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Abstract

For a family of weight functions invariant under a finite reflection group, the boundedness of a maximal
function on the unit sphere is established and used to prove a multiplier theorem for the orthogonal ex-
pansions with respect to the weight function on the unit sphere. Similar results are also established for the
weighted space on the unit ball and on the standard simplex.
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1. Introduction

The purpose of this paper is to study the maximal function in the weighted spaces on the
unit sphere and the related domains. Let Sd = {x: ‖x‖ = 1} be the unit sphere in R

d+1, where
‖x‖ denotes the usual Euclidean norm. Let 〈x, y〉 denote the usual Euclidean inner product. We
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consider the weighted space on Sd with respect to the measure h2
κ dω, where dω is the surface

(Lebesgue) measure on Sd and the weight function hκ is defined by

hκ(x) =
∏

v∈R+

∣∣〈x, v〉∣∣κv , x ∈ R
d+1, (1.1)

in which R+ is a fixed positive root system of R
d+1, normalized so that 〈v, v〉 = 2 for all v ∈ R+,

and κ is a nonnegative multiplicity function v �→ κv defined on R+ with the property that κu = κv

whenever σu, the reflection with respect to the hyperplane perpendicular to u, is conjugate to σv

in the reflection group G generated by the reflections {σv: v ∈ R+}. The function hκ is invariant
under the reflection group G. The simplest example is given by the case G = Z

d+1
2 for which hκ

is just the product weight function

hκ(x) =
d+1∏
i=1

|xi |κi , κi � 0, x = (x1, . . . , xd+1). (1.2)

Denote by aκ the normalization constant, a−1
κ = ∫

Sd h2
κ(y) dω(y). We consider the weighted

space Lp(h2
κ ;Sd) of functions on Sd with the finite norm

‖f ‖κ,p :=
(

aκ

∫
Sd

∣∣f (y)
∣∣ph2

κ(y) dω(y)

)1/p

, 1 � p < ∞,

and for p = ∞ we assume that L∞ is replaced by C(Sd), the space of continuous functions on
Sd with the usual uniform norm ‖f ‖∞.

The weight function (1.1) was first studied by Dunkl in the context of h-harmonics, which are
orthogonal polynomials with respect to h2

κ . A homogeneous polynomial is called an h-spherical
harmonics if it is orthogonal to all polynomials of lower degree with respect to the inner product
of L2(h2

κ ;Sd). The theory of h-harmonics is in many ways parallel to that of ordinary harmonics
(see [5]). In particular, many results on the spherical harmonics expansions have been extended
to h-harmonics expansions, see [3–5,8,12,13] and the references therein. Much of the analysis
of h-harmonics depends on the intertwining operator Vκ that intertwines between Dunkl opera-
tors, which are a commuting family of first order differential–difference operators, and the usual
partial derivatives. The operator Vκ is a uniquely determined positive linear operator. To see
the importance of this operator, let Hd+1

n (h2
κ ) denote the space of h-harmonics of degree n; the

reproducing kernel of Hd+1
n (h2

κ ) can be written in terms of Vκ as

P h
n (x, y) = n + λk

λκ

Vκ

[
Cλk

n

(〈x, ·〉)](y), x, y ∈ Sd, (1.3)

where Cλ
n is the nth Gegenbauer polynomial, which is orthogonal with respect to the weight

function wλ(t) := (1 − t2)λ−1/2 on [−1,1], and

λκ = γκ + d − 1

2
with γκ =

∑
κv. (1.4)
v∈R+



F. Dai, Y. Xu / Journal of Functional Analysis 249 (2007) 477–504 479
Furthermore, using Vκ , a maximal function that is particularly suitable for studying the h-
harmonic expansion is defined in [13] by

Mκf (x) := sup
0<θ�π

∫
Sd |f (y)|Vκ [χB(x,θ)](y)h2

κ (y) dω(y)∫
Sd Vκ [χB(x,θ)](y)h2

κ (y) dω(y)
, (1.5)

where B(x, θ) := {y ∈ Bd+1: 〈x, y〉 � cos θ}, Bd+1 := {x: ‖x‖ � 1} ⊂ R
d+1, and χE denotes

the characteristic function of the set E. A weak type (1,1) inequality was established for Mκf

in [13]. The result, however, is weaker than the usual weak type (1,1) inequality and it does
not imply the strong (p,p) inequality. One of our main results in this paper is to establish a
genuine weak type (1,1) result, for which we rely on the general result of [9] on semi-groups of
operators. Furthermore, the Fefferman–Stein type result∥∥∥∥(∑

j

|Mκfj |2
)1/2∥∥∥∥

κ,p

� c

∥∥∥∥(∑
j

|fj |2
)1/2∥∥∥∥

κ,p

also holds, which can be used to derive a multiplier theorem for h-harmonic expansions, follow-
ing the approach of [1]. These results are presented in Section 2.

In the case of Z
d+1
2 , the explicit formula of Vκ as an integral operator is known, which allows

us to link the maximal function Mκf with the weighted Hardy–Littlewood maximal function
defined by

Mkf (x) := sup
0<θ�π

∫
c(x,θ)

|f (y)|h2
κ (y) dω(y)∫

c(x,θ)
h2

κ (y) dω(y)
, (1.6)

where c(x, θ) := {y ∈ Sd : 〈x, y〉 � cos θ} is the spherical cap. We will show that the maximal
function Mκf is bounded by a sum of the Hardy–Littlewood maximal function Mκf . As a
consequence, we establish a weighted weak (1,1) result for Mkf (x), in which the weight is
also of the form (1.2) but with different parameters. Furthermore, we show that the Fefferman–
Stein type inequality holds in the weighted Lp norm. These results are discussed in Section 3.

The analysis on the sphere is closely related to the analysis on the unit ball Bd and on the
standard simplex T d . In fact, much of the results on the later two cases can be deduced from those
on the sphere (see [5,12,13] and the references therein). In particular, maximal functions are also
defined on Bd and T d in terms of the generalized translation operators [13]. We will extend our
results on the sphere in Section 2 to these two domains, including a multiplier theorem for the
orthogonal expansions in the weighted space on Bd and T d , in Sections 4 and 5, respectively.

Throughout this paper, the constant c denotes a generic constant, which depends only on the
values of d , κ and other fixed parameters and whose value may be different from line to line.
Furthermore, we write A ∼ B if A � cB and B � cA.

2. Maximal function and multiplier theorem on Sd

2.1. Background

In this subsection we give a brief account of what will be needed later on in the paper. For
more background and details, we refer to [5,12,13].
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h-Harmonic expansion. Let Hd+1
n (h2

κ ) denote the space of spherical h-harmonics of degree n.
It is known that dimHd+1

n (h2
κ ) = (

n+d+1
n

) − (
n+d−1

n−2

)
. The usual Hilbert space theory shows that

L2(h2
k;Sd

) =
∞∑

n=0

Hd+1
n

(
h2

κ

)
: f =

∞∑
n=0

projκn f,

where projκn :L2(h2
κ ;Sd) �→ Hd+1

n (h2
κ ) is the projection operator, which can be written as an

integral operator

projκn f (x) = aκ

∫
Sd

f (y)P h
n (x, y)h2

κ (y) dω(y), (2.1)

where P h
n is the reproducing kernel of Hd+1

n (h2
κ ), which satisfies the compact representa-

tion (1.3).

Intertwining operator. For a general reflection group, the explicit formula of Vκ is not known.
In the case of Z

d+1
2 , it is an integral operator given by

Vκf (x) = cκ

∫
[−1,1]d+1

f (x1t1, . . . , xd+1td+1)

d+1∏
i=1

(1 + ti )
(
1 − t2

i

)κi−1
dt, (2.2)

where cκ is the normalization constant determined by Vκ1 = 1. If some κi = 0, then the formula
holds under the limit relation

lim
λ→0

cλ

1∫
−1

f (t)(1 − t)λ−1 dt = [
f (1) + f (−1)

]
/2.

Convolution. For f ∈ L1(h2
κ ;Sd) and g ∈ L1(wλκ ; [−1,1]), define [12, Definition 2.1, p. 6]

f 
κ g(x) := aκ

∫
Sd

f (y)Vκ

[
g
(〈x, ·〉)](y)h2

κ (y) dω(y). (2.3)

This convolution satisfies the usual Young’s inequality (see [12, Proposition 2.2, p. 6]): for
f ∈ Lq(h2

κ ;Sd) and g ∈ Lr(wλκ ; [−1,1]), ‖f 
κ g‖k,p � ‖f ‖k,q‖g‖wλκ ,r , where p,q, r � 1
and p−1 = r−1 + q−1 − 1. For κ = 0, Vκ = id , this becomes the classical convolution on the
sphere [2]. Notice that by (1.3) and (2.1), we can write projκn f as a convolution.

Cesàro (C, δ) means. For δ > 0, the (C, δ) means, sδ
n, of a sequence {cn} are defined by

sδ
n = (

Aδ
n

)−1
n∑

Aδ
n−kck, Aδ

n−k =
(

n − k + δ

n − k

)
.

k=0
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We denote the nth (C, δ) means of the h-harmonic expansion by Sδ
n(h

2
κ ;f ). These means can be

written as

Sδ
n

(
h2

κ ;f ) = (
f 
κ qδ

n

)
(x), qδ

n(t) = (
Aδ

n

)−1
n∑

k=0

Aδ
n−k

(k + λ)

λ
Cλ

k (t),

where λ = λκ . The function qδ
n(t) is the kernel of the (C, δ) means of the Gegenbauer expansions

at x = 1.

Generalized translation operator T κ
θ . This operator is defined implicitly by [12, p. 7]

cλ

π∫
0

T κ
θ f (x)g(cos θ)(sin θ)2λ dθ = (f 
κ g)(x), (2.4)

where g is any L1(wλ) function and λ = λκ . The operator T κ
θ is well defined and becomes the

classical spherical means

Tθf (x) = 1

σd(sin θ)d−1

∫
〈x,y〉=cos θ

f (y) dω(y),

when κ = 0, where σd = ∫
Sd−1 dω = 2πd/2/�(d/2) is the surface area of Sd−1. Furthermore,

T κ
θ satisfies similar properties as those satisfied by Tθ , as shown in [12,13]. In particular, if

f (x) = 1, then T κ
θ f (x) = 1.

Spherical caps. Let d(x, y) := arccos 〈x, y〉 denote the geodesic distance of x, y ∈ Sd . For
0 � θ � π , the set

c(x, θ) := {
y ∈ Sd : d(x, y) � θ

} = {
y ∈ Sd : 〈x, y〉 � cos θ

}
is called the spherical cap centered at x. Sometimes we need to consider the solid set under the
spherical cap, which we denote by B(x, θ) to distinguish it from c(x, θ); that is,

B(x, θ) := {
y ∈ Bd+1: 〈x, y〉 � cos θ

}
,

where Bd+1 = {y ∈ R
d+1: ‖y‖ � 1}.

Maximal function. For f ∈ L1(h2
κ ), define [13]

Mκf (x) := sup
0<θ�π

∫ θ

0 T κ
φ |f |(x)(sinφ)2λκ dφ∫ θ

0 (sinφ)2λκ dφ
.

This maximal function can be used to study the h-harmonic expansions, since we can often prove
|(f 
κ g)(x)| � cMκf (x). Using (2.4) it is shown in [13] that an equivalent definition for Mκf

is (1.5); that is,

Mκf (x) = sup

∫
Sd |f (y)|Vκ [χB(x,θ)](y)h2

κ (y) dω(y)∫
d Vκ [χB(x,θ)](y)h2(y) dω(y)

. (2.5)

0<θ�π S κ
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We note that setting f (x) = 1 and g(t) = χ[cos θ,1](t) in (2.4) leads to

aκ

∫
Sd

Vκ [χB(x,θ)](y)h2
κ (y) dω(y) = cλκ

θ∫
0

(sinφ)2λκ dφ ∼ θ2λκ+1. (2.6)

2.2. Maximal function

To state the weak type inequality, we define, for any measurable subset E of Sd , the measure
with respect to h2

κ as

measκ E :=
∫
E

h2
κ(y) dω(y).

Our main result in this section is the boundeness of Mκf .

Theorem 2.1. If f ∈ L1(h2
κ ;Sd), then Mκf satisfies

measκ

{
x: Mκf (x) � α

}
� c

‖f ‖κ,1

α
, ∀α > 0. (2.7)

Furthermore, if f ∈ Lp(h2
κ ;Sd) for 1 < p � ∞, then ‖Mkf ‖κ,p � c‖f ‖κ,p .

The inequality (2.7) is usually refereed to as weak type (1,1) inequality. In order to prove
this theorem, we follow the approach of [9] on general diffusion semi-groups of operators on a
measure space. For this we need the Poisson integral with respect to h2

κ , which can be written as
[5, Theorem 5.3.3, p. 190]

P κ
r f (x) = f 
κ pκ

r , where pκ
r (s) = 1 − r2

(1 − 2rs + r2)λk+1
. (2.8)

The kernel pκ
r is one of the generating function of the Gegenbauer polynomials of parameter λκ .

Hence, by (1.3), we can write P κ
r f as

P κ
r f (x) =

∞∑
n=0

rn projκn f (x), 0 � r < 1,

from which it follows easily that T t := P κ
r f with r = e−t defines a semi-group. Since Vκ is

positive and pκ
r is clearly non-negative, P κ

r f � 0 if f � 0. We see that the semi-group P κ
e−t f is

positive. We will need another semi-group, which is the discrete analog of the heat operator:

Hκ
t f := f 
κ qκ

t , qκ
t (s) :=

∞∑
e−n(n+2λκ )t n + λκ

λκ

Cλκ
n (s). (2.9)
n=0
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In fact, the h-harmonics in Hd+1
n (h2

κ ) are the eigenfunctions of an operator �h,0, which is the
spherical part of a second order differential–difference operator analogous to the ordinary Lapla-
cian, the eigenvalues are −n(n + 2λk). It follows immediately from (2.9) that {Hκ

t }t�0 is a
semi-group. The following result is the key for the proof of the theorem.

Lemma 2.2. The Poisson and the heat semi-groups are connected by

P κ
e−t f (x) =

∞∫
0

φt (s)H
κ
s f (x) ds, (2.10)

where

φt (s) := t

2
√

π
s−3/2e

−( t
2
√

s
−λκ

√
s )2

.

Furthermore, assume that f (x) � 0 for all x, then for all t > 0,

P κ∗ f (x) := sup
0<r<1

P κ
r f (x) � c sup

s>0

1

s

s∫
0

Hκ
u f (x)du. (2.11)

Consequently, P κ∗ f is bounded on Lp(h2
κ ;Sd) for 1 < p � ∞ and of weak type (1,1).

Proof. That {Hκ
t }t�0 is a semi-group is obvious. Moreover, since Vκ is positive and qκ

t is known
to be non-negative [7], it follows that Hκ

t f is positive. The positivity shows that ‖qκ
t ‖wλκ ,1 = 1,

so that ‖Hκ
t f ‖κ,p � ‖f ‖κ,p , 1 � p � ∞, by applying Young’s inequality on f 
κ qκ

t . Thus,
using the Hopf–Dunford–Schwarz ergodic theorem [9, p. 48], we conclude that the maximal
operator sups>0(

1
s

∫ s

0 Hκ
u f (x)du) is bounded on Lp(h2

κ ;Sd) for 1 < p � ∞ and of week type
(1,1). Therefore, it is sufficient to prove (2.10) and (2.11).

First we prove (2.10). Applying the well-known identity [9, p. 46]

e−v = 1√
π

∞∫
0

e−u

√
u

e− v2
4u du, v > 0,

with v = (n + λκ)t and making a change of variable s = t2/4u, we conclude that

e−nt = eλκ t 1√
π

∞∫
0

e−u

√
u

e− n(n+2λκ )t2
4u e− λ2

κ t2

4u du

= t

2
√

π

∞∫
0

e−n(n+2λκ )ss−3/2e
−( t

2
√

s
−λκ

√
s )2

ds

=
∞∫

0

e−n(n+2λκ )sφt (s) ds.

Multiplying by projκn f and summing up over n proves the integral relation (2.10).
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For the proof of (2.11), we use (2.10) and integration by parts to obtain

P κ
e−t f (x) = −

∞∫
0

( s∫
0

Hκ
u f (x)du

)
φ′

t (s) ds

� sup
s>0

(
1

s

s∫
0

Hκ
u f (x)du

) ∞∫
0

s
∣∣φ′

t (s)
∣∣ds,

where the derivative of φ′
t (s) is taken with respect to s. Also, we note that by (2.8) and (2.3),

sup
0<r�e−1

P κ
r f (x) � c‖f ‖1,κ = c lim

s→∞
1

s

s∫
0

Hκ
u

(|f |)(x) du.

Therefore, to finish the proof of (2.11), it suffices to show that sup0<t�1

∫ ∞
0 s|φ′

t (s)|ds is
bounded by a constant.

A quick computation shows that φ′
t (s) > 0 if s < αt and φ′

t (s) < 0 if s > αt , where

αt := t2

3 + √
9 + 4λ2

κ t2
∼ t2, 0 � t � 1.

Since the integral of φt (s) over [0,∞) is 1 and φt (s) � 0, integration by parts gives

∞∫
0

s
∣∣φ′

t (s)
∣∣ds = 2αtφt (αt ) −

αt∫
0

φt (s) ds +
∞∫

αt

φt (s) ds

� 2αtφt (αt ) + 1 = t√
παt

e
− (t−2λκ αt )

2

4αt + 1 � c

as desired. �
We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. From the definition of pκ
r , it follows easily that if 1 − r ∼ θ , then

pκ
r (cos θ) = 1 − r2

((1 − r)2 + 4r sin2 θ
2 )λκ+1

� c
1 − r2

((1 − r)2 + rθ2)λκ+1
� c (1 − r)−(2λκ+1).

For j � 0 define rj := 1 − 2−j θ and set Bj := {y ∈ Bd+1: 2−j−1θ � d(x, y) � 2−j θ}. The
lower bound of pκ

r proved above shows that

χBj
(y) � c

(
2−j θ

)2λk+1
pκ

r

(〈x, y〉),

j
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which implies immediately that

χB(x,θ)(y) �
∞∑

j=0

χBj
(y) � cθ2λk+1

∞∑
j=0

2−j (2λκ+1)pκ
rj

(〈x, y〉).
Since Vκ is a positive linear operator, applying Vκ to the above inequality gives∫

Sd−1

∣∣f (y)
∣∣Vκ [χB(x,θ)](y)h2

κ (y) dω(y)

� cθ2λκ+1
∞∑

j=0

2−j (2λκ+1)

∫
Sd−1

∣∣f (y)
∣∣Vκ

[
prj

(〈x, y〉)](y)h2
κ (y) dω(y)

= cθ2λκ+1
∞∑

j=0

2−j (2λκ+1)P κ
rj

(|f |;x)
� cθ2λκ+1 sup

0<r<1
P κ

r

(|f |;x)
.

Dividing by θ2λκ+1 and using (2.6), we have proved that Mκf (x) � cP κ∗ |f |(x). The desired
result now follows from Lemma 2.2. �

A weighted maximal function, call it Mκf , on R
d is defined in [11] in terms of a transla-

tion that is defined via Dunkl transform, the analogue of Fourier transform for the weighted
L2(h2

κ ;R
d). The translation can be expressed in term of Vκ when acting on radial functions. The

boundedness of the maximal function Mκf was established in [11]. Although the relation be-
tween the maximal function Mκf and Mκf is not known at this moment, it should be pointed
out that our proof of Theorem 2.1 follows the line of argument used in the proof of [11].

2.3. A multiplier theorem

As an application of the above result we state a multiplier theorem. Let �g(t) = g(t + 1) −
g(t) and �k = �k−1�.

Theorem 2.3. Let {μj }∞j=0 be a sequence of real numbers that satisfies

(1) supj |μj | � c < ∞,

(2) supj 2j (k−1)
∑2j+1

l=2j |�kul | � c < ∞,

where k is the smallest integer � λκ + 1. Then {μj } defines an Lp(h2
κ ;Sd), 1 < p < ∞, multi-

plier; that is, ∥∥∥∥∥
∞∑

j=0

μj projκj f

∥∥∥∥∥
κ,p

� c‖f ‖κ,p, 1 < p < ∞,

where c is independent of μj and f .
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When κ = 0, the theorem becomes part of [1, Theorem 4.9] on the ordinary spherical har-
monic expansions. The proof of this theorem follows that of the theorem in [1]. One of the main
ingredient is the Littlewood–Paley function

g(f ) =
( 1∫

0

(1 − r)

∣∣∣∣ ∂

∂r
P κ

r f

∣∣∣∣2

dr

)1/2

, (2.12)

where P κ
r f is the Poisson integral with respect to h2

κ defined in (2.8). A general Littlewood-
Paley theory was established in [9] for a family of diffusion semi-group of operators {T t }t�0 on
a measure space, in which the g function is defined as

g1(f ) =
( ∞∫

0

t

∣∣∣∣ ∂

∂t
T tf

∣∣∣∣2

dt

)1/2

.

Applying the general theory to T t := P κ
r f with r = e−t and using the fact that the crucial point

in the definition of g(f ) is when r close to 1, it follows that

c−1‖f ‖κ,p �
∥∥g(f )

∥∥
κ,p

� c‖f ‖κ,p, 1 < p < ∞, (2.13)

for f ∈ Lp(h2
κ ;Sd), where the inequality in the left-hand side holds under the additional assump-

tion that
∫
Sd f (y)h2

κ (y) dy = 0. Another ingredient of the proof is the Cesàro means. Recall that
the (C, δ) means are denoted by Sδ

n(h
2
κ ;f ). What is needed is the following result.

Theorem 2.4. For δ > λκ , 1 < p < ∞ and any sequence {nj } of positive integers,

∥∥∥∥∥
( ∞∑

j=0

∣∣Sδ
nj

(
h2

κ ;fj

)∣∣2

)1/2∥∥∥∥∥
κ,p

� c

∥∥∥∥∥
( ∞∑

j=0

∣∣fj

∣∣2

)1/2∥∥∥∥∥
κ,p

. (2.14)

Proof. The proof of (2.14) follows the approach of [9, pp. 104–105] that uses a generalization
of the Riesz convexity theorem for sequences of functions. Let Lp(�q) denote the space of all
sequences {fk} of functions for which the norm

∥∥(fk)
∥∥

Lp
(
�q

) :=
( ∫

Sd

( ∞∑
j=0

∣∣fj (x)
∣∣q)p/q

h2
κ (x) dω(x)

)1/p

is finite. If T is bounded as operator on Lp0(�q0) and on Lp1(�q1), then the Riesz convexity
theorem states that T is also bounded on Lpt (�qt ), where

1 = 1 − t + t
,

1 = 1 − t + t
, 0 � t � 1.
pt p0 p1 qt q0 q1
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We apply this theorem on the operator T that maps the sequence {fj } to the sequence
{Sδ

nj
(h2

κ ;fj )}. It is shown in [13, pp. 76 and 78] that supn|Sδ
n(h

2
κ ;f )(x)| � cMκf (x) for all

x ∈ Sd if δ > λκ . Consequently, T is bounded on Lp(�p). It is also bounded on Lp(�∞) since∥∥∥sup
j�0

∣∣Sδ
nj

(
h2

κ ;fj

)∣∣∥∥∥
κ,p

� c

∥∥∥Mκ

(
sup
j�0

|fj |
)∥∥∥

κ,p
� c

∥∥∥sup
j�0

|fj |
∥∥∥

κ,p
.

Hence, the Riesz convexity theorem shows that T is bounded on Lp(�q) if 1 < p � q � ∞. In
particular, T is bounded on Lp(�2) if 1 < p � 2. The case 2 < p < ∞ follows by the standard
duality argument, since the dual space of Lp(�2) is Lp′

(�2), where 1/p + 1/p′ = 1, under the
paring

〈
(fj ), (gj )

〉 := ∫
Sd

∑
j

fj (x)gj (x)h2
κ (x) dω(x)

and T is self-adjoint under this paring as Sδ
n(h

2
κ ) is self-adjoint in L2(h2

κ ;Sd). �
Using the two ingredients, (2.13) and (2.14), the proof of Theorem 2.3 follows from the cor-

responding proof in [1] almost verbatim.

Remark 2.1. In the case of κ = 0, the condition δ > λκ = (d − 1)/2 is the critical index for
the convergence of (C, δ) means in Lp(h2

κ ;Sd) for all 1 � p � ∞. For h2
κ given in (1.2) and

G = Z
d
2 , this remains true if at least one κi is zero. However, if κi �= 0 for all i, then the critical

index is λκ −min1�i�d+1 κi [8]. It remains to be seen if the condition k � λκ +1 in Theorem 2.3
can be improved to k � λκ − min1�i�d+1 κi + 1.

The proof of Theorem 2.4 actually yields the following Fefferman–Stein type inequality [6]
for the maximal function Mκf .

Corollary 2.5. Let 1 < p � 2 and fj be a sequence of functions. Then∥∥∥∥(∑
j

(Mκfj )
2
)1/2∥∥∥∥

κ,p

� c

∥∥∥∥(∑
j

|fj |2
)1/2∥∥∥∥

κ,p

. (2.15)

We do not know if the inequality (2.15) holds for 2 < p < ∞ under a general finite reflection
group. However, it will be shown in the next section that (2.15) is true for all 1 < p < ∞ in the
case of G = Z

d+1
2 .

3. Maximal function for product weight

The result on the maximal function in the previous section is established for every finite
reflection group. In the case of G = Z

d+1
2 , the weight function becomes (1.2); that is,

hκ(x) =
d+1∏

|xi |κi , κi � 0.
i=1
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We know the explicit formula of the intertwining operator Vκ , as shown in (2.2). This additional
information turns out to offer more insight into the maximal function Mkf . The main result in
this section relates Mκf to the weighted Hardy–Littlewood maximal function.

Definition 3.1. For f ∈ L1(h2
κ ;Sd), the weighted Hardy–Littlewood maximal function is defined

by

Mκf (x) := sup
0<θ�π

∫
c(x,θ)

|f (y)|h2
κ (y) dω(y)∫

c(x,θ)
h2

κ (y) dω(y)
. (3.1)

Since hκ is a doubling weight [3], Mκf enjoys the classical properties of maximal functions.
We will show that the maximal function Mκf is bounded by a sum of Mκf , so that the properties
of Mkf can be deduced from those of Mκf . We shall need several lemmas. The first lemma is
an observation made in [13, p. 72], which we state as a lemma to emphasize its importance in the
development below.

Lemma 3.2. For x ∈ Sd let x̄ := (|x1|, . . . , |xd |). Then the support set of the function
Vκ [χB(x,θ)](y) is {y: d(x̄, ȳ) � θ}; in other words,

Vκ [χB(x,θ)](y) = 0 if 〈x̄, ȳ〉 < cos θ.

Proof. The explicit formula (2.2) of Vκ shows that if Vκ [χB(x,θ)](y) = 0 if

χ
B(x,θ)

(t1y1, t2y2, . . . , td+1yd+1) = 0

for every t ∈ [−1,1]d+1 or if x1y1t1 + · · · + xd+1yd+1td+1 < cos θ , which clearly holds if
〈x̄, ȳ〉 < cos θ . �

Our second lemma contains the essential estimate for an upper bound of Mκf .

Lemma 3.3. For 0 � θ � π , x = (x1, . . . , xd+1) ∈ Sd and y ∈ Sd ,

∣∣Vκ [χB(x,θ)](y)
∣∣ � c

d+1∏
j=1

θ2κj

(|xj | + θ)2κj
χc(x̄,θ)(ȳ). (3.2)

Proof. The presence of χc(x̄,θ)(ȳ) in the right-hand side of the stated estimate comes from
Lemma 3.2. Hence, we only need to derive the upper bound of Vκ [χB(x,θ)](y) for d(x̄, ȳ) � θ ,
which we assume in the rest of the proof. If π/2 � θ � π , then θ/(|xj | + θ) � c and the inequal-
ity (3.2) is trivial. So we can assume 0 � θ � π/2 below. By the definition of Vκ ,

Vκ [χB(x,θ)](y) = cκ

∫
∑d+1

i=1 tixiyi�cos θ

d+1∏
i=1

(1 + ti )
(
1 − t2

i

)κi−1
dt

where t also satisfies t ∈ [−1,1]d+1. We first enlarge the domain of integration to {t ∈
[−1,1]d+1:

∑d+1
i=1 |tixiyi | � cos θ} and replace (1 + ti ) by 2, so that we can use the Z

d+1
2 sym-

metry of the resulted integrant to replace the integral to the one on [0,1]d+1,
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Vκ [χB(x,θ)](y) � c

∫
∑d+1

i=1 |ti xiyi |�cos θ

d+1∏
i=1

(
1 − t2

i

)κi−1
dt

� c

∫
t∈[0,1]d+1,

∑d+1
i=1 ti |xiyi |�cos θ

d+1∏
i=1

(
1 − t2

i

)κi−1
dt.

To continue, we enlarge the domain of the integral to {t ∈ [0,1]d+1: tj |xjyj | + ∑
i �=j |xiyi | �

cos θ} for each fixed j to obtain

Vκ [χB(x,θ)](y) � c

d+1∏
j=1

∫
0�tj �1, tj |xj yj |+∑

i �=j |xiyi |�cos θ

(1 − tj )
κj −1 dtj .

For each j we denote the last integral by Ij . First of all, there is the trivial estimate Ij �∫ 1
0 (1 − tj )

κj −1 dtj = κ−1
j . Secondly, for 〈x̄, ȳ〉 � cos θ , we have the estimate

Ij �
1∫

cos θ−∑
i �=j |xi yi |

|xj yj |

(1 − tj )
κj −1 dtj = κ−1

j

(〈x̄, ȳ〉 − cos θ)κj

|xjyj |κj
.

Together, we have established the estimate

Ij � κ−1
j min

{
1,

(〈x̄, ȳ〉 − cos θ)κj

|xjyj |κj

}
.

Recall that d(x̄, ȳ) � θ . Assume first that |xj | � 2θ . Then |xj | � (|xj | + θ)/2. The inequal-
ity ||xj | − |yj || � ‖x̄ − ȳ‖ � d(x̄, ȳ) � θ implies that |yj | � |xj | − θ � |xj |/2, so that |yj | �
(|xj | + θ)/4. Furthermore, write t := d(x̄, ȳ) � θ and recall that θ � π/2. We have then

〈x̄, ȳ〉 − cos θ = cos t − cos θ = 2 sin
θ − t

2
sin

t + θ

2
� (θ − t)θ � θ2.

Putting these ingredients together, we arrive at an upper bound for Ij ,

Ij � c
θ2κj

(|xj | + θ)2κj
,

under the assumption that |xj | � 2θ . This estimate also holds for |xj | � 2θ , since in that case
θ/(|xj | + θ) � 1/3. Thus, the last inequality holds for all x and for all j , from which the stated
inequality follows immediately. �

Our next lemma gives the order of the denominator in Mκf , which was proved in [3, (5.3),
p. 157] in the case when min1�j�d+1 τj � 0.
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Lemma 3.4. Let τ = (τ1, . . . , τd+1) ∈ R
d+1 with min1�j�d+1 τj > −1. Then for 0 � θ � π and

x = (x1, . . . , xd+1) ∈ Sd ,

∫
c(x,θ)

d+1∏
j=1

|yj |τj dω(y) ∼ θd
d+1∏
j=1

(|xj | + θ
)τj ,

where the constant of equivalence depends only on d and τ .

Proof. Without loss of generality we may assume that xj � 0 for all 1 � j � d + 1 and xd+1 =
max1�j�d+1 xj , as well as 0 < θ < 1

2
√

d+1
. Since xd+1 = max1�j�d+1xj � 1√

d+1
, it follows

that

yd+1 � xd+1 − θ � 1

2
√

d + 1
, ∀y = (y1, . . . , yd+1) ∈ c(x, θ). (3.3)

Using (3.3) and the fact that dω(y) = cd(1 − ‖ỹ‖2)− 1
2 dỹ for y = (ỹ, yd+1) and yd+1 =√

1 − ‖ỹ‖2 � 0, as well as the fact that |xj − yj | � ‖x − y‖ � d(x, y), we conclude

∫
c(x,θ)

d+1∏
j=1

|yj |τj dω(y) ∼
∫

d(x,y)�θ

d∏
j=1

|yj |τj dy1 dy2 . . . dyd

� c

d∏
j=1

xj +θ∫
xj −θ

|yj |τj dyj ∼ θd

d+1∏
j=1

(|xj | + θ
)τj ,

where in the last step, if τj < 0, consider the cases xj � 2θj and xj < 2θj separately. This gives
the desired upper estimate.

For the proof of the lower estimate, let z = (z1, . . . , zd+1) ∈ Sd be defined by zj = xj + εθ

for j = 1,2, . . . , d and zd+1 = (1 − z2
1 − · · · − z2

d)
1
2 , where ε > 0 is a sufficiently small constant

depending only on d . Using (3.3), a quick computation shows that

‖x − z‖2 = d(εθ)2 + |z2
d+1 − x2

d+1|2
(zd+1 + xd+1)2

� d(εθ)2 + (d + 1)d
(
2εθ + ε2θ2)2

,

from which and the fact that 2 sin d(x,z)
2 = ‖x − z‖, it follows that we can choose ε small enough

so that z ∈ c(x, θ
2 ). Consequently, c(z, εθ

2 ) ⊂ c(x, θ) and, for any y = (y1, . . . , yd+1) ∈ c(z, εθ
2 ),

xj + εθ

2
= zj − εθ

2
� yj � zj + εθ

2
= xj + 3εθ

2
, j = 1,2, . . . , d + 1,

which implies immediately that

d+1∏
|yj |τj ∼

d+1∏(|xj | + θ
)τj , ∀y ∈ c

(
z,

εθ

2

)
,

j=1 j=1
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and, as a consequence,

∫
c(x,θ)

d+1∏
j=1

|yj |τj dω(y) �
∫

c(z, θε
2 )

d+1∏
j=1

|yj |τj dω(y) � cθd

d+1∏
j=1

(|xj | + θ
)τj ,

proving the desired lower estimate. �
In particular, Lemma 3.4 shows that h2

κ is a doubling weight in the sense that

measκ c(x,2θ) � c measκ c(x, θ), ∀x ∈ Sd, θ > 0.

We are now ready to prove our first main result. For x ∈ R
d+1 and ε ∈ Z

d+1
2 , we write xε :=

(x1ε1, . . . , xd+1εd+1).

Theorem 3.5. Let f ∈ L1(h2
κ ;Sd). Then for every x ∈ Sd ,

Mκf (x) � c
∑

ε∈Z
d+1
2

Mκf (xε). (3.4)

Proof. Since {
y ∈ Sd : d(x̄, ȳ) � θ

} =
⋃

ε∈Z
d+1
2

{
y ∈ Sd : d(xε, y) � θ

}
,

it follows from Lemmas 3.2 that

Jθf (x) :=
∫
Sd

∣∣f (y)
∣∣Vκ [χB(x,θ)](y)h2

κ (y) dω(y)

=
∫

〈x̄,ȳ〉�cos θ

∣∣f (y)
∣∣Vκ [χB(x,θ)](y)h2

κ (y) dω(y)

�
∑

ε∈Z
d+1
2

∫
〈xε,y〉�cos θ

∣∣f (y)
∣∣Vκ [χB(x,θ)](y)h2

κ (y) dω(y).

Consequently, using Lemmas 3.3 and 3.4, we conclude that

Jθf (x) � c
∑

ε∈Z
d+1
2

d+1∏
j=1

θ2κj

(|xj | + θ)2κj

∫
〈xε,y〉�cos θ

∣∣f (y)
∣∣h2

κ (y) dω(y)

� cθ2|κ|+d
∑

ε∈Z
d+1

Mκf (xε).
2
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Dividing the above inequality by θ2|κ|+d = θ2λκ+1 and, recall (2.6), taking the supremum over θ

lead to (3.4). �
There are several applications of Theorem 3.5. First we need several notations. For x =

(x1, . . . , xd+1), y = (y1, . . . , yd+1) ∈ R
d+1, we write x < y if xj < yj for all 1 � j � d + 1.

We denote by 1 the vector 1 := (1,1, . . . ,1) ∈ R
d+1. Moreover, we extend the definitions of hτ ,

measτ , ‖ · ‖τ,p , Lp(h2
τ ;Sd) and Mτ to the full range of τ = (τ1, . . . , τd+1) > −1

2 . Thus,

hτ (x) =
d+1∏
j=1

|xj |τj , ‖f ‖τ,p =
( ∫

Sd

∣∣f (x)
∣∣ph2

τ (x) dω(x)

)1/p

and Mτ denotes the Hardy–Littlewood maximal function with respect to the measure h2
τ (x) dω(x),

as defined in (3.1).
As an application of Theorem 3.5, we can prove the boundedness of Mκf on the spaces

Lp(h2
τ ;Sd) for a wider range of τ without using the Hopf–Dunford–Schwarz ergodic theorem.

Theorem 3.6. If −1
2 < τ � κ and f ∈ L1(h2

τ ;Sd), then Mκf satisfies

measτ

{
x: Mκf (x) � α

}
� c

‖f ‖τ,1

α
, ∀α > 0. (3.5)

Furthermore, if 1 < p � ∞, −1
2 < τ < pκ + p−1

2 1 and f ∈ Lp(h2
τ ;Sd), then

‖Mkf ‖τ,p � c‖f ‖τ,p. (3.6)

Proof. We start with the proof of (3.5). Note that if τ = (τ1, . . . , τd+1) � κ , then

∫
c(x,θ)

∣∣f (y)
∣∣h2

κ (y) dω(y) � c

(
d+1∏
j=1

(|xj | + θ
)2(κj −τj )

) ∫
c(x,θ)

∣∣f (y)
∣∣h2

τ (y) dω(y),

which, together with Lemma 3.4, implies

Mκf (x) � cMτf (x), x ∈ Sd, τ � κ.

Hence, using the inequality (3.4), we obtain that, for −1
2 < τ � κ ,

measτ

{
x: Mkf (x) � α

}
�

∑
ε∈Z

d+1
2

measτ

{
x: Mκf (xε) � cα/2d+1}

�
∑

ε∈Z
d+1
2

measτ

{
x: Mτf (xε) � c′α

}

=
∑

ε∈Z
d+1

∫
′

h2
τ (y) dω(y)
2 {y: Mτ f (yε)�c α}
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= 2d+1
∫

{x: Mτ f (x)�c′α}
h2

τ (y) dω(y)

� c
‖f ‖τ,1

α
,

where we have used the Z
d+1
2 -invariance of hτ in the fourth step, and the fact that Mτ is of weak

type (1,1) with respect to the doubling measure h2
τ (y) dω(y) in the last step. This proves (3.5).

For the proof of (3.6), we choose a number q ∈ (1,p) such that τ < qκ + q−1
2 1 and claim

that it is sufficient to prove

Mκf (x) � c
(
Mτ

(|f |q)
(x)

)1/q
. (3.7)

Indeed, using (3.7), the inequality (3.6) will follow from (3.4), the Z
d+1
2 invariance of hτ and the

boundedness of the maximal function Mτ on the space Lp/q(h2
τ ;Sd).

To prove (3.7), we use Hölder’s inequality with q ′ = q
q−1 and Lemma 3.4 to obtain

∫
c(x,θ)

∣∣f (y)
∣∣h2

κ(y) dω(y)

�
( ∫

c(x,θ)

∣∣f (y)
∣∣qh2

τ (y) dω(y)

)1/q( ∫
c(x,θ)

h2
q ′κ− q′

q
τ
(y) dω(y)

)1/q ′

∼
( ∫

c(x,θ)

∣∣f (y)
∣∣qh2

τ (y) dω(y)

)1/q
(

d+1∏
j=1

(|xj | + θ
)2κj − 2τj

q

)
θd/q ′

∼ measκ

(
c(x, θ)

)( 1

measτ (c(x, θ))

∫
c(x,θ)

∣∣f (y)
∣∣qh2

τ (y) dy

)1/q

,

where we have also used the fact that the assumption τ < qκ + q−1
2 1 is equivalent to q ′κ − q ′

q
τ >

−1
2 . This proves (3.7) and completes the proof. �
For our next application of Theorem 3.5 we will need the following result.

Lemma 3.7. Let 1 < p < ∞ and let W be a non-negative, local integrable function on Sd . Then

∫
Sd

∣∣Mκf (x)
∣∣pW(x)h2

κ (x) dω(x) � cp

∫
Sd

∣∣f (x)
∣∣pMκW(x)h2

κ (x) dω(x). (3.8)
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Such a result was first proved in [6] for maximal function on R
d . The proof can be adopted

easily to yield Lemma 3.7. Indeed, the fact that h2
κ is a doubling weight shows that the Hardy–

Littlewood maximal function defined by (3.1) satisfies

Mκf (x) ∼ sup
x∈E∈C

∫
E

|f (y)|h2
κ (y) dω(y)∫

E
h2

κ(y) dω(y)
,

where C is the collection of all spherical caps in Sd , which implies that∫
c(x,θ)

∣∣f (y)
∣∣h2

κ (y) dy � c
(
measκ c(x, θ)

)
inf

z∈c(x,θ)
Mκf (z)

for any spherical cap c(x, θ). As a consequence, we can prove the key inequality

measκ(E) � c

α

∫
Sd

∣∣f (y)
∣∣MκW(y)h2

κ (y) dω(y)

for any compact set E in {x ∈ Sd : Mkf (x) > α}, as in the proof for the maximal function on R
d

in [10, pp. 54–55]. In fact, (3.8) holds with h2
κ(y) dω replaced by any doubling measure dμ on

the sphere.
An important tool in harmonic analysis is the Fefferman–Stein type inequality [6], which we

established in Corollary 2.5 for Mκf in the case of 1 < p � 2 and a general reflection group.
In the current setting of G = Z

d+1
2 , we can use Theorem 3.5 to prove a weighted version of this

inequality for 1 < p < ∞.

Theorem 3.8. Let 1 < p < ∞, −1
2 < τ < pκ + p−1

2 1, and let {fj }∞j=1 be a sequence of func-
tions. Then ∥∥∥∥∥

( ∞∑
j=1

(Mκfj )
2

)1/2∥∥∥∥∥
τ,p

� c

∥∥∥∥∥
( ∞∑

j=1

|fj |2
)1/2∥∥∥∥∥

τ,p

. (3.9)

Proof. Using Theorem 3.5 and the Minkowski inequality, we obtain∥∥∥∥(∑
j

(Mκfj )
2
)1/2∥∥∥∥

τ,p

� c

∥∥∥∥(∑
j

( ∑
ε∈Z

d+1
2

Mκfj (xε)

)2)1/2∥∥∥∥
τ,p

� c
∑

ε∈Z
d+1
2

∥∥∥∥(∑
j

(
Mκfj (xε)

)2
)1/2∥∥∥∥

τ,p

� c

∥∥∥∥(∑
j

(Mκfj )
2
)1/2∥∥∥∥

τ,p

.

Thus, it is sufficient to prove∥∥∥∥(∑
(Mκfj )

2
)1/2∥∥∥∥

τ,p

� c

∥∥∥∥(∑
|fj |2

)1/2∥∥∥∥
τ,p

. (3.10)

j j
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We start with the case 1 < p � 2. Let q be chosen such that 1 < q < p and τ < qκ + (q−1)1
2 .

We use the inequality (3.7) to obtain∥∥∥∥(∑
j

(Mκfj )
2
)1/2∥∥∥∥

τ,p

� c

∥∥∥∥(∑
j

(
Mτ

(|fj |q
))2/q

)q/2∥∥∥∥1/q

τ,p/q

� c

∥∥∥∥(∑
j

|fj |q·2/q

)q/2∥∥∥∥1/q

τ,p/q

=
∥∥∥∥(∑

j

|fj |2
)1/2∥∥∥∥

τ,p

,

where we have used the classical Fefferman–Stein inequality for the maximal function Mτ and
the space Lp/q(�2/q) in the second step. This proves (3.10) for 1 < p � 2.

Next, we consider the case 2 < p < ∞. Noticing that

−1

2
< τ < pκ + (p − 1)1

2
⇔ −1

2
<

2

p
τ +

(
1

p
− 1

2

)
1 < 2κ + 1

2
,

we may choose a vector μ ∈ R
d+1 such that

−1

2
<

2

p
τ +

(
1

p
− 1

2

)
1 < μ < 2κ + 1

2
, (3.11)

and a number 1 < q < 2 such that μ < qκ + q−1
2 1. Let g be a non-negative function on Sd

satisfying ‖g‖τ,p/(p−2) = 1 and∥∥∥∥(∑
j

|Mκfj |2
)1/2∥∥∥∥2

τ,p

=
∫
Sd

(∑
j

∣∣Mκfj (x)
∣∣2

)
g(x)h2

τ (x) dω(x).

Then by the assumption μ < qκ + q−1
2 1, (3.7), (3.8) with p = 2/q > 1 and Hölder’s inequality,

we obtain∫
Sd

(∑
j

∣∣Mκfj (x)
∣∣2

)
g(x)h2

τ (x) dω(x) � c
∑
j

∫
Sd

(
Mμ

(|fj |q
)
(x)

)2/q
g(x)h2

τ (x) dω(x)

� c

∫
Sd

(∑
j

∣∣fj (x)
∣∣2

)
Mμ

(
gh2

τ−μ

)
(x)h2

μ(x)dω(x)

� c

∥∥∥∥(∑
j

|fj |2
)1/2∥∥∥∥2

τ,p

∥∥Mμ

(
gh2

τ−μ

)
h2

μ−τ

∥∥
τ,p/(p−2)

.

Using the boundedness of Mκf and (3.11), we have∥∥Mμ

(
gh2

τ−μ

)
h2

μ−τ

∥∥
τ,p/(p−2)

= ∥∥Mμ

(
gh2

τ−μ

)∥∥
p/(p−2)μ−2/(p−2)τ,p/(p−2)

� c
∥∥gh2

τ−μ

∥∥
p/(p−2)μ−2/(p−2)τ,p/(p−2)

= c‖g‖τ,p/(p−2) = c.
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Putting these two inequalities together, we have proved the inequality (3.10) for the case 2 <

p < ∞. �
Remark 3.1. It is shown in [13] that, for δ > λκ , the Cesàro (C, δ) means satisfy |Sδ

n(h
2
κ ;f )| �

cMκf (x). Hence, we can get a weighted inequality for the Cesàro means by replacing Mκfj

in (3.9) by Sδ
nj

(h2
κ ;fj ). This gives a ‖ · ‖τ,p weighted version of Theorem 2.4 that holds under

the condition −1
2 < τ < pκ + p−1

2 1.

4. Maximal function and multiplier theorem on Bd

Analysis in weighted spaces on the unit ball Bd = {x ∈ R
d : ‖x‖ � 1} in R

d can often be
deduced from the corresponding results on Sd ; see [5,12,13] and the reference therein. Below we
develop results analogous to those in the previous sections.

4.1. Weight function invariant under a reflection group

Let κ = (κ ′, kd+1) with κ ′ = (κ1, . . . , κd) and assume κi � 0 for 1 � i � d + 1. Let hκ ′ be
the weight function (1.1), but defined on R

d , that is invariant under a reflection group G. We
consider the weight functions on Bd defined by

WB
κ (x) := h2

κ ′(x)
(
1 − ‖x‖2)κd+1−1/2

, x ∈ Bd, (4.1)

which is invariant under the reflection group G. Under the mapping

φ :x ∈ Bd �→ (
x,

√
1 − ‖x‖2

) ∈ Sd+ := {
y ∈ Sd : yd+1 � 0

}
(4.2)

and multiplying the Jacobian of this change of variables, the weight function WB
κ comes exactly

from h2
κ defined by

hκ(x1, . . . , xd+1) := h2
κ ′(x1, . . . , xd)|xd+1|2κd+1 .

The weight function hκ is invariant under the reflection group G × Z2. All of the results estab-
lished in Section 2 holds for hκ .

We denote the Lp(WB
κ ;Bd) norm by ‖f ‖WB

κ ,p . The norm of g on Bd and its extension on Sd

are related by the identity∫
Sd

g(y) dω =
∫
Bd

[
g
(
x,

√
1 − ‖x‖2

) + g
(
x,−

√
1 − ‖x‖2

)] dx√
1 − ‖x‖2

. (4.3)

The orthogonal structure is preserved under the mapping (4.2) and the study of orthogonal ex-
pansions for WB

κ can be essentially reduced to that of h2
κ . In fact, let Vd

n (WB
κ ) denote the space

of orthogonal polynomials of degree n with respect to WB
κ on Bd . The orthogonal projection,

projn(W
B
κ ;f ), of f ∈ L2(WB

κ ;Bd) onto Vd
n (WB

κ ) can be expressed in terms of the orthogonal
projection of F(x, xd+1) := f (x) onto Hd+1

n (h2
κ ):

projn
(
WB

κ ;f,x
) = projκn F (X), X := (

x,

√
1 − ‖x‖2

)
. (4.4)
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Furthermore, a maximal function was defined in [13, p. 81] in terms of the generalized translation
operator of the orthogonal expansion. More precisely, let

e(x, θ) := {
(y, yd+1) ∈ Bd+1: 〈x, y〉 +

√
1 − ‖x‖2 yd+1 � cos θ, yd+1 � 0

}
.

Then this maximal function, denoted by MB
κ f (x), was shown to satisfy the relation

MB
κ f (x) = sup

0<θ�π

∫
Bd |f (y)|V B

κ [χe(x,θ)](Y )WB
κ (y) dy∫

Bd V B
κ [χe(x,θ)](Y )WB

κ (y) dy
,

where Y = (y,
√

1 − ‖y‖2 ), and for g : Rd+1 �→ R,

V B
κ g(x, xd+1) := 1

2

[
Vκg(x, xd+1) + Vκg(x,−xd+1)

]
,

in which Vκ is the intertwining operator associate with hκ . This maximal function can be written
in terms of the maximal function Mκf in (2.5). In fact, we have MB

κ f (x) = MκF (X). Our
main result in this section states that MB

κ f is of weak (1,1). Let us define

measB
κ E :=

∫
E

WB
κ (x) dx, E ⊂ Bd.

Theorem 4.1. If f ∈ L1(WB
κ ;Bd) then MB

k satisfies

measB
κ

{
x ∈ Bd : MB

κ f (x) � α
}

� c
‖f ‖WB

κ ,1

α
, ∀α > 0.

Furthermore, if f ∈ Lp(WB
κ ;Bd) for 1 < p � ∞, then ‖MB

κ f ‖WB
κ ,p � c‖f ‖WB

κ ,p .

Proof. Since MB
κ f (x) = MκF (X), it follows from (4.3) that

measB
κ

{
x ∈ Bd : MB

κ f (x) � α
} =

∫
Bd

χ{MB
κ f (x)�α}(x)WB

κ (x) dx

=
∫
Sd+

χ{MκF (y)�α}(y)h2
κ (y) dω(y).

Enlarging the domain of the last integral to the entire Sd shows that

measB
κ

{
x ∈ Bd : MB

κ f (x) � α
}

� measκ

{
y ∈ Sd : MκF (y) � α

}
.

Consequently, by Theorem 2.1, we obtain

measB
κ

{
x ∈ Bd : MB

κ f (x) � α
}

� c
‖F‖κ,1
α
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from which the weak (1,1) inequality follows from ‖F‖κ,1 = ‖f ‖WB
κ ,1. Since MB

κ f is evidently
of strong type (∞,∞), this completes the proof. �

The connection (4.4) and (4.3) allow us to deduce a multiplier theorem for orthogonal expan-
sion with respect to WB

κ from Theorem 2.3.

Theorem 4.2. Let {μj }∞j=0 be a sequence of real numbers that satisfies

(1) supj |μj | � c < ∞,

(2) supj 2j (k−1)
∑2j+1

l=2j |�kul | � c < ∞,

where k is the smallest integer � λκ + 1, and λκ = d−1
2 + ∑d+1

j=1 κj . Then {μj } defines an

Lp(WB
κ ;Bd), 1 < p < ∞, multiplier; that is,∥∥∥∥∥

∞∑
j=0

μj projκj f

∥∥∥∥∥
WB

κ ,p

� c‖f ‖WB
κ ,p, 1 < p < ∞,

where c is independent of {μj } and f .

4.2. Weight function invariant under Z
d
2

In the case of G = Z
d
2 , the weight function becomes

WB
κ (x) :=

d∏
i=1

|xi |2κi
(
1 − ‖x‖2)κd+1−1/2

, x ∈ Bd, (4.5)

which corresponds to the product weight function h2
κ (x) = ∏d+1

i=1 |xi |2κi . Taking into the consid-
eration of the boundary, an appropriate distance on Bd is defined by

dB(x, y) = arccos
(〈x, y〉 +

√
1 − ‖x‖2

√
1 − ‖y‖2

)
, x, y ∈ Bd,

which is just the projection of the geodesic distance of Sd+ on Bd . Thus, one can define the
weighted Hardy–Littlewood maximal function as

MB
κ f (x) := sup

0<θ�π

∫
dB(x,y)�θ

|f (y)|WB
κ (y)dy∫

dB(x,y)�θ
WB

κ (y) dy
, x ∈ Bd.

We have the following analogue of Theorem 3.5.

Theorem 4.3. Let f ∈ L1(WB
κ ;Bd). Then for any x ∈ Bd ,

MB
κ f (x) � c

∑
ε∈Z

d
2

MB
κ f (xε). (4.6)
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The proof of Theorem 4.3 replies on the following lemma, which implies, in particular, that
WB

κ (y) is a doubling weight on Bd .

Lemma 4.4. If τ = (τ1, . . . , τd+1) > − 1
21, then for any x = (x1, . . . , xd) ∈ Bd and 0 � θ � π ,

∫
dB(y,x)�θ

WB
τ (y) dy ∼ θd

d+1∏
j=1

(|xj | + θ
)2τj ,

where xd+1 = √
1 − ‖x‖2 and WB

τ (y) is defined as in (4.5).

Proof. Recall that X = (x, xd+1), and c(X, θ) = {z ∈ Sd : d(X, z) � θ}. Set

c+(X, θ) = {
(y1, . . . , yd+1) ∈ c(X, θ): yd+1 � 0

}
.

From (4.3) it follows that ∫
dB(y,x)�θ

WB
τ (y) dy =

∫
c+(X,θ)

h2
τ (z) dω(z), (4.7)

which, together with Lemma 3.4, implies the desired upper estimate

∫
dB(y,x)�θ

WB
τ (y) dy �

∫
c(X,θ)

h2
τ (z) dω(z) � cθd

d+1∏
j=1

(|xj | + θ
)2τj .

To prove the lower estimate, we choose a point z = (z1, . . . , zd+1) ∈ c(X, θ
2 ) with zd+1 � εθ ,

where ε > 0 is a sufficiently small constant depending only on d . Clearly, c(z, εθ
2 ) ⊂ c+(X, θ).

Hence, by (4.7), we obtain∫
dB(y,x)�θ

WB
τ (y) dy �

∫
c(z, εθ

2 )

h2
τ (y) dω(y)

∼ θd

d+1∏
j=1

(|zj | + θ
)2τj ∼ θd

d+1∏
j=1

(|xj | + θ
)2τj ,

where we have used Lemma 3.4 in the second step, and the fact that z ∈ c(X, θ) in the last step.
This gives the desired lower estimate. �

Now we are in a position to prove Theorem 4.3.

Proof of Theorem 4.3. It is shown in [13, p. 81] that∫
d

Vκ [χe(x,θ)](Y )WB
κ (y) dy ∼ θ2λκ+1,
B
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where λκ = d−1
2 + ∑d+1

j=1 κj . The proof follows almost exactly as in the proof of Theorem 3.5,
the main effort lies in the proof of the following inequality:

V B
κ [χe(x,θ)](Y ) � c

d+1∏
j=1

θ2κj

(|xj | + θ)2κj
χ{y∈Bd : dB(x̄, ȳ)�θ}(y), (4.8)

where xd+1 = √
1 − ‖x‖2 and z̄ = (|z1|, . . . , |zd |) for z = (z1, . . . , zd) ∈ Bd . However, using

(2.2) and the fact that yd+1 = √
1 − ‖y‖2, we have

V B
κ [χe(x,θ)](Y ) = 1

2

(
Vκ [χe(x,θ)](y, yd+1) + Vκ [χe(x,θ)](y,−yd+1)

)
= cκ

∫
D

d∏
j=1

(1 + tj )
(
1 − t2

j

)κj −1(
1 − t2

d+1

)κd+1−1
dt,

where

D =
{

(t1, . . . , td , td+1) ∈ [−1,1]d × [0,1]:
d+1∑
j=1

tj xj yj � cos θ

}
.

This last integral can be estimated exactly as in the proof of Lemma 3.3, which yields the desired
inequality (4.8). �

As a consequence of Theorem 4.3, we have the following analogues of Theorems 3.6 and 3.8.

Corollary 4.5. If −1
2 < τ � κ and f ∈ L1(WB

τ ;Bd), then Mκf satisfies

measB
τ

{
x: MB

κ f (x) � α
}

� c
‖f ‖

WB
τ ,1

α
, ∀α > 0.

Furthermore, if 1 < p < ∞, −1
2 < τ < pκ + p−1

2 1 and f ∈ Lp(WB
τ ;Bd), then∥∥MB

k f
∥∥

WB
τ ,p

� c‖f ‖WB
τ ,p.

Corollary 4.6. Let 1 < p < ∞, −1
2 < τ < pκ + p−1

2 1, and let {fj }∞j=1 be a sequence of func-
tions. Then ∥∥∥∥∥

( ∞∑
j=1

(
MB

κ fj

)2

)1/2∥∥∥∥∥
WB

τ ,p

� c

∥∥∥∥∥
( ∞∑

j=1

|fj |2
)1/2∥∥∥∥∥

WB
τ ,p

.

Using the formula MB
κ f (x) = MκF (X) and the method of [13], one can also deduce Corol-

laries 4.5 and 4.6 directly from Theorems 3.6 and 3.8.



F. Dai, Y. Xu / Journal of Functional Analysis 249 (2007) 477–504 501
5. Maximal function and multiplier theorem on T d

Just like the connection between the structure of function spaces on Sd and Bd , analysis in
weighted spaces on the simplex

T d = {
(x1, . . . , xd) ∈ R

d : x1 � 0, . . . , xd � 0 and x1 + · · · + xd � 1
}

can often be deduced from the corresponding results on Bd ; see [5,12,13] and the reference
therein.

5.1. Weight function associated with a reflection group

Let κ ′ = (κ1, . . . , κd) and hκ ′ be the weight function (1.1) on R
d invariant under the reflection

group G. We further require that hκ ′ is even in all of its variables; in other words, we require that
hκ ′ is invariant under the semi-direct product of G and Z

d
2 . Let κd+1 � 0 and κ = (κ ′, κd+1). The

weight functions on T d we consider are

WT
κ (x) := hκ ′(

√
x1, . . . ,

√
xd )

(
1 − |x|)κd+1−1/2

, x ∈ T d, (5.1)

where |x| = x1 + · · · + xd . These weight functions are related to WB
κ in (4.1). In fact, WT

κ is
exactly the weight function WB

κ under the mapping

ψ : (x1, . . . , xd) ∈ T d �→ (
x2

1 , . . . , x2
d

) ∈ Bd (5.2)

and upon multiplying the Jacobian of this change of variables. We denote the norm of
Lp(WT

κ ;T d) by ‖ · ‖WT
κ ,p . The norm of g on T d and g ◦ ψ on Bd are related by∫

Bd

g
(
x2

1 , . . . , x2
d

)
dx =

∫
T d

g(x1, . . . , xd)
dx√

x1 · · ·xd

. (5.3)

The orthogonal structure is preserved under the mapping (5.2). Let Vd
n (WT

κ ) denote the space of
orthogonal polynomials of degree n with respect to WT

κ on T d . Then R ∈ Vd
n (WT

κ ) if and only if
R ◦ψ ∈ Vd

2n(W
B
κ ). The orthogonal projection, projn(W

T
κ ;f ), of f ∈ L2(WT

κ ;T d) onto Vd
n (WT

κ )

can be expressed in terms of the orthogonal projection of f ◦ ψ onto V2n(W
B
κ ):

(
projn

(
WT

κ ;f ) ◦ ψ
)
(x) = 1

2d

∑
ε∈Z

d
2

proj2n

(
WB

κ ;f ◦ ψ,xε
)
. (5.4)

The fact that projn(W
T
κ ) of degree n is related to proj2n(W

B
κ ) of degree 2n suggests that some

properties of the orthogonal expansions on Bd cannot be transformed directly to those on T d .
A maximal function MT

k f is defined in [13, Definition 4.5, p. 86] in terms of the generalized
translation operator of the orthogonal expansion. It is closely related to the maximal function
MB

k f on Bd . It was shown in [13, Proposition 4.6] that(
MT

κ f
) ◦ ψ = MB

κ (f ◦ ψ). (5.5)
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We show that this maximal function is of weak type (1,1). Let us define

measT
κ E :=

∫
E

WT
κ (x) dx, E ⊂ T d.

Theorem 5.1. If f ∈ L1(WT
κ ;T d), then MT

k satisfies

measT
κ

{
x ∈ T d : MT

κ f (x) � α
}

� c
‖f ‖WT

κ ,1

α
, ∀α > 0.

Furthermore, if f ∈ Lp(WT
κ ;T d) for 1 < p � ∞, then ‖MT

κ f ‖WT
κ ,p � c‖f ‖WT

κ ,p .

Proof. Using the relation (5.5) and (5.3), we obtain∫
T d

χ{x∈T d : MT
κ f (x)�α}(x)WT

κ (x) dx =
∫
Bd

χ{x∈Bd : MT
κ (f ◦ψ)(x)�α}(x)WB

κ (x) dx.

Hence, by Theorem 4.1, we conclude that

measB
κ

{
x ∈ Bd : MB

κ (f ◦ ψ)(x) � α
}

� c
‖f ◦ ψ‖WB

κ ,1

α
= c

‖f ‖WT
κ ,1

α
,

where the last step follows again from (5.3). �
The relation (5.4) shows that we cannot expect to deduce all results on orthogonal expansion

with respect to WT
κ on T d from those on Bd . This applies to the multiplier theorem. On the

other hand, as it is shown in [13, p. 85], we can introduce a convolution 
T
κ structure and write

projκn(WT
κ ;f ) = f 
T

κ Pn. Moreover, we often have the inequality |f 
T
κ g(x)| � cMT

κ (x). For
example, for the Cesàro (C, δ) means Sδ

n(W
T
κ ;f ), we have

sup
n

∣∣Sδ
n

(
WT

κ ;f,x
)∣∣ � cMT

κ (x), if δ > λκ =
d+1∑
j=1

κj + d − 1

2
.

Using this result, we can prove an analogue of Theorem 2.4 almost verbatim. Furthermore,
the Poisson operator, P T

r f , of the orthogonal expansion with respect to WT
κ on T d is still a

semi-group when we define T tf = P T
r f with r = e−t (see, for example, [13, p. 90]). So, the

Littlewood–Paley function g(f ), defined as in (2.12), is bounded in Lp(WT
κ ;T d) for 1 < p < ∞.

Hence, all the essential ingredients of the proof of the multiplier theorem in [1] hold for the or-
thogonal expansion with respect to WT

κ . As a consequence, we have the following multiplier
theorem.

Theorem 5.2. Let {μj }∞j=0 be a sequence that satisfies

(1) supj |μj | � c < ∞,

(2) supj 2j (k−1)
∑2j+1

j |�kul | � c < ∞,

l=2
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where k is the smallest integer � λκ + 1. Then {μj } defines an Lp(WT
κ ;T d), 1 < p < ∞, multi-

plier; that is, ∥∥∥∥∥
∞∑

j=0

μj projκj f

∥∥∥∥∥
WT

κ ,p

� c‖f ‖WT
κ ,p, 1 < p < ∞,

where c is independent of f and μj .

5.2. Weight function associated with Z
d
2

In the case G = Z
d
2 , we are dealing with the classical weight function on T d ,

WT
κ (x) :=

d∏
i=1

|xi |κi−1/2(1 − |x|)κd+1−1/2
, x ∈ T d. (5.6)

Under the mapping (5.2), this weight function corresponds to WB
κ at (4.5). Taking into the con-

sideration of the boundary, an appropriate distance on T d is defined by

dT (x, y) = arccos
(〈
x1/2, y1/2〉 + √

1 − |x|√1 − |y| ), x, y ∈ T d,

where x1/2 = (x
1/2
1 , . . . , x

1/2
d ) for x ∈ T d . Evidently, we have dB(x, y) = dT (ψ(x),ψ(y)). Us-

ing this distance, one can define the weighted Hardy–Littlewood maximal function as

MT
κ f (x) := sup

0<θ�π

∫
dT (x,y)�θ

|f (y)|WT
κ (y) dy∫

dT (x,y)�θ
WT

κ (y) dy
, x ∈ T d.

We have the following analogue of Theorem 4.3.

Theorem 5.3. Let f ∈ L1(WT
κ ;T d). Then for any x ∈ T d ,

MT
κ f (x) � cMT

κ f (x). (5.7)

Proof. Using (5.3), it follows readily from the definitions of MB
κ f and MT

κ f that (MT
κ f ) ◦ψ =

MB
κ (f ◦ ψ). Hence, using the fact that if g is invariant under the sign changes, then MB

κ g(xε) =
MB

κ g(x) by a simple change of variables, it follows from (5.5) and Theorem 4.3 that(
MT

κ f
) ◦ ψ(x) = MB

κ (f ◦ ψ)(x) � c
∑
ε∈Z

d
2

MB
κ (f ◦ ψ)(xε)

= c′MB
κ (f ◦ ψ)(x) = c′(MT

κ f
) ◦ ψ(x)

for x ∈ T d , from which the stated result follows immediately. �
Although the proof of this theorem may look like a trivial consequence of the definition of

Mκf , we should mention that the definition of MT
κ f in [13, Definition 4.5, p. 86] is given in

terms of the general translation operator of the orthogonal expansions with respect to WT
κ .
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As a consequence of Theorem 5.3 or by (5.5) and (5.3), we have the following analogues of
Corollaries 4.5 and 4.6.

Corollary 5.4. If −1
2 < τ � κ and f ∈ L1(WT

τ ;T d), then Mκf satisfies

measT
τ

{
x: MT

κ f (x) � α
}

� c
‖f ‖

WT
τ ,1

α
, ∀α > 0.

Furthermore, if 1 < p < ∞, −1
2 < τ < pκ + p−1

2 1 and f ∈ Lp(WT
τ ;T d), then∥∥MT

k f
∥∥

WT
τ ,p

� c‖f ‖WT
τ ,p.

Corollary 5.5. Let 1 < p < ∞, −1
2 < τ < pκ + p−1

2 1, and let {fj }∞j=1 be a sequence of func-
tions. Then ∥∥∥∥∥

( ∞∑
j=1

(
MT

κ fj

)2

)1/2∥∥∥∥∥
WT

τ ,p

� c

∥∥∥∥∥
( ∞∑

j=1

|fj |2
)1/2∥∥∥∥∥

WT
τ ,p

.
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