that for odd d. We deal with the case of
odd d as well, as we feel it is important. (After all we live on a dilation of
S9=1 for d = 3.)

It is clear that L, and Orlicz spaces on S9! satisfy the conditions on B
given in this paper. For other examples of interest we refer the reader to [10,
Section 7.

2. Result for even dimensions

Let My be the d x d (d even) matrix given by

cos@ sinf
—sin @ cos 6

cosf sinf
—sin @ cos 6
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Obviously My = I, (M)’ = Mg and (My)~! = M_gy. The average operator
S : L1(S41) — L1(S%1) is given (as usual) by

(2.2) Sof = Spf(x) = / f)dy(y), Spl=1
zy=cos 0

me

where dy is the measure on the set {y € S9! : x-y = cos#} induced by the
Lebesgue measure on 52 ({y: 2 -y = cosf} is an isorphic isometric map
of dilation on Sd*2) , and my is given by Sl = 1.

We now have the following result.

THEOREM 2.1. Suppose f € L1(S%™1), and d is even. Then we have
(23) Sif@) = [ QM) dQ
SO(d)

where dQ is the Haar measure on SO(d) normalized by fSO(d) dQ =1.

PROOF. For a fixed x € S9! the group
(2.4) SO(d—1,2) ={peSOd): px ==}

is an exact copy of SO(d — 2). Denote by du(p) = dus(p) the Haar measure
on SO(d — 1,z) normalized to satisfy fSO(dfl 2) du(p) = 1. Clearly we can

express Sy f(z) by

1

(2.5) Sof(x) = 1577 Jgas

f(zcosf+ysind) dy

where S92~ 892 ={yc S 1. 2.y =0} and |S9?| is the measure of
S9-2_ Using now the well-known fact

1
2.6) ——s dy = dQ = “12)4dQ,
26 g [ fwa= [ r@nie= [ @
we have
2.7) Sif() = [ F(o712) du(p)
SO(d—1,z)

for any z € S(z,0) = {y € S4': x-y =cosf}. (Note that up to this point
of the proof we did not use the fact that d is even and hence that part of the
proof will be applicable to the proof of the forthcoming Theorem 4.1.)
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We now observe that Q' MyQx € S(x,0) for all Q € SO(d) (d even) since
(Mpv) - v = cos 6 for all v € S9! and

(Q I MpQx) - x = (MpQz) - (Qz) = (Mpv) - v = cos .

We now use (2.7) (valid for any z € S(x,0)) with z = Q' MyQx for any
Q@ € SO(d), and integrate on @ € SO(d) to obtain

Sof(x) = / (o' Q  MyQa) dpu(p)
SO(d—1,z)

- / / '@ MyQw) dp(p) dQ
S0(d) JSO(d—1,z)

-/ | 5@ MiQpe) dQ ()
S0(d—1,2) J50(d)

- / / F(Q " MoQa) dO duip) = / HG MyO) dG
SO(d—1,2) JSO(d)

S0(d)

where we used Fubini’s theorem and px = = for the third equality, and the

change of variable Q= Qp together with the invariance under p of the Haar
measure for the fourth equality. O

COROLLARY 2.2. Suppose B is a Banach space of functions satisfying
(1.3), (1.4) and (1.9). Then Spf € B,

(2. 1S0£15 < 1715
and
(29) IS0f ~ fllp < g (70 < (£ 0.

PROOF. Since both L1(S% 1) and B satisfy (1.3) and (1.4), we can con-
sider the integral

/ H(Q ' MyQz) dQ
SO(d)

as a Riemann vector valued integral of a continuous B or L; valued function

F(Q 1 MyQw) of Q. Note that |Q1 — Q2| < & implies ‘ QflMng - Q;lMgQg‘
< 26. As the limits introduced by the Riemann integration are the same for
L1(S4') and B (and both exist), they are equal. Using (2.3) forL; and hence
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a.e., (1.9) implies Spf € B. We now use (1.3), and hence || f(Q~'MpQ)[|
= H f(‘)HB, to obtain

1S6f 11 < /S o 17@7 M@ 42 < 11

The inequality ||Sof — fllg = w(f,0)p follows from the above and (1.1) for
r = 1. To show the remainder of (2.9) we note that

/ HQ MpQ)dQ = [ Q7 M_gQa)dQ
S0(d)

S0(d)
- / FQM_gQ'2) dQ,
SO(d)

and use
IA2FN = [[(Tpr =20 +T,) f|| ; for T,f(x) = f(px),

p=Q 'MpyQ and p'=QM_ Q. O

Theorem 2.1 and Corollary 2.2 imply the boundedness of the Cesaro
summability of f. of some order, which in turn is crucial for many results
(see [4] and [7]).

For f € L1(S9!) where d = 3 and

(2.10) PA@ = [ S Veala Vsl ) d

where {Yk,i}?il is (any) orthonormal basis of Hj, given in (1.5), the Cesaro
summability of order § is given by
1

N
= Z AN Prf (x)
N k=0

(2.11) C% f(x)

where Ai = %. For 6 = ¢ with ¢ € N,

Av (o kY (o ket

AY N+1 N+0+1)°
For the Jackson inequality it is sufficient to deal with 6 = ¢ with some in-
teger £. However, the boundedness of the Cesaro summability for the wider

class of spaces B and § > % may be useful in the future and adds no addi-
tional difficulty here.
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THEOREM 2.3. For § > d%, d even and B C L1(S%™Y) satisfying (1.3)
and (1.4) we have

(2.12) Co(f.x) = /0 uo (0)Se(f,)dd; || Co(f )|l 5 < Cllfllg

with C =1if §>d—1.
REMARK 2.4. For B = L, (2.8) and (2.12) are well-known. For a some-
what less general space B, but for all d = 3, (2.8) and (2.12) were proved in
[10].
PROOF. In fact (2.12) is known for f € L1(S9!) with

(2.13) 12 (6) = m(S92)K? (cos #) sin 2 0
and

T -2
(2.14)/ ‘,ufl(ﬁ)‘d0§0 for 5>dT with C=1 for d>d—-1.
0

Using Corollary 2.2, Spf € B. Moreover, Spf is a continuous B valued
function on 0 since
01 — 6o
2

| Q7' Mp, Q@ — Q7' Mp,Q| = |My, — Mp,| = | My, My, — I| =2 |sin

Y

and hence
1So, f — So, fllB = / | F( Q' Mp, Q") — F(Q 1My, Q)| 5 dQ
SO(d)

is small when |01 — 02| is. Therefore, the integral in (2.12) can be construed
as a Riemann B valued integral and the inequality || Co(f, -)HB SClfllg
follows from (2.13) and (2.14). O

The Jackson-type estimate forr > 1 will be given in Section 6. Forr =1
it is given in the following section together with other applications.

3. Applications for the case of evend

In earlier papers results were given which would imply the Jackson in-
equality here (for even d and r = 1) if we assume in addition that spherical
harmonic polynomials are dense in B. For even d this is derived from (1.3)
and (1.4) in the following theorem.
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THEOREM 3.1. Suppose that B C L1(S*1) with even d > 3 and that B
o0
satisfies (1.3) and (1.4). Then span( U Hk) is dense in B.
k=0

PROOF. Using (2.7) and recalling [ 1(0) df = 1, we have

O3 (f,2) - f(z) = /0 " 18.0)(Solf, ) — f()) db,
and hence

€t = 10l 5 < [ 13O 150 = Flp o
0
n ™
= [ 1 @N1s0s = Tl do + [ @150 = £l
0 n

For appropriate (5((5 > %), we have [i|pd(0) d6 < [J7| d(0)] d6 < M (6)
and f; ‘ui(@)‘ df < e for n = no(6,n).
Recalling (2.8) and (2.9), we now have

1Ca(f.) = FOl 5 = M(5) sup 1S6f = flig+e-2lfll5
=7

< M(0)w(f,n)p + 2| fl -

Using (1.4), we may choose 1) so that w(f,n)z < €, and we then choose ng to
complete the proof. O

As a corollary of Theorems 2.1, 2.3 and 3.1 and Corollary 2.2, we may
use the results in [4] and [7] to obtain the following result.

THEOREM 3.2. Suppose B C L1(S* ) with even d > 3 and B satisfies
(1.3) and (1.4). Then for any f € B we have

(3.1) En(f)p £ CaKoa(f,An7%) ., a>0

B?

where
(32) Ksa(f,A,82) ,=inf (|If - gllz + 12 (=A)"g]| , : (-A)"g € B)
and

(3.3) (—=8)"g ~ > (klk +d — 2))*“Peg.
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PROOF. See Theorem 3.6 in [4] for integer o and Theorem 5.1 in [7] where
(3.1) is proved for fractional @. (In both places the result is more general and
proved in a more general setup.) O

We now prove the following strong converse inequality.

THEOREM 3.3. Suppose B C L1(S* ) with even d > 3 and B satisfies
(1.3) and (1.4). Then for f € B and |0] < Z;

2 o (20
(3.4 Her(MZ(—l)](g_j)Sjef

ProoF. The proof is the same as that of Theorem 4.1 of [6] as only
o0

(2.8), (2.12) and the density of span( U Hk) in B were used. (For L,,
k=1

~ KQZ(f73502£)B'
B

p = 00, it was shown that the result is valid as well but not interesting unless
f € C(8%1), in which case both sides of (3.4) tend to zero asf — 0.) O

We remark that the result (3.4) for £ =1 is sufficient for our purpose
below and that was proved for L,(S97!), 1 < p < oo, in [1].

For even d > 3 the Jackson-type estimate by the moduli of smoothness
given in (1.1) now follows from the previous theorems.

THEOREM 3.4. Suppose B C L1(S%™1) with even d >3 and B satisfies
(1.3) and (1.4). Then

(3.5) Eulf)p € Cu? (f,l) <200 (f,l) .
n/p n/p

PROOF. Combining Theorems 3.2 and 3.3 for/ = 1 with (2.9) of Corollary
2.2, we obtain our result. [

For B C Li(S%1) satisfying (1.3) and (1.4) denote by Br the space of
functions f € B for which T'f € B where the multiplier operator T induced
by the sequence {v}} is given by

(3.6) Tf~Y wPef for f~) PBf.
Define || f[| 5, by

(3.7) 15, = 1Fll5 + T Flp < oo

REMARK 3.5. We may replace the space B by Br in Theorems 2.1, 2.3,
3.1, 3.2, 3.3 and 3.4, as Br satisfies the exact same conditions. We note that
for odd d we will impose a condition on B which is not satisfied by Br.
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REMARK 3.6. We could have proved directly the estimate E,(f)g =
Cw(f ) by showing

(3. 194 = fl < 0 (£.7)

B

where
(3.9) Jf;(f,x):cmg/ K:(cos0)?sin?20Sy(f,z)do, Ji(1,2) =1
0

for some ¢ (say £ > d —1) or

(3.10) Vaf = fly < 0 (1.7

B

where

(3.11) Zn( )Pkf 2)

and n(t) € C*[0,00), n(t) =1 for t < 1 and n(t) = 0 for t = 2. Proving (3.8)
r (3.10), we do not need to prove Theorems 3.1, 3.2 or 3.3, but we believe

that Theorems 3.2 and 3.3 should be given in any case. If we deal withC% f,
we only obtain

(3.12) 647 = fllp < Clogn - (1.2 .
B

which is optimal, no matter how large ¢ is.
Note that it is sufficient to confirm the optimality of (3.12) just for

¢ > d — 1 for which the kernel ud () (mentioned in the proof of Theorem 3.1)
is positive. It is also sufficient to show it for some given space, and we choose
B = Lo (8% and for some given function f and we choose f(x1,...,Tq—1,2q)

= /1 =22 For f(z1,...,2q) = /1 — 22, w(f, 1) ~tand ||Sef — [l =

Simple calculations using the behaviour of the kernelud (#) (see Theorem 5.2)
yield ‘Cﬁf((), .,0,1) — 0‘ ~ n~tlogn. The proof that (3.12) is valid for all
B satisfying (1.3) and (1.4) is computational again using the behaviour of
pl(0) for £ >d—1.
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4. Basic results for odd dimensions

For a Banach space of functions on S%~! with odd dimension d we cannot
prove the results (2.3), (2.8), (2.9) and (2.12) without extra conditions. In
[10] (2.8) and (2.12) were proved for the class of functions SH BS satisfying
dual conditions to (1.3) and (1.4). Here we impose alongside (1.3) and (1.4)
the condition that our Banach space is lattice compatible (B is a Banach
lattice), that is

(4.1)
| f(2)] < |g(x)

In Section 7 we will compare the theorems resulting from assuming (4.1)
with those assuming that B is a SHBS space. It is an open question as to
whether the assumption that B € SHBS or that B satisfies (4.1) (see also
Remarks 4.5 and 5.5) are necessary for the proof of the Jackson inequality in
case d is odd.

The matrix My is a d X d orthogonal matrix having along the diagonal the

cosf sin 0) (d_

, g€ Band f € Li(S%") implies f € B and ||f| 5 < |9/l 5-

. 1 .- . .
matrices <_ sinf cosd ) Uz tlmes), with 1 the last entry on the diagonal

and all other entries equal to zero, that is

cosf sinf
—sinf cos 6

cos@ sin6
—sin @ cos 6
1

Define Ag(f,z) (which we denote by Agf when there is no danger of
confusion) for f € B C L1(S%!) (d odd) with B satisfying (1.3) and (1.4) by

_ -1 _
(43)  Ag(fiz) = /S o F (@7 M) dQ /SOM) iQ = 1.

The integral (4.3) is well-defined as a Riemann B valued integral since
|Q1 — Q2| < ¢ implies ‘QflMng — Q;lMgQg} < 20. We can now give an-
other useful description of Ag(f,x).

THEOREM 4.1. For f € L1(S%1)
w/2 J
(4.4) Ag(f,xz) = C/O cos? 2 ©Sy(p0)(fr2)dp  a.e.
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where Cfgr/Q cos?2pdp =1 and sin 31(p,0) = sin % cos. Moreover, for
f € B C Li(S%Y) with B satisfying (1.3), (1.4) and (1.9) we have

(4.5) 140 fllp = [/l 5
and
(4.6) [Aof = fllg = w(f.0)p-

Note that Sgf (and hence Sy, f) is defined by (2.2) on L1(S%"!) and

is a contraction in L;(S%1) and that the right hand side of (4.4) is defined
in Ly and hence a.e. (for z € S41). However, we can not show that f € B
implies Spf € B. Nevertheless, the integral on the right of (4.4) is in B if f
is because the integral on the right of (4.3) is and they are equal.

Proor. We follow essentially the geometric ideas in |9, Lemma 3.1] and
Theorem 2.1 here with different My. As in the proof of Theorem 2.1, we en-
dow the geometric ideas with analytic proof in the present more complicated
situation. Recall that (2.4), (2.5), (2.6) and (2.7) in the proof of Theorem 2.1

were proved without the assumption that d is even. Replace (2.7) by

(1.7 [t dule) = Suf(a)
SO(d—1,z)

for fixed z, f € Li(5971), SO(d—1,2) ={p e SO(d): px =z} and z €
S(z,9) ={y € ST 1: x-y=-cosy}. We now write for any p € SO(d — 1, 2)

I= / FQ'MQu)dQ = [ flp Q@ MyQr) dQ.
S0(d) SO(d)

Therefore,

I= “1o-'Mm, dQ dy,
/S o /S 7107 M) 4@l

- / / £ Q@ MyQa) dpa(p) dQ
S0(d) JSO(d—1,z)

where du,(p) is the Haar measure on SO(d — 1, x).
Using (4.7) with Q7' MyQx = 2, we have

I= / Sp(@-1MpQz-2) f () dQ
SO(d)
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where 1(t) = arccost. As (Q ' MpQzx) -z = (MpQx)-(Qx) = Mpy -y, we may

write
1 :/ Sy (May-y) f () dy.
Sdfl

Recalling (4.2) and writing y = (y1,...,%4), we have (Mpy) -y = (1—
y2) cosf + y3, and hence for a given v, cosyp = (1 —y3)cosd +y3. If we

set yq = sint with —§ < ¢ < 7, the measure of all y = (y1,...,yq) for which
yq = sint is proportional to cos? 2t (that is to the volume of (y1,...,yq_1)

for which yf + ... +y3 | = cos?t). Therefore, for ®(¢) such that cos ®(t) =

cos? t cos § + sin? ¢ for which ®(t) = ¥(Mpy - y) when yg = sint and y € S971,
we have

/2 /2
I1=C Sa) f () cos® 2 tdt = 2C / So)f(@) cos® 2t dt
—7/2 0

and as Sg()l =1 and Agl = 1, the constant C satisfies Cfl/r% cos® 2t dt
=1.

This completes the proof of (4.4). The integral in (4.3) is defined as a
Riemann vector valued integral with either L or B values (using (1.4) for B
and for L1(S%™1)). The limit is the same and is also equal to the right hand
side of (4.4) a.e. Using (1.3), this argument implies (4.5), and using (1.4)
together with (1.1), it implies (4.6). O

In the next section, we will prove the crucial boundedness of the Cesaro
summability, the Jackson inequality forr = 1 and other results following from
them. For this we need the following lemmas.

LEMMA 4.2. For f € L1(S%1), te (0,%) and a measurable function

m(0) satisfying sup |m(0)| < M(t) we have
6<[t/V/2,t]

&&\(/ m@&wwm4§CMmmuﬂo
t/\V2

,x) = CM(t)At(]f\,a:)

49) [ [ mO(Sa() 1) d8| £ CMWA( S0 - 5] 3)

PROOF. For a fixed ¢, t € (0, g) set sin w = sin % cosp = sing with

YP(p,t) € [0,7] and t € [0, 7], which implies 0 < § < ¢ < 7. We now have ’%|
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1 c059

d
251n251n<p and therefore for 0 < p < 7, d5§| > ismé > L. Using (4.4) and
ast—ewhencp—()ande_fwhentp—g we write

w/4
A OL) 21 [ st 8,00 (| £0)] )
w/4
ZQA Suton (1 £0)

C’
’w)d 2t2 (‘f

@) df

SO 1
Z 5 M@ //ﬂ|m(9)|39(\f(') @) df
LG 1 t
Z 275 i%0) t/ﬁm(@)Sg(f(-),x) d@'.
To obtain (4.9), replace f(y) by f(y) — f(z). O

LEMMA 4.3. Suppose f € L1(S9™") and m(0) is a measurable function
satisfying |m(0)| < M for 0 <0 <t. Then

(4.10)

/m )So(f, x) sin®~ 20d9‘ < CMti 122 Jd=1/2 4, “irg(If], ) -
7=0

PROOF. Recalling (4.7), we may write

! t
/ m(6)Sy(f, ) SindQQda‘ < M/ So(|f],x) sin®"20do
0 0

t2—39/2
§MZ/

o(If],2) (277/%) 2 ap

J+1)/2

< MOty " Ay (1)) 2702 O
=0

Using (4.5) and (4.6), we can deduce from Lemma 4.3 the following corol-
lary about By(f,z), the average on a cap of the sphere, i.e.
(4.11)
Bl =t [ pwaot) = s [ satrsnt0a
’ = N g = N ) )
! my (t) z-y2>cost Y Y m(t) 0 ?

Bt(l,x) = 1.
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COROLLARY 4.4. For f € B C L1(S%") with B satisfying (1.3), (1.4)
and (4.1) we have

(4.12) 1Btfllg = Clfllg
and
(4.13) |1Bef — fllg = Cw(f,t)p-

PROOF. Note that m(t) = Cmy (t) ~ t%tand that by (4.5) Ay /2, (| f],2)
€ Bif |f| € B, and using (4.1), |f| € B if f € B. Moreover, || ||| 5 = I/l
and || Ay—j/2, f|| 5 = |Ifllg- Therefore, using (4.10), % fot So(f,x)sin?20do
€ B and it satisfies (4.12). Following the same argument but using (4.9)
instead of (4.8), we have

I1Bef — fllp < C'max | Au(] £() = f(=)

) ||
We can now write

14u(170) = f@)]2) || = '

/) | £(Q ' MuQa) — f(2)] dQ
SO(d)

B
< -1 B _
= /So(d) | F(Q ' MuQz) — f(2)]| dQ S w(f,u)g. O

Remark that for odd d we were not able to prove that Sy f is bounded in
B using only (1.3), (1.4) and (4.1). The second author believes that under
these conditions Sp is a contraction on B.

REMARK 4.5. Corollary 4.4 is valid for Br given in (3.6) and (3.7) though
By does not satisfy (4.1). To justify this, we give the estimate on f € B and
on Tf € B separately. As T is a multiplier operator, it commutes with Ay,
Sp and By, which allows us to deal with f and T f separately. We will use
this method repeatedly in the next few sections.

5. Boundedness of Cesaro summability and its applications

In this section we prove the boundedness of the Cesaro summability in
B, the Jackson inequality for = 1 and some other applications.

THEOREM 5.1. Suppose B C L1(S*™1) with d = 3 and B satisfies (1.3),
(1.4) and (4.1). Then for § > d;QQ

(5.1) ICafll5 < CllS s
where CO(f,x) is given by (2.11).
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Recall that for even d, (5.1) was already proved (even without assuming

(4.1)).

Note that for the Jackson type result we need only to prove Theorem 5.1
for large enough 6. We prove (5.1) for the optimal § i.e. § > %2 for com-
pleteness. We need an estimate of the kernel of C2(f,z) proved by Bonami
and Clerc (based on the text by Szeg6 [12]). In |2, Corollaire (2.5), p. 234]
n,L,d(x,1) and x there is d — 1, n, 6 and cos® here. See also [13, Theo-
rem 2.3.8, p. 53].

THEOREM 5.2 (Bonami-Clerc). For K’ (cosf) given by

(5.2) CO(f,x) = / K?(cos ) sin?=2 0Sy(f, x) do
0
(for f € L1(S%1)) the following estimates hold.
I. For all 6
’Kfl(cos 9)} < contt,
II. For0<0 = 3
on'FE g1 5< ¢
‘Kg(cosﬁ)‘ < c2l
Cn_le_d, 5 z 5

I For 2 <6 <m—n""

Cn(d=2/2=8 (7 _ 9)—(d—2)/2’ §< g
‘Kz(COSG){ < Cn~Y(m — §)~ 419, g <§<d-1
Cn1, 0>d—1

IV. Form—n"' <0<

‘Kg(COSQ){ <

Cnt279 0<6<d—1
Cn~1, 0=>d—1.

PROOF OF THEOREM 5.1. Write for f € L;(S%1)

1/n w/2 W*% T
|Co(f,x)| = ‘{/ +/ +/ +/ 1 }Kg(cose) sin?=2 08y (f, z) df
0 1/n w/2 T—
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1/n /2 — ™
< {/ +/ +/ +/ }\K3<cos9>| sin 205 (||, x) do
0 1/n w/2 T

= L () + Iz(z) + I3(z) + L4(x).

Clearly, I;(z) € L1(S91). If we show that I;(z) € B and HIJ()H 5 = Cllflls;
(4.1) will imply CS(f,z) € B and (5.1). Using (I) of Theorem 5.2, we may ap-
ply Lemma 4.3 with t = 1 and m(0) = ‘Kg(cos 9)} < Cn?! to obtain Iy (z)
€ B and HIl(:v)HB S C||fllg- We now use II of Theorem 5.2 with % <6
<2 sin <0 for 6 < § and jo = max (j : n_12(j+1)/2) < 7, to obtain

2(i+1)/2,—1 uo
Lz)| £C J/ n‘z 095 0 Lsint2 5,
| Ir(x {Z e o(1f],2) do
/2
+/ Sg(|f|,x) do
/22
jO d—2 d—2 j d—2 2(j+1)/2n71
< 01{ Zn%—%—%Jr“lz%[(%)—é—l] / So(|f], ) do
= 2i/2p~1

s A5 (fl.e )}
Jo ] d
{Z 5 oz 2(j+1)/2n*1(|f|?x) +A7r/2(|f|7x) }7
=0

and as all terms are in B, we have H Ir(x H 5 =3 fll - For 5 = 6 the result
is simpler and in any case the result (5.1) being valid for&=2 < §< @ 5 implies

(5.1) for 6§ > ¢ 5 as it is a finite average of elements in B.
To estimate I3(x) and I4(x) note that

sin? 26 = sin2(7 — 0), Se—o(1fl,z) = So(If], —x)

and that A;(|f|, —z) € B satisfies || 4:(|f],—2)|| , < | fll for t £ 5. Simi-
larly, we now use 11l and IV of Theorem 5.2 to obtain

[5(2)]| p = Aslfllp and | L(@)]| 5 = Aallf -

(In fact, A3 =o(1) and Ay =0(1) asn —o0.) O
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To prove the Jackson inequality for r =1 recall the operator V,, f given
by (3.11) which satisfies

(5:3) Vafllg = Cllflls

for B satisfying (1.3), (1.4) and (4.1),

(5.4) Vof € Span{ U Hk}
0<k<2n
and
(5.5) Vip =¢ for goespan{ UHk}
k=0

While (5.4) and (5.5) are immediate and V,,f € L1(S% 1) when f €
L1(S971), one also has V,,f € B whenever f € B and (5.3) because of Theo-
rem 5.1. (It can also be proved directly.) Therefore,

(5.6) Vaf = fllg S (C+1)Eu(f)p and En(f)p < ||Vinya)f = f| -

We can now prove the Jackson inequality forr = 1.
THEOREM 5.3. For B C L1(S%1) satisfying (1.3), (1.4) and (4.1)

5.1) Eu(f)p < 0o (1.7

B

Proor. Using (5.6), it is sufficient to show that

(5.9 Vaf = flly < 0 (1.7

B
We further note that in (5.8) we may replace f by fi = f — A with any con-
stant A and choose A = erSO(d) f(Qx) dQ, and hence

(5.9) 1Allp = || f(z) = Al g S w(f,7)p.

In what follows we assume that (5.9) is satisfied by f, that is f is the fi
described above.
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For K, v (t) given by
(5 10)
/ Kny(z-y)fly)dy = C’/ K, v (cos 0) sin®2 08, (£, x) df
0
recall that (see [3, Lemma 3.3|)
(5.11) | K, v (cos8)| < J(O)n* (1 +no) ™"

for any integers ¢ (and we assume /¢ is large enough).
We now follow (4.9) of Lemma 4.2, (4.13) of Corollary 4.4 and the proof
of Theorem 5.1 to obtain

Va(fo2) — f(x)| S C /0 " Koy (cos0)] sin® 265 (| () — f(z)] ) dB

1/n w/2 ™
J 6){/ +/ +/ }nd‘l(lJrne)‘Z
0 1/n w/2

x sin® 2 0Sp(| f(-) = f(2)],

When we show I;(x) € B and H Ii( H 5= C’jw(f )B, we will complete the
proof. Using (4.9) and (4.13), we have

x)df = I (z) + L(z) + I3(x).

1/n
In@l < e [ wor-2usi(| 10~ fo)].2) b < Crotro

We now estimate Iz(x):

1 2(]+1>/2 1

/2
+/ _ nd—f—lsg(\f(-)—f(x)\,x)do}

19@jo+1)/2
n

,x) do

with jo = max (j . 200 +1)/2 < %"} Using (4.9),

Jo .
I(z) < 0(2){ > nd‘“‘lne‘dHT%“_dH)A%ymw (|£() = fx)| . 2)

§=0
+n AL (| £() (x)},x)}.
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Using || Au(] () — f(=)

@] < O 324000 (12000
j=0

,:U)HB < Cw(f,u)z, we obtain

which, as w(f.2u); € 2(f, )y (sce [8]), implies || Ix(x) , < Cow (1, 1),
for 4+ 1>d.
We now estimate I3(x):

Is(z) = /; | K, v (cos6)| sind*QG(Sg(]f\,m) + ‘f(:z:)})d&

/2
<of [T urts(in-a) ao+ L]}

and following the estimates above, we have

1
| 15@I| 5 < Ca 11l

Using (5.9) and (2.3) of [8], we now have

550 < Crgotim)s < Coo (1.7) . O

REMARK 5.4. Theorem 5.3 and condition (1.4) establish the density of
the spherical polynomials in B and hence, using Theorem 5.1, all the theo-
rems in [4] and [7] are applicable. However, the K-functionals representing
the moduli of smoothness in those papers are different fromw”(f,t) 5, and
we still have to prove the general Jackson inequality forr > 1.

REMARK 5.5. Theorems 5.1 and 5.3 are valid for the space Br following
the procedure mentioned in Remark 4.5.

6. Marchaud inequality and Jackson inequality

The Marchaud inequality on S?~! is given by the following theorem.

THEOREM 6.1. Suppose f € B, B is a Banach space of functions on S41
satisfying (1.3), and w"(f,t) g is given by (1.1) and (1.2). Then

A r+1
(6.1 Sippzer [ ey,

for any fized A and t < A.
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ProoF. (This was essentially proved in [8].) We use Theorem 3.1 of
[8], proved on page 195 there with ¢ = 1 for which (3.1) of [8] is simply the
triangle inequality. The proof in [8, p. 195] yields

oo ,r+l1 t
snpzer [T g

and as W (f, 1) g S WH(f, ) g for t = 7, (6.1) follows with A = 7. Validity
for any fixed A follows from (2.3) of [8]. O
REMARK 6.2. The above minor modification to Theorem 3.1 of [8] is valid

for any g there. Hence, in (3.2) of Theorem 3.1 of [8] the second term on the
right is redundant.

THEOREM 6.3. Suppose B is a Banach space of functions on S satis-
fying (1.3) and for ¢ large enough

(6.2) IChfllp < Clfllg-

Then

(6.3) Eu(f)p < Crw (f, 1) = 1! <f, 1)
n/p n/p

implies

(6.4) Ea(f)p < Cris” (f, i)B forall 721

where W"(f,t) g is given by (1.1) and (1.2) and E,(f)g by (1.7).

PROOF. As shown earlier (see [4]), (6.2) implies the existence of a multi-
plier operator V,, f satisfying (5.3), (5.4) and (5.5), and therefore (5.6). We
may assume that V,, f takes the form given in (3.11), but that is not necessary
as long as V), f is a multiplier operator. (All the operatorsV,, of de la Vallée-
Poussin type i.e. satisfying (5.3), (5.4) and (5.5) which we ever encountered
were multiplier operators.) We now prove by induction

(6.5) WVof — fllg = C(r)w" (f, 71l>3 forall feB and n=1.

Assuming (6.5) for r = k and all n, we set g = f — V,,f and write
g_V[%}g: f_an_Vv[%]f"_V[%]an: f_an =g
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Using (6.5) on g and (6.1), we have

1F = Vaflls = llglls = |9 = Vigj9| < Bz @)

n
2

1 wk+1(g, u)B

) o du
n

< k)t (g, ;)B <cmen™ [

L/n wk+1(

gvu)B —k
— du+ C(k)Cn /L/n

1 wk+1 (97 u)B

du
S|

1 L 11
< k+1 - - = ok+1
< ZO(k)Cw <g, n>B +COT 752 gl 5

Observe that C' and C(k) are constants independent of L,n and g, and
hence we may choose L > 1 so big that C’(/c)C’ﬁQ"€+1 <4 (If £2>1 the
second term does not appear.) Therefore, using

),
1

wk—i—l <g7 L) § (L + 1)k+1wk+l <g’
B
2
©6) 17~ Vaflls = loly S RO+ 1A (07)
B

SERS

n
(see [8]) we have

n
1/k

Note that L = (2¥72C(k)C) /" will do in (6.6) and is not dependent onn, g
or f. Since T,V,,.f = V,,T,,f for any n and p € SO(d), we have

Wt (g u) g S WL fLu) g + KLV f u) 5
é wk+1(f7 U)B + Awk+1(f7 u)Ba

and hence (6.5) for r = k + 1 follows. O

Using Theorems 2.3, 3.1, 5.1, 5.3, [4, Theorem 2.2] and |7, Theorem 3.2],
we have for any B C L;(S%1) satisfying (1.3) and (1.4) and for odd dimen-
sion (4.1) the Bernstein-type inequality

(6.7) I (—A)agonH By < CnMHsOnHBT for ¢, € span U Hy.
k=0

Here we obtain also the following Bernstein-type inequality.
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THEOREM 6.4. For B C L1(S%) which satisfies (1.3), (1.4) and (4.1)

we have
(2) oo

PROOF. Actually we may repeat the proof in [10, Theorem 6.3] verbatim.
Note that we use there only the boundedness of V,,f, its kernel and (5.1).
O

n
= Cn'|lenllg,s for ¢n € span U Hy.

(6.8) ‘ max
Br k=0

Elx

We can now prove

THEOREM 6.5. For f € B C L1(S%1) which satisfies (1.3), (1.4) and
(4.1)

(6.9)
o (£7) it (17 =l 7 x| Sato)]| ) = Kt
and
610) w (£,1) ~If - eullp+n" ||max| 2 KX (f,n)
. — | =|f—¢n X|=—wenl|l = :
'n)g Prlls e |oer? B r B

n
where @y, is the best (or near best) approximant to f in Span( U Hk)
k=1

Proor. As K,.(f,n™")p S K} (f,n™")p, it is sufficient to show (I)
w’"(f, %)B S K, (f,n")g and (II) K} (f,n ") = w’“(f, %)B' To prove (I)
it is sufficient to show w” (g, %)B < n_TH maxe | 4 ‘%g(x)‘ HB which follows
[9, p. 28] as the integral in (8.13) there can be considered as a Banach valued
Riemann integral. To prove (II) we note first that || f — ¢n||g = w’"(f, %)B
by Theorem 6.3. We then follow word for word the proof in [9, p. 27]. O

7. Comparisons and concluding remarks

In a recent article [10] the condition on the space B was that B € SHBS,
that is, the space B, besides satisfying (1.3), (1.4), and B C L1(S%1), also

satisfies C™(S%1) C B, and B can be represented as a space of functions on
SO(d) which satisfy

(7.1) I Conll s = [FCvalll g wr,02 € 57
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and
(7.2) | f(v) - f(u)HB —0 as |u—v|—0.

Here it was already shown that for evend the extra conditions ((7.1) and

(7.2)) are not needed. For odd d we replaced (7.1), (7.2) and C™(S4"!) c B
by having the space described as By (given by (3.7)) with B satisfying (4.1).
We do not have a good natural example which differentiates between these
spaces of functions. To compare the two sets of conditions we observe that:

(I) The condition here ((4.1) on B) is not enough for us to show that Sy
is a bounded operator on B for odd d.

(IT) On the other hand, for the proof of the equivalence betweenw” (f, 1) 5
and the appropriate K-functionals or for the proof of the realization result
we needed (4.1) anyway.

While the Jackson-type result was not proved for B € HSBS for odd d,
it now follows from other ideas in this paper.

THEOREM 7.1. For f € B, B satisfying (1.3), (1.4), (7.1), (7.2) and
(7.3) cm™(8Y c Bc Li(84Y), d>3
(for some m) we have

(7.4) Ey(f)p = CW'(f,1/n)p.

PrOOF. For even d (7.4) follows from Theorems 2.3, 3.4 and 6.3. Using
Theorem 6.3, it is enough to prove (7.4) forr = 1. For odd d the operator
Apf = Ap(f,x) given in (4.3) satisfies (4.5) and (4.6), and hence we need to
show only

(7.5) En(f)p = Cillf = Aty

Using V,,.f given by (3.11) which is well defined for our space as ||C%f| 5
< Cq| fl g for some ¢ as shown in [10], it is sufficient to show

(7.6) If = Vaflls = Csllf = A fll 5

To prove (7.6) we follow the proof of (5.3) in [6] observing that the mul-
tiplier result needed (used there for L,(S%1)) is valid for B € SHBS (see

Theorem 5.1 of [10]), and in fact whenever one can show ||C%fllz < C|lfll 5
for some £. Using the description of Agf in Theorem 4.1, Ay f is a multiplier
operator with

w/2
mg(0) = C/O cos?2 goPk)‘(cos (0, <p)) dy,

where P)(t) are the ultraspherical polynomials with A = 432, The rest of the
proof now follows [6]. O
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REMARK 7.2. In all theorems of this paper w"(f,t)5 can be replaced by

(7.6) Wi(fit)p = sup {||A5flp: 6 =QMQ ™", Q€ SO(d)}
0<6<t

where My is given by (2.1) for even d and by (4.2) for odd d. In fact we
use only such matrices in this paper. In Section 6 we used the Marchaud
inequality of [8, Theorem 3.1] and w"(f,2t)5 < 2"wW"(f,t)z, both valid for
wi(f,t) g as well.
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