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Abstract

For a family of weight functions invariant under a finite reflection group, the boundedness of a maximal
function on the unit sphere is established and used to prove a multiplier theorem for the orthogonal ex-
pansions with respect to the weight function on the unit sphere. Similar results are also established for the
weighted space on the unit ball and on the standard simplex.
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1. Introduction

The purpose of this paper is to study the maximal function in the weighted spaces on the
unit sphere and the related domains. Let S ={x: |lx|| = 1} be the unit sphere in R*! where
|lx|| denotes the usual Euclidean norm. Let (x, y) denote the usual Euclidean inner product. We
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consider the weighted space on §¢ with respect to the measure h,% dw, where dw is the surface
(Lebesgue) measure on S¢ and the weight function 4, is defined by

o x e RIHL (1.1

he@) =[] .0

U€R+

in which R_. is a fixed positive root system of R?*! normalized so that (v, v) =2 forall v € R,
and « is a nonnegative multiplicity function v — k,, defined on R, with the property that k,, = iy
whenever oy, the reflection with respect to the hyperplane perpendicular to u, is conjugate to o,
in the reflection group G generated by the reflections {o,: v € R4 }. The function A, is invariant
under the reflection group G. The simplest example is given by the case G = Z‘ZIH for which &,
is just the product weight function

d+1
he@) =[]l x>0, x=(x1.....x4041). (1.2)
i=1
Denote by a, the normalization constant, a, 1= f g h%(y) dw(y). We consider the weighted

space L? (h,%; $9) of functions on $¢ with the finite norm

1/p
£l p = (aK /If(y)l”hi(y)dw(y)) , 1< p<oo,

sd

and for p = oo we assume that L is replaced by C(5%), the space of continuous functions on
S9 with the usual uniform norm || f|sc.

The weight function (1.1) was first studied by Dunkl in the context of ~-harmonics, which are
orthogonal polynomials with respect to h,% A homogeneous polynomial is called an /-spherical
harmonics if it is orthogonal to all polynomials of lower degree with respect to the inner product
of Lz(h,%; $?). The theory of h-harmonics is in many ways parallel to that of ordinary harmonics
(see [5]). In particular, many results on the spherical harmonics expansions have been extended
to h-harmonics expansions, see [3-5,8,12,13] and the references therein. Much of the analysis
of h-harmonics depends on the intertwining operator V,. that intertwines between Dunkl opera-
tors, which are a commuting family of first order differential-difference operators, and the usual
partial derivatives. The operator V. is a uniquely determined positive linear operator. To see
the importance of this operator, let HZH (h,%) denote the space of #-harmonics of degree n; the
reproducing kernel of H4*!(h2) can be written in terms of Vj as

A
Bh ey =[G ()]0, wves?, (13)

K

where C,)L‘ is the nth Gegenbauer polynomial, which is orthogonal with respect to the weight
function wy (¢) := (1 — t)*~1/2 on [—1, 1], and

d—1 .
AszK+T with y, = Z Ky. (1.4)

U€R+



F. Dai, Y. Xu / Journal of Functional Analysis 249 (2007) 477-504 479

Furthermore, using V., a maximal function that is particularly suitable for studying the h-
harmonic expansion is defined in [13] by

Ssa | F Wil x B o) )0 (y) doo ()

M, =
e o<o<r S VelXB.o))()AZ(y) do(y)

(1.5)

where B(x,0) :={y € B4t1: (x,y) > cos@}, B4t! := {x: ||x|| < 1} ¢ R?*! and xg denotes
the characteristic function of the set E. A weak type (1, 1) inequality was established for M, f
in [13]. The result, however, is weaker than the usual weak type (1, 1) inequality and it does
not imply the strong (p, p) inequality. One of our main results in this paper is to establish a
genuine weak type (1, 1) result, for which we rely on the general result of [9] on semi-groups of
operators. Furthermore, the Fefferman—Stein type result

()| <ol (£17)

also holds, which can be used to derive a multiplier theorem for ~-harmonic expansions, follow-
ing the approach of [1]. These results are presented in Section 2.

In the case of Zg“, the explicit formula of V,. as an integral operator is known, which allows
us to link the maximal function M, f with the weighted Hardy-Littlewood maximal function
defined by

<c
P

K K,p

Jewo) [ () deo(y)

M, =
A 0<0<r fc(x,(-)) h%()’) dw(y)

(1.6)

where c(x, 0) :={y € §¢: (x,y) > cos@} is the spherical cap. We will show that the maximal
function M, f is bounded by a sum of the Hardy-Littlewood maximal function M, f. As a
consequence, we establish a weighted weak (1, 1) result for My f(x), in which the weight is
also of the form (1.2) but with different parameters. Furthermore, we show that the Fefferman—
Stein type inequality holds in the weighted L” norm. These results are discussed in Section 3.

The analysis on the sphere is closely related to the analysis on the unit ball B¢ and on the
standard simplex T4 . In fact, much of the results on the later two cases can be deduced from those
on the sphere (see [5,12,13] and the references therein). In particular, maximal functions are also
defined on B and T¢ in terms of the generalized translation operators [13]. We will extend our
results on the sphere in Section 2 to these two domains, including a multiplier theorem for the
orthogonal expansions in the weighted space on B and T¢, in Sections 4 and 5, respectively.

Throughout this paper, the constant ¢ denotes a generic constant, which depends only on the
values of d, k and other fixed parameters and whose value may be different from line to line.
Furthermore, we write A ~ B if A <c¢B and B < cA.

2. Maximal function and multiplier theorem on S$¢
2.1. Background

In this subsection we give a brief account of what will be needed later on in the paper. For
more background and details, we refer to [5,12,13].
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h-Harmonic expansion. Let Hd‘H (h,%) denote the space of spherical 4-harmonics of degree n.
It is known that dim H9 1 (h2) = ("+d+1) — ("F>1). The usual Hilbert space theory shows that

n

o]

Lz(h,%; Sd) = ZHd'H h2 f= ZPI'OJn

n=0

where proj¥ : L2(h2; S9) > H2+1(h2) is the projection operator, which can be written as an
integral operator

prof f(x) = a / FOVP G DR () doo (), @.1)

where P/ is the reproducing kernel of H%*!(h2), which satisfies the compact representa-
tion (1.3).

Intertwining operator. For a general reflection group, the explicit formula of V. is not known.
In the case of Zg“, it is an integral operator given by

d+1

Ve f () = ¢y f FOtt o xaeitar) [+ m)(1—2) " dr, 2.2)

[—1,1]d+1 i=1

where ¢, is the normalization constant determined by V, 1 = 1. If some «; = 0, then the formula
holds under the limit relation

timc, [ £ =0 dr= [0 + F(-1]/2

Convolution. For f € Ll(h,%; 59y and g€ Ll(w;w; [—1, 1]), define [12, Definition 2.1, p. 6]

[ *e g(x) :=aK/f(y)VK [g((x, )] A2 () dw(y). (2.3)

This convolution satisfies the usual Young’s inequality (see [12, Proposition 2.2, p. 6]): for
feLi(hZ; 8% and g € L™ (wy,; [=1, 1), I e glle.p < 1 lkgllgllu,, > where p,g,r > 1
and p_l =r-1 4 q_l — 1. For k =0, V,, = id, this becomes the classical convolution on the
sphere [2]. Notice that by (1.3) and (2.1), we can write proj;;, f as a convolution.

Cesaro (C, 8) means. For § > 0, the (C, §) means, s , of a sequence {c,} are defined by

n—k+34
ZAVL ka, nk:( n_k >
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We denote the nth (C, §) means of the £-harmonic expansion by Sﬁ (hf; f). These means can be
written as

k+ A
S 125 f) = (fre ad) @), qb) = (A%)” ZA (+ ) o),

where A = A,. The function qﬁ (1) is the kernel of the (C, §) means of the Gegenbauer expansions
atx = 1.

Generalized translation operator Ty . This operator is defined implicitly by [12, p. 7]

g

CA f TS £ (x)g(cos0) (sin0)> dO = (f #c £)(x), (2.4)

0

where g is any L!(w;) function and A = A.. The operator Ty is well defined and becomes the
classical spherical means

To f(x) = f FO) do(),

(x,y)=cos 6

o4(sin G)d 1

when « = 0, where oy = fsdfl do = an/z/ I'(d/2) is the surface area of $9-1_ Furthermore,
Ty satisfies similar properties as those satisfied by Tp, as shown in [12,13]. In particular, if
f(x)=1,then T f(x) = 1.

Spherical caps. Let d(x,y) := arccos (x, y) denote the geodesic distance of x, y € §¢. For
0< 6 <, the set

c(x,0):={yeS% dx,y) <0} ={yeS% (x,y) >cosd}

is called the spherical cap centered at x. Sometimes we need to consider the solid set under the
spherical cap, which we denote by B(x, 0) to distinguish it from c(x, 6); that is,

B(x,0):={y e B (x,y) >cosb]},

where B4t = {y e R4t |y < 1.
Maximal function. For f € L'(h?), define [13]

fo S1F1(o) (sing)> dgp

M, =
7 0<6< fo (sin )M d ¢

This maximal function can be used to study the #-harmonic expansions, since we can often prove
[(f *¢ )(x)| < c M f(x). Using (2.4) it is shown in [13] that an equivalent definition for M, f
is (1.5); that is,

Jsa | fF O VielxBx.o)l(0)hE(y) do ()
o<o<r  Jsa VlxBx.oy)MhZ(y)dw(y)

M f(x) = (2.5)
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We note that setting f(x) = 1 and g(¢) = x[coss,17(t) in (2.4) leads to

0
ay f VelxB.o) JO)R2(y) do(y) = ¢, / (sing)?** dgp ~ g2 F1, (2.6)
sd 0

2.2. Maximal function

To state the weak type inequality, we define, for any measurable subset E of S¢, the measure
with respect to h2 as

meas, E ::/h%(y) do(y).
E

Our main result in this section is the boundeness of M, f.
Theorem 2.1. If f € L' (h,%; §4), then M, f satisfies

IS i, 1

meas,{{x: M fx) > a} <c
o

Va > 0. 2.7)

Furthermore, if f € Lf’(h%; Sd)for 1 < p < oo, then | Mifllc,p <cll flli,p-

The inequality (2.7) is usually refereed to as weak type (1, 1) inequality. In order to prove
this theorem, we follow the approach of [9] on general diffusion semi-groups of operators on a
measure space. For this we need the Poisson integral with respect to h% , which can be written as
[5, Theorem 5.3.3, p. 190]

1—r?

P}f(f(x):f*l( pf’ Wherep;f(s): (1_2rs+r2))\k+l'

(2.8)

The kernel pY is one of the generating function of the Gegenbauer polynomials of parameter A,.
Hence, by (1.3), we can write P} f as

o
PEfx)=) r"projs f(x), 0<r<l,
n=0

from which it follows easily that 77 := P¥ f with r = ¢~ defines a semi-group. Since Vj is
positive and p; is clearly non-negative, P f > 0if f > 0. We see that the semi-group P, f is
positive. We will need another semi-group, which is the discrete analog of the heat operator:

oo
- n—+a
HEF = Foeqrls qf ()= e "2 — =5 Gl (s). 2.9)
n=0 ke
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In fact, the ~A-harmonics in Hg“(h%) are the eigenfunctions of an operator Ay, o, which is the
spherical part of a second order differential-difference operator analogous to the ordinary Lapla-
cian, the eigenvalues are —n(n + 2A¢). It follows immediately from (2.9) that {H/};>0 is a
semi-group. The following result is the key for the proof of the theorem.

Lemma 2.2. The Poisson and the heat semi-groups are connected by

o0
Pl f(x)= /fﬁz(S)Hff(X)ds, (2.10)
where
b 3 Gl heds)?
¢ (s) := —Zﬁs e .
Furthermore, assume that f(x) = 0 for all x, then for all t > 0,
1 N
PSf(x):= sup P,"f(x)gcsup—/H,ff(x)du. 2.11)
O<r<l s>0 S

Consequently, Py f is bounded on L'"(h%; S%) for 1 < p < 00 and of weak type (1, 1).

Proof. That {H/};>0 is a semi-group is obvious. Moreover, since V, is positive and g; is known
to be non-negative [7], it follows that Hf f is positive. The positivity shows that ||g/ [|w,, .1 =1,
so that |Hf flle,p < I fllk,p» 1 < p < 00, by applying Young’s inequality on f %, g;. Thus,
using the Hopf—Dunford—Schwarz ergodic theorem [9, p. 48], we conclude that the maximal
operator sups>0(% Jo H¥ f (x)du) is bounded on LP(h%; 8%) for 1 < p < oo and of week type
(1, 1). Therefore, it is sufficient to prove (2.10) and (2.11).

First we prove (2.10). Applying the well-known identity [9, p. 46]

e du v>0,
T /T / Nol
with v = (n + A,)r and making a change of variable s = 12 /4u, we conclude that
< 2,2
n(n+2/\,()t A
e M =M — / e” 4 du
f 0

o
/ —n(n+2xk)ss—3/2e—(ZLﬁ—AK«/E)2 d
0

%\

00
:/e—n(n—&-Z)w)s(pt(s)ds.
0

Multiplying by projs f and summing up over n proves the integral relation (2.10).



484 F. Dai, Y. Xu / Journal of Functional Analysis 249 (2007) 477-504

For the proof of (2.11), we use (2.10) and integration by parts to obtain

oo

refw=- [ ( / Hu”f(x)du>¢§(s)ds
0

0

<sup<§fH5f(x>du)/s|<z>,’(s>|ds,
s>0
0

0

where the derivative of ¢[’ (s) is taken with respect to s. Also, we note that by (2.8) and (2.3),

S
o1
sup  Prf(x) <cllfllie=c lim —/H,f(lfl)(X)dw
O<r<e! s7oos
0
Therefore, to finish the proof of (2.11), it suffices to show that SUPy—/<1 fooos|¢,’(s)|ds is
bounded by a constant.
A quick computation shows that ¢/ (s) > 0 if s < oy and ¢/ (s) < 0 if s > o, where

2

o 2, 0<r<l.

N Ewrers

Since the integral of ¢, (s) over [0, c0) is 1 and ¢, (s) > O, integration by parts gives

00 o 00
/s|¢;(s>|ds=2at¢,(a,>—/¢z(s>ds+/¢,<s>ds
0 0 o
L204¢ (o) +1= ! €_%+1<C
N

as desired. O
We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1. From the definition of p¥, it follows easily thatif 1 —r ~ 6, then

1—r2
((1 = r)2 + 4r sin? %)’\KH
2

py (cosB) =

1—r
= zc(l—
A= eyt =€

Py~ @hetD).

For j > 0 define r; := 1 — 2776 and set B; := {y € B*!1: 277710 < d(x,y) <27/6}. The
lower bound of p proved above shows that

x5, () < c(2770) T pE ((x, 1),
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which implies immediately that

o0 o0
Xy () < Y xp; (3) < 0PN "2 TGt D pe ((xy)).
j=0 j=0

Since Vi is a positive linear operator, applying V. to the above inequality gives

f | FO)|VelxBe.o) ]2 () de(y)
d—1

N

<Pty " omi Bt D / | Ve[ pr; (. 9) ]EE () deo ()

Jj=0 §d—1
o
20 +1 —j QA +1 .
= 6P Y 2T P (7))
=0
< chPetl sup P,’((|f|;x).

O<r<l

Dividing by 6%**! and using (2.6), we have proved that M, f(x) < cPf|f|(x). The desired
result now follows from Lemma 2.2. O

A weighted maximal function, call it M, f, on R is defined in [11] in terms of a transla-
tion that is defined via Dunkl transform, the analogue of Fourier transform for the weighted
Lz(hf; R?). The translation can be expressed in term of V,, when acting on radial functions. The
boundedness of the maximal function M, f was established in [11]. Although the relation be-
tween the maximal function M, f and M, f is not known at this moment, it should be pointed
out that our proof of Theorem 2.1 follows the line of argument used in the proof of [11].

2.3. A multiplier theorem

As an application of the above result we state a multiplier theorem. Let Ag(t) = g(t + 1) —
g(1) and A¥ = AKFTA,

Theorem 2.3. Let {1 };?‘;O be a sequence of real numbers that satisfies

(1) sup;lu;l < c < oo,

. j+1
() sup; 2/*K=D S ARy < e < o0,

where k is the smallest integer > A + 1. Then {u;} defines an Lp(hf; §9), 1 < p < oo, multi-
plier; that is,

<C||f||l(,p3 1 <p<oo,
K.p

o
Y wjprof§ f
j=0

where c is independent of 1 and f.
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When « = 0, the theorem becomes part of [1, Theorem 4.9] on the ordinary spherical har-
monic expansions. The proof of this theorem follows that of the theorem in [1]. One of the main
ingredient is the Littlewood—Paley function

1
g(f)z(/(l—r)
0

where P f is the Poisson integral with respect to h,% defined in (2.8). A general Littlewood-
Paley theory was established in [9] for a family of diffusion semi-group of operators {7"'},;>( on
a measure space, in which the g function is defined as

o) 5 ) 1/2
gi(f)= (/t gT’f dt) .
0

Applying the general theory to 77 := P¥ f with r = e~ and using the fact that the crucial point
in the definition of g(f) is when r close to 1, it follows that

5 ) 12
P S dr) , (2.12)

TN F ey <€D, <l fllep 1< p <00, 2.13)

for feLP (h,%; $%), where the inequality in the left-hand side holds under the additional assump-
tion that | ga f( y)h% (y)dy = 0. Another ingredient of the proof is the Cesaro means. Recall that
the (C, §) means are denoted by S,f (h%; f). What is needed is the following result.

Theorem 2.4. For § > A, 1 < p < 00 and any sequence {n} of positive integers,

| (Zr)

Proof. The proof of (2.14) follows the approach of [9, pp. 104—105] that uses a generalization
of the Riesz convexity theorem for sequences of functions. Let L”(£9) denote the space of all
sequences { f} of functions for which the norm

<c (2.14)

o 172
<Z|Sﬁj(hf;fj)|2>

Jj=0

K,p K,p

o0

p/q 1/p
1 lsioy= ([ (Slsr) s2ra000)

sd Jj=0

is finite. If T is bounded as operator on L”0(£9°) and on LP!(£9'), then the Riesz convexity
theorem states that T is also bounded on L? (£9'), where

1 1—¢ t 1 1—1¢ t
= 4 —=—+4+—, 0<t<I.
Pt Po P1 qt q0 q1
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We apply this theorem on the operator T that maps the sequence {f;} to the sequence
{Sg/_(h%; fi)}. It is shown in [13, pp. 76 and 78] that supnlS,f(h,Z(; )| < eM, f(x) for all

x € §¢if § > A,.. Consequently, T is bounded on L”(£7). It is also bounded on L” (£*°) since

< | Mc(sup1 ;1)

J=0

Jsupl 2, (u2: 1)1 c|sup 111
j=z0 j=20

K.p kp

Hence, the Riesz convexity theorem shows that 7 is bounded on L?(£9) if 1 < p < g < oco. In
particular, T’ is bounded on L?(¢?) if 1 < p < 2. The case 2 < p < oo follows by the standard
duality argument, since the dual space of L”(¢%) is L” (¢?), where 1/p + 1/p’ = 1, under the

paring

((f) (g)) / D fi)gj ()R} (x) dor(x)

S‘[ «/
and T is self-adjoint under this paring as S,‘z (h,%) is self-adjoint in Lz(h%; 59, o

Using the two ingredients, (2.13) and (2.14), the proof of Theorem 2.3 follows from the cor-
responding proof in [1] almost verbatim.

Remark 2.1. In the case of x = 0, the condition § > X, = (d — 1)/2 is the critical index for
the convergence of (C, §) means in Lp(hi; §4) for all 1 < p < oo. For h% given in (1.2) and
G = Zg, this remains true if at least one «; is zero. However, if «; # 0 for all i, then the critical
index is A, —min; g;<a+1 k; [8]. It remains to be seen if the condition k > A, + 1 in Theorem 2.3
can be improved to k > A, — minjgiga+14; + 1.

The proof of Theorem 2.4 actually yields the following Fefferman—Stein type inequality [6]
for the maximal function M, f.

Corollary 2.5. Let 1 < p <2 and f; be a sequence of functions. Then
1/2 1/2
H (Z(Mm)z) ¢ (Z |fj|2)
J J

We do not know if the inequality (2.15) holds for 2 < p < oo under a general finite reflection
group. However, it will be shown in the next section that (2.15) is true for all 1 < p < oo in the
case of G = Z‘ZH'I.

(2.15)

“p “©p

3. Maximal function for product weight

The result on the maximal function in the previous section is established for every finite
reflection group. In the case of G = Z‘z”l, the weight function becomes (1.2); that is,

d+1

he@)=] ]Il >0
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We know the explicit formula of the intertwining operator V., as shown in (2.2). This additional
information turns out to offer more insight into the maximal function My f. The main result in
this section relates M, f to the weighted Hardy-Littlewood maximal function.

Definition 3.1. For f € L! (h%; 5%, the weighted Hardy—Littlewood maximal function is defined
by

Sty [ DIBE() do(y)
0<0<m fc(x,&) h;%()’) dw(y)

M f(x):= 3.1

Since h, is a doubling weight [3], M, f enjoys the classical properties of maximal functions.
We will show that the maximal function M, f is bounded by a sum of M, f, so that the properties
of My f can be deduced from those of M, f. We shall need several lemmas. The first lemma is
an observation made in [13, p. 72], which we state as a lemma to emphasize its importance in the
development below.

Lemma 3.2. For x € §¢ let X := (|x1,...,|xq|). Then the support set of the function
VielxB.o))(y) is {y: d(x, y) < 0}; in other words,

Vilxs.o)l(y) =0 if (X, ¥) <coséb.
Proof. The explicit formula (2.2) of V. shows that if V,[xp(x,0)1(y) = 0 if
Xpeo) (Y1 0232, s tat1Ya+1) =0

for every t € [—1, 1]‘71"’1 or if x1y1t1 + -+ + Xg41Ya+1ta+1 < cos@, which clearly holds if
(x,y) <cos6. 0O

Our second lemma contains the essential estimate for an upper bound of M, f.
Lemma 3.3. For 0 <0 <, x = (x1,...,x441) € S¢ and y € 5,
d+1 92¢)

Velxpanl|<c| | ———
| K X | 11:[1 (|xj| +9)2K_,

Xe.0) (). (3.2)

Proof. The presence of x.(z,6)(y) in the right-hand side of the stated estimate comes from
Lemma 3.2. Hence, we only need to derive the upper bound of Vi [xp(x,0)1(y) for d(x, y) <0,
which we assume in the rest of the proof. If 7/2 <8 <, then 6/(|x| 4+ 6) > ¢ and the inequal-
ity (3.2) is trivial. So we can assume 0 < 8 < /2 below. By the definition of V.,

d+1
i—1
VielxBx.0)1(y) = ¢k / H(l +1)(1— tiz)K dt
Zf;l 1ix;yi 2c0s 0 =
where ¢ also satisfies 7 € [—1,1]9"!. We first enlarge the domain of integration to {t €

[—1, 179+ Z?;Lll |t;x; yi| = cos@} and replace (1 + ;) by 2, so that we can use the Z‘;H sym-
metry of the resulted integrant to replace the integral to the one on [0, 1]¢F!,
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d+1
Velxso,e)l(y) <c / 1_[(1 . tl.Z)Ki*l dt

l
Y i yil=cos0

d+1
<c / [T(t -3 ar
i=1

1
1[0, 114+, Y94 11 yi 1 > cos0

To continue, we enlarge the domain of the integral to {¢ € [0, 1]¢F!: tilxjyil + Zi# |xiyil =
cos @} for each fixed j to obtain

d+1
i—1
Veltseal ) <c ] / (1= 15 dr;.
T=L0<t <111 37 14012 i vi | cos 6

For each j we denote the last integral by /;. First of all, there is the trivial estimate /; <
fol (1- tj)Kf_l dtj = Kj_l. Secondly, for (x, y) > cos 6, we have the estimate

1
1 —1 ((x, y) — cos0)*i
Ij< / (l—tj)l(j dtj:Kj T T
|x/)’/| J
cns(é—zi#j Jxj yi
1xjy;l

Together, we have established the estimate

.lmin{l (x, 5) = cos6) }

I <«
RS :
/ |yl

Recall that d(x,y) < 6. Assume first that |x;| > 26. Then |x;| > (|x;| + 0)/2. The inequal-
ity [lxj| — lyjll < lx =yl < d(x,y) <6 implies that |y;| > x| — 6 > |x;[/2, so that |y;| >
(|xj] + 6) /4. Furthermore, write t :=d(x, y) < 6 and recall that 6 < /2. We have then

t+6

(x,y) —cosf =cost —cosf =2sin sin <(9—t)0<02.

Putting these ingredients together, we arrive at an upper bound for /;,

021{_,‘
Ii<c———
J = Rl
(x| +6)*
under the assumption that |x;| > 26. This estimate also holds for |x;| < 26, since in that case

0/(lxj| +6) = 1/3. Thus, the last inequality holds for all x and for all j, from which the stated
inequality follows immediately. O

Our next lemma gives the order of the denominator in M, f, which was proved in [3, (5.3),
p. 157] in the case when min; ¢ j<a+17; = 0.
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Lemma 3.4. Let t = (11, ..., T4+1) € R4t with miny g j<g+17tj > —1. Then for 0 <6 < 7 and
x=(x1,...,%11) € 89,
d+1 d+1
[T1yil" do)~6 TT(1xj1+6)"
c(x,0) I=1 j=1

where the constant of equivalence depends only on d and t.

Proof. Without loss of generality we may assume that x; > 0 forall 1 < j <d + land x441 =
maxigj<d+1Xj, as well as 0 < 0 < ZJ;m' Since x441 = maX]<]<d+]xj > \/d?’ it follows
that
Sr 0> Wy =( ) € cx.6) (3.3)
d+1 Z Xd+1 —U 2 —F——, =Wl,---,Yd+1) €cx,0). .
Yd+1 +1 NS y=u Yd+

Using (3.3) and the fact that dw(y) = c4(1 — ||57||2)_% dy for y = (¥, y4+1) and yg+1 =
V1 =512 >0, as well as the fact that lx; —yjl <llx — yll <d(x, y), we conclude

d+1 d
[T do~ [ TTil” dydya...dva
cx,0) I=1 d(x,y)<6o /=1

Xj+9 d+1

d
c[] / yil%dy; ~ 0 T (1xj1 +6)7.
I=1xj-0

j=1

where in the last step, if 7; < 0, consider the cases x; > 26; and x; < 20; separately. This gives
the desired upper estimate.
For the proof of the lower estimate, let z = (21, ..., Zd+1) € S be defined by z; =x; + €6

forj=1,2,...,dand zg41 = (1 — Z% — = zﬁ)%, where ¢ > 0 is a sufficiently small constant
depending only on d. Using (3.3), a quick computation shows that

13 5
Il — 21> = d(e6)> + —H i 5 <d(e6) + (d + 1)d (260 + £26%)°,
(Za+1 +Xa+1)

from which and the fact that 2 sin =5=* d(x D — = ||x — z||, it follows that we can choose & small enough
so that z € c(x, 7). Consequently, c(z, 5 ) C c(x,60) and, forany y = (y1, ..., Ya+1) € c(z, 7),
&b o &0 3e6 .
Xj+7=Zj—7<)’j <2j+7=)fj+7, j=12,...,d+1,

which implies immediately that

d+1 d+1 . 0
[Tyl ~ (=1 +6)7, VyéC(z,7>,
j=1 j=1
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and, as a consequence,
d+1 d+1 d+1

[Tmmdom = [ TTmiodoo) et ](1+0)".

cx,0) =1 ez, %) J=1 j=1

proving the desired lower estimate. O
In particular, Lemma 3.4 shows that h,% is a doubling weight in the sense that
meas, c(x,20) < cmeas, c(x,0), Vxe Sd, 6 >0.

We are now ready to prove our first main result. For x € R¢*! and ¢ € Zg“, we write x¢ :=
(X161, .+, Xd+1€d+1)-

Theorem 3.5. Let f € Ll(h,%; S). Then for every x € §¢,

Mcfx)<e Y Mcf(xe). (3.4)

an‘zH'l
Proof. Since

{vestdx y<ot= | {yes’ duxe y)<o},

d+1
e€ly

it follows from Lemmas 3.2 that

Jo f (x) = / | £ )| VielxBer o) 1) (v) deo ()
sd

= / | FO) | VielxBe.o) I)ARZ(0) de (y)

(x,y)=cos6

<Y FOMbmen R0 doo).
EEZ‘ZHI (xe,y)>cos@

Consequently, using Lemmas 3.3 and 3.4, we conclude that

d+1 QZKj
Jof(x)<e Yy HW / | fOD)|hE () deo(y)
SGZg“ j=1 J (xe,y)>cosf

< cp2lkIHd Z M, f(xe).

d+1
e€Z,
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Dividing the above inequality by §2/<I*¢ = §2*«+1 and, recall (2.6), taking the supremum over 6
lead to (3.4). O

There are several applications of Theorem 3.5. First we need several notations. For x =

X1y ey Xa41)s Y = (V1 -+ o5 Yd+1) e RIt1 | we write x < vifx; <yjforall 1 <j<d+1.
We denote by 1 the vector 1:=(1,1,...,1) € R4+ Moreover, we extend the definitions of he,
measz, || - llz,p» L”(h%; $9) and M, to the full range of T = (71, ..., Tg+1) > —%. Thus,

d+1

1/p
he@) =[]l 1 fllep= ( f |f<x>|”h$<x)dw(x>>
j:] sd

and M- denotes the Hardy—Littlewood maximal function with respect to the measure h% (x)dw(x),
as defined in (3.1).

As an application of Theorem 3.5, we can prove the boundedness of M, f on the spaces
L? (h%; S%) for a wider range of t without using the Hopf-Dunford—Schwarz ergodic theorem.

Theorem 3.6. If—% <t <kand f € L' (h?; §%), then M, f satisfies

measr{x: M,(f(x)>a}<c”f”r’l, Ya > 0. 3.5
o

Furthermore, if 1 < p < o0, —% <T<pk+ pT_ljl and f € Lp(h%; Sd), then

IMi fllz.p <cll fllz.p- (3.6)
Proof. We start with the proof of (3.5). Note that if T = (zq, ..., Tg+1) < k, then
d+1 5
/ | FD () de(y) < c< [1(x1+6) ("-f‘f”) / |FD R () do ().
c(x.,0) j=1 c(x.,0)

which, together with Lemma 3.4, implies

Mcf(x) <cMyf(x), xeS89 <k

Hence, using the inequality (3.4), we obtain that, for —% <71 <Kk,

meas; {x: M f(x) > (x} < Z meas; {x: M, f(xe) > coc/2d+1}

d+1
e€Zy

< Z meas; {x: My f(xe) > c'a}

d+1
e€ly

= > / h2(y)de(y)

d+1
e€Zy™ (y: M, f(ve)>c'a)
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_ i+ / 12 () deo(y)

{x: M f(x)2c'a}

(WAIER!
e,
(0%

where we have used the Zg“ -invariance of /i, in the fourth step, and the fact that M is of weak
type (1, 1) with respect to the doubling measure h% (y) dw(y) in the last step. This proves (3.5).

For the proof of (3.6), we choose a number g € (1, p) such that T < gk + %]l and claim
that it is sufficient to prove

M, £ () < e(Mq (1 £19) (). 3.7)

Indeed, using (3.7), the inequality (3.6) will follow from (3.4), the Zg‘” invariance of 4, and the
boundedness of the maximal function M; on the space LPr/4 (h%; Sy,
To prove (3.7), we use Holder’s inequality with ¢’ = qul and Lemma 3.4 to obtain

/ | F)|h2 () do(y)
c(x,0)

1/q 1/q'
<( [ rorrman) ([ 2, _, mdo)

c(x,0) c(x,0)

PN 1/q (d+1 2Kj_ﬂ i
~ || h: () dew(y) [T0x1+0)* "7 |o

c(x,0) j=l

1/q
~meas,((c(x,9))< |f(y)|qh$(y)dy) )

1
meas; (c(x, 0)) /

c(x,0)

where we have also used the fact that the assumption T < gk + % 1 is equivalent to g’k — % T>

—%. This proves (3.7) and completes the proof. O
For our next application of Theorem 3.5 we will need the following result.

Lemma 3.7. Let | < p < oo and let W be a non-negative, local integrable function on S. Then

/ (M f () |PW(0)RZ(x) dw(x) < cp / | £ | MW ()R (x) dw(x). (3.8)

sd sd
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Such a result was first proved in [6] for maximal function on R?. The proof can be adopted
easily to yield Lemma 3.7. Indeed, the fact that h,% is a doubling weight shows that the Hardy—
Littlewood maximal function defined by (3.1) satisfies

Je lfOIRE () dw(y)
M, ~
7 oroe [eh2() do(y)

where C is the collection of all spherical caps in S, which implies that

f | f|he(y) dy < c(meas, c(x, ) Zeil(le@) My f(2)
c(x,0)

for any spherical cap c(x, 8). As a consequence, we can prove the key inequality

meas, (E) < f | £ )| MW ()R2 () dao(y)
Sd

for any compact set E in {x € S My f (x) > a}, as in the proof for the maximal function on R4
in [10, pp. 54-55]. In fact, (3.8) holds with hf(y) dw replaced by any doubling measure du on
the sphere.

An important tool in harmonic analysis is the Fefferman—Stein type inequality [6], which we
established in Corollary 2.5 for M, f in the case of 1 < p < 2 and a general reflection group.
In the current setting of G = Zg‘“ , we can use Theorem 3.5 to prove a weighted version of this
inequality for 1 < p < oo.

Theorem 3.8. Let 1 < p < o0, —% <T<pk+ pT_lIL, and let {fj}?i] be a sequence of func-
tions. Then
00 1/2 00 1/2
H (Z(fo/ﬁ) <c (Z|f,|2> (3.9)
j=1 Tp j=1 T,p
Proof. Using Theorem 3.5 and the Minkowski inequality, we obtain
1/2 2\ 172
H (Z(fo,az) <e (Z( Y M fj(xe)) )
i Tp i eezdt T.p
N\ /2 1/2
<c Y (Z(Mkfj(xs)) ) <c (Z(Mkf,oz)
eezdt! N T.p j T.p
Thus, it is sufficient to prove
1/2 1/2
H (Z(MK fj)2> <c (Z |f,-|2) (3.10)
j ©p j op
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We start with the case 1 < p < 2. Let g be chosen such that | <g < p and 7 < gk + =1 1)]1

We use the inequality (3.7) to obtain

1/2
H (Z(MK fj)2>
J

1/q

<e (Z(Mr(|fj|q))2/q>q/2

TP j n.r/q
5 q/2\1/q 5 1/2
c (Df,-ﬂ' /‘1) =H(Z|f,~|>
J J

T.p/q
where we have used the classical Fefferman—Stein inequality for the maximal function M, and
the space LP/9(¢%/9) in the second step. This proves (3.10) for 1 < p < 2.
Next, we consider the case 2 < p < oo. Noticing that

1 Lle-bi o no2 1y
— = <T<pKk+-—— e —— = |1l <2c+ =,
2 P 2 2°7p 2 2

’

T,p

we may choose a vector € R4+! such that
1 2 1 1 1
——<—-14|(—-—-= ]l<pL<2K+§, (3.11)
4

and a number 1 < g < 2 such that © < gk + %1. Let g be a non-negative function on §¢
satisfying ||g|lz,p/(p—2) = 1 and

1/2
(2w
J

2
:/(Z|Mkfj(x)!2)g(x)h§(x)dw(x).
T.p ;

sd

Then by the assumption p < gx + %]l, (3.7), (3.8) with p =2/q > 1 and Holder’s inequality,
we obtain

f (Z|M £i@)] )g(x)hz(xmw(x) cZ / W (L£719) @)Y g (oyh? (x) deo (x)

sa

<c/<Z|fj(x)|2>MM(gh%_M)(x)hi(x)da)(x)
sa
17212
Jzw)
J

Using the boundedness of M, f and (3.11), we have

M, (gh%_u)hi_r I ©.p/(p=2)’

T.p

| My (ghz ), —ellepipory = 1M (gh3- D so—2u—21-20. 0102

<clghi -l pyr—mu—2sir-2r. -2

=cliglz,p/p—2) =c.
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Putting these two inequalities together, we have proved the inequality (3.10) for the case 2 <
p<oo. 0O

Remark 3.1. It is shown in [13] that, for § > A, the Cesaro (C, §) means satisfy |Sﬁ (h%; HI<
cM, f(x). Hence, we can get a weighted inequality for the Cesaro means by replacing M, f;
in (3.9) by S,fj (h,%; fj). This gives a || - ||, , weighted version of Theorem 2.4 that holds under

the condition —% <t < pk + ‘"T_ljl.
4. Maximal function and multiplier theorem on B¢

Analysis in weighted spaces on the unit ball B¢ = {x e R?: |x|| < 1} in R? can often be
deduced from the corresponding results on 59 see [5,12,13] and the reference therein. Below we
develop results analogous to those in the previous sections.

4.1. Weight function invariant under a reflection group

Let k = (k', kgy1) with €’ = (k1,...,kq) and assume «; > 0 for 1 <i <d + 1. Let h be
the weight function (1.1), but defined on R?, that is invariant under a reflection group G. We
consider the weight functions on B¢ defined by

WE(x) == h2 (o) (1 = IxI?)“ "%, xe B, (4.1)

which is invariant under the reflection group G. Under the mapping

¢:x € B (x,\/1—|Ix)2) € §1 := |y € §%: yg41 >0} 4.2)

and multiplying the Jacobian of this change of variables, the weight function W2 comes exactly
from 2 defined by

2 2
Pie(x1s ooy Xag1) i= R (X, o Xa) X [790F

The weight function 4, is invariant under the reflection group G x Z,. All of the results estab-
lished in Section 2 holds for 74, .

We denote the L?(WE; BY) norm by I fllws, p- The norm of g on B< and its extension on ¢
are related by the identity

/g(y)de/[g(x,\/l— Ix1%) + g (x, =/ 1~ IIXIlz)]ﬁ- 4.3)

§d B4

The orthogonal structure is preserved under the mapping (4.2) and the study of orthogonal ex-
pansions for W2 can be essentially reduced to that of #2. In fact, let V¢(W2) denote the space
of orthogonal polynomials of degree n with respect to W2 on B¢. The orthogonal projection,
proj, (WE; f), of f € L2 (WE; BY) onto V¢(W2E) can be expressed in terms of the orthogonal

projection of F(x, x44+1) := f(x) onto ’Hﬁf“(h,z():

proj, (W2 f.x) = projf F(X), X :=(x,{/1—Ilx]2). (4.4)
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Furthermore, a maximal function was defined in [13, p. 81] in terms of the generalized translation
operator of the orthogonal expansion. More precisely, let

e(x,0) == {(v, yar1) € B4 (x,y) + /1 = IX)12 yat1 > cosb, yat1 >0}

Then this maximal function, denoted by M f f(x), was shown to satisfy the relation

[5a 1 FODIVEXew ) I WE (v) dy
o<o<r  Jpa VEXe.)]JVI)WE(y) dy

MB fx) =

where ¥ = (y, /1 — |ly2), and for g : R4t > R,

1
VEe(x, xap1) = E[ng(X,XdH) + Vieg(x, —xa11)].
in which Vj is the intertwining operator associate with £, . This maximal function can be written

in terms of the maximal function M, f in (2.5). In fact, we have Mff(x) = M, F(X). Our
main result in this section states that Mf f is of weak (1, 1). Let us define

meas? E ::/W,f(x)dx, E c BY.
E

Theorem 4.1. If f € L'(WE; BY) then M? satisfies

£ lws 1
C———,

measf{xeBd: Mff(x))a}g a > 0.

Furthermore, if f € LP(W.; BY) for 1 < p < oo, then | M fllys , <cllfllws ,

Proof. Since M2 f(x) = M, F(X), it follows from (4.3) that
measf {x e B¢ /\/lff(x) > a} = / X{Mff(x»a}(x)w,f(x) dx
Bd

_ f XM Fioysa OVR2 () doo (3).

st
Enlarging the domain of the last integral to the entire ¢ shows that
measf{x e B%: Mff(x) > a} < meaSK{y e s M F(y) > a}.

Consequently, by Theorem 2.1, we obtain

£ [, 1

measf{x e BY: MBf(x)> al<c
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from which the weak (1, 1) inequality follows from || F||,,1 = || f || WB.1- Since ./\/l,‘{g f is evidently
of strong type (00, 00), this completes the proof. O

The connection (4.4) and (4.3) allow us to deduce a multiplier theorem for orthogonal expan-
sion with respect to W2 from Theorem 2.3.

Theorem 4.2. Let {1 ; }3?020 be a sequence of real numbers that satisfies

(1) sup; |ujl < ¢ < oo,
(2) sup; 2/¢*~ ”ZZH Afuj| < e < oo,

. . _ d—1 d+1
where k is the smallest integer > A + 1, and A = 5= + Z] 1kj. Then {1} defines an
L”(W,f; Bd), 1 < p < oo, multiplier; that is,

o0
> wjprojf f
j=0

<clfllwgp. 1<p<oo,
WE.p

where c is independent of {11} and f.
4.2. Weight function invariant under Zg
In the case of G = Z‘zl, the weight function becomes
d
WP @) o= [Tl (1= ) =2, x e BY, 4.5)
i=1

which corresponds to the product weight function h% x)= ]_[d+l |x;|%<i . Taking into the consid-
eration of the boundary, an appropriate distance on B¢ is defined by

dp(x,y) = arccos((x, ) +/1 = [xI2/1 = I¥2), ¥,y e B,

which is just the projection of the geodesic distance of Si on BY. Thus, one can define the
weighted Hardy-Littlewood maximal function as

de(X,y)<9|f(y)|WKB(y)dy d
X .

’

MBf(x) = sup
g 0<0<m de(x,y)<9 WKB()’) dy

We have the following analogue of Theorem 3.5.

Theorem 4.3. Let f € L'(WE; BY). Then for any x € B,

MEFy<c Y MPfxe). 4.6)

d
e€Z5
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The proof of Theorem 4.3 replies on the following lemma, which implies, in particular, that
W2B(y) is a doubling weight on B4,

Lemmad44. Ift = (t1,...,Tg+1) > —%]1, then for any x = (x1,...,X4) € B? and 0< 6 < 7,
d+1 5
wE Gy dy ~o! [T(1xj1+0)™.
dg(y.0)<0 j=1

where xg4+1 = m and WTB (y) is defined as in (4.5).
Proof. Recall that X = (x, x4+1), and ¢(X,0) ={z € N d(X,z) <0}. Set
cr(X,0)={(1, ..., ya+1) € c(X,0): yar1 >0}
From (4.3) it follows that
We () dy = / (@ do(), @.7)
dp(y.x)<0 c+(X,0)
which, together with Lemma 3.4, implies the desired upper estimate

d+1

2 .
Wy dy < f I3 (2)dw(z) <0 [ T (Ixj1+6)7.
dp(y,x)<0 c(X,0) Jj=1
To prove the lower estimate, we choose a point z = (21, ..., Zd+1) € c(X, %) with zg41 > €6,

where ¢ > 0 is a sufficiently small constant depending only on d. Clearly, c(z, %) Ccy(X,0).
Hence, by (4.7), we obtain

WE(y)dy > / B2y deo(y)

dp(y,x)<0 c(z,%)
d+1 d+1
~ 09 [T (121 +6)" ~ 64 T (1xj1 +6)*",
j=1 j=1

where we have used Lemma 3.4 in the second step, and the fact that z € c¢(X, 8) in the last step.
This gives the desired lower estimate. O

Now we are in a position to prove Theorem 4.3.

Proof of Theorem 4.3. It is shown in [13, p. 81] that

/ Velxewr.o)J(Y)WE(y) dy ~ 6P +1,
B4
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where A, = % + Z’ji} k j. The proof follows almost exactly as in the proof of Theorem 3.5,
the main effort lies in the proof of the following inequality:

5 d+1 92¢;
VElxewn )W) <c[]

T g Kebt g <o) ()
izl (] 4+ 6)%< {veBd: dp(x, )<6)

4.8)
where xg41 =+/1 — ||x||? and Z = (|z1], ..., |zq]) for z = (z1,...,2q) € B?. However, using
(2.2) and the fact that y;11 =+/1 — || y||?, we have

VE e ,0)1(Y) = E(VK[Xe(x,G)](ya Ya+1) + VielXex.0)1 (¥, —Ya+1))

d
=CK/1_[(1+tj)(1—[]2)Kj71(1_t§+l)'€d+1*1dl"

p J=1
where

d+1
D= {(zl,...,zd,th) e[—1, 119 x [0, 1]: Y tjx;y; >cosf ¢
j=1

This last integral can be estimated exactly as in the proof of Lemma 3.3, which yields the desired
inequality (4.8). O

As a consequence of Theorem 4.3, we have the following analogues of Theorems 3.6 and 3.8.

Corollary 4.5. If =3 < v <« and f € L"(W5; BY), then M, f satisfies

I £ g
measf{x: MB f(x) > ol <e— "L e s 0.

. 1
Furthermore, if 1 < p <00, — 3

<t <pe+Lland f e LP(WE; BY), then
[ MEFlws , < cllfllws -

Corollary 4.6. Let 1 < p < o0, —% <1< pk+ 2=
tions. Then

5 L1, and let {fj}?oz1 be a sequence of func-
0 1/2
2
j=1

00 1/2
(Z |f;|2>
j=1

Using the formula Mff(x) = M, F(X) and the method of [13], one can also deduce Corol-

<c
wh.p

wE.p

laries 4.5 and 4.6 directly from Theorems 3.6 and 3.8.
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5. Maximal function and multiplier theorem on 7¢

Just like the connection between the structure of function spaces on S¢ and B, analysis in
weighted spaces on the simplex

T?={(x1,....,x0) €R x; >0,...,xg >0 and x; +--- +x4 < 1}

can often be deduced from the corresponding results on Bd; see [5,12,13] and the reference
therein.

5.1. Weight function associated with a reflection group

Let«’ = (x1, ..., kq) and h, be the weight function (1.1) on R4 invariant under the reflection
group G. We further require that %, is even in all of its variables; in other words, we require that
h, is invariant under the semi-direct product of G and Z‘zl. Letkgi1 > 0and K = (', k441). The
weight functions on T¢ we consider are

W () o= b (Va1 o Sx) (=[x ) T2 x e, (5.1)

where |x| = x1 + --- + x4. These weight functions are related to W,f in (4.1). In fact, WKT is
exactly the weight function W2 under the mapping

Vi, xa) €T (x3,...,x3) e BY (5.2)

and upon multiplying the Jacobian of this change of variables. We denote the norm of
L”(WKT; T4) by || - ”WKT,P' The norm of g on 7¢ and g o ¥ on B? are related by

d
/g(x%,...,xﬁ)dx:/g(xl,...,xd)—x. (5.3)

'xl ...Xd
B4 T4

The orthogonal structure is preserved under the mapping (5.2). Let V,‘lj (WKT ) denote the space of
orthogonal polynomials of degree n with respect to WKT onT¢. Then R € fo (WTI') if and only if
Roy € V4 (WE). The orthogonal projection, proj, (W,; f), of f € LXW.I; T9) onto V¢ (W)
can be expressed in terms of the orthogonal projection of f o ¥ onto Vs, (WE):

1
(proj, (WS f)ov)(x) = 5 Z projy, (W2 f oy, xe). (5.4)

d
e€Zy

The fact that proj,(W/[') of degree n is related to proj,,(WZE) of degree 2n suggests that some
properties of the orthogonal expansions on B¢ cannot be transformed directly to those on T¢.

A maximal function M,{ f is defined in [13, Definition 4.5, p. 86] in terms of the generalized
translation operator of the orthogonal expansion. It is closely related to the maximal function
Mff on B?. It was shown in [13, Proposition 4.6] that

MEf)oy=ME(foy). (5.5)
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We show that this maximal function is of weak type (1, 1). Let us define

meas! E := / wl(x)dx, EcT?
E

Theorem 5.1. If f € L'(WT; T9), then MT satisfies

1wz
C————,

measT{x eT: M! f(x) >a} <

K« o> 0.

Furthermore, if [ € LP(WKT; T for 1 < p < oo, then ”MZfHWKT,p < C||f||WKT’p.
Proof. Using the relation (5.5) and (5.3), we obtain
/X{xerd: M,{f(x)}a}(x)WKT(x)dx = / X(xeBd: MZ((f'ox//)(x)}a}(x)WKB(x)dx'
Td Bd
Hence, by Theorem 4.1, we conclude that

Ifovilws.i Ifllwr 1
c =c ,
o o

meas” {x € B MB(foy)(x) > al <
where the last step follows again from (5.3). O

The relation (5.4) shows that we cannot expect to deduce all results on orthogonal expansion
with respect to WKT on T¢ from those on By. This applies to the multiplier theorem. On the
other hand, as it is shown in [13, p. 85], we can introduce a convolution *Z structure and write
projﬁ(WKT s H=f *Z P,. Moreover, we often have the inequality | f *,{ g0 < CMZ (x). For
example, for the Cesaro (C, §) means Sﬁ(WKT ; f), we have

d+1 d—1
sup|Sﬁ(WKT;f,x)|<cM,{(x), if5>)‘K:ZKf+T'

Using this result, we can prove an analogue of Theorem 2.4 almost verbatim. Furthermore,
the Poisson operator, PrT f, of the orthogonal expansion with respect to WKT on T4 is still a
semi-group when we define 77 f = PT f with r = e~ (see, for example, [13, p. 90]). So, the
Littlewood—Paley function g( f), defined as in (2.12), is bounded in L”( WKT K Yforl < p <oo.
Hence, all the essential ingredients of the proof of the multiplier theorem in [1] hold for the or-
thogonal expansion with respect to W/ . As a consequence, we have the following multiplier
theorem.

Theorem 5.2. Let {1 }j?ozo be a sequence that satisfies

(1) sup;|ujl < c < oo,

. i+1
@) sup; 27*D 2 Akyy| < e < oo,
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where k is the smallest integer > A + 1. Then {j1;} defines an L”(WKT; T, 1 < p < oo, multi-
plier; that is,

<cllflwr p. 1T<p<oo,
wrl.p

o0
> wjproj f
.:0

where c is independent of f and 4.
5.2. Weight function associated with Zg

In the case G = Zg, we are dealing with the classical weight function on T,
d
W @) = [Tl 9121 = )72 x e (5.6)
i=1

Under the mapping (5.2), this weight function corresponds to W2 at (4.5). Taking into the con-
sideration of the boundary, an appropriate distance on 7¢ is defined by

dr(x,y) = arccos(<x1/2, yl/z)—i—\/l —lxlvV1I=1yl), =x,ye€ T4,

where x1/2 = (xll/z, ey x;/z) for x € T%. Evidently, we have dg(x, y) = dr (¥ (x), ¥(y)). Us-
ing this distance, one can define the weighted Hardy-Littlewood maximal function as
|fDIW () dy
M f(x):= sup fa’T(x,y)<9 ‘ , xeT?.

0<6<n fdm,y)gg WI(y)dy
We have the following analogue of Theorem 4.3.
Theorem 5.3. Let f € L'(WT'; T9). Then for any x € T,
MEfo) <eM! fx). (5.7)

Proof. Using (5.3), it follows readily from the definitions of M2 f and M f that (M] f)o vy =
MB(f o). Hence, using the fact that if g is invariant under the sign changes, then M5 g(xe) =
MB g(x) by a simple change of variables, it follows from (5.5) and Theorem 4.3 that

(MIf)op)=ME(fop)(x) <c Y ME(f oy (xe)
EEZg
=MI (o)) =c'(M] f)oy(x)
for x € T¢, from which the stated result follows immediately. O

Although the proof of this theorem may look like a trivial consequence of the definition of
M, f, we should mention that the definition of M,{ f in [13, Definition 4.5, p. 86] is given in
terms of the general translation operator of the orthogonal expansions with respect to W'
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As a consequence of Theorem 5.3 or by (5.5) and (5.3), we have the following analogues of
Corollaries 4.5 and 4.6.

Corollary 5.4.If -1 <t <« and f € L"(WI'; T9), then M, f satisfies

10y,
el W

meastT{x: M,{f(x)}oc}g —, Va>0.

Furthermore, if 1 < p < o0, —% <T<pk+ ”T_ljl and f € LP(WTT; Td), then

IMEF Ly, <elfllwr -

Corollary 5.5. Let 1 < p < 00, —% <T<pk+ pT_lIl, and let {fj}?oz1 be a sequence of func-

tions. Then

1/2 1/2

o
2
<c|| Do1£]
wrI.p j=1 wI.p

| > 1)

References

[1] A. Bonami, J.-L. Clerc, Sommes de Cesaro et multiplicateurs des développements en harmoniques sphériques,
Trans. Amer. Math. Soc. 183 (1973) 223-263.
[2] A.P. Calderon, A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc. 78 (1955) 209-224.
[3] F. Dai, Multivariate polynomial inequalities with respect to doubling weights and Ao weights, J. Funct. Anal. 235
(2006) 137-170.
[4] C. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991) 1213-1227.
[5] C.F. Dunkl, Yuan Xu, Orthogonal Polynomials of Several Variables, Cambridge Univ. Press, 2001.
[6] C. Fefferman, E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971) 107-115.
[7] S. Karlin, G. McGregor, Classical diffusion processes and total positivity, J. Math. Anal. Appl. 1 (1960) 163-183.
[8] Zh.-K. Li, Yuan Xu, Summability of orthogonal expansions of several variables, J. Approx. Theory 122 (2003)
267-333.
[9] E.M. Stein, Topics in Harmonic Analysis Related to the Littlewood—Paley Theory, Princeton Univ. Press, Princeton,
NJ, 1970.
[10] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ.
Press, Princeton, NJ, 1993.
[11] S. Thangavelu, Yuan Xu, Convolution operator and maximal functions for the Dunkl transform, J. Anal. Math. 27
(2005) 25-55.
[12] Yuan Xu, Weighted approximation of functions on the unit sphere, Constr. Approx. 21 (2005) 1-28.
[13] Yuan Xu, Almost everywhere convergence of orthogonal expansions of several variables, Constr. Approx. 22 (2005)
67-93.



