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Abstract

In one-dimensional case, various important, weighted polynomial inequalities, such as Bernstein,
Marcinkiewicz–Zygmund, Nikolskii, Schur, Remez, etc., have been proved under the doubling con-
dition or the slightly stronger A∞ condition on the weights by Mastroianni and Totik in a recent paper
[G. Mastroianni, V. Totik, Weighted polynomial inequalities with doubling and A∞ weights, Constr.
Approx. 16 (1) (2000) 37–71]. The main purpose of this paper is to prove multivariate analogues
of these results. We establish analogous weighted polynomial inequalities on some multivariate do-
mains, such as the unit sphere S

d−1, the unit ball Bd , and the general compact symmetric spaces
of rank one. Moreover, positive cubature formulae based on function values at scattered sites are
established with respect to the doubling weights on these multivariate domains. Some of these multi-
dimensional results are new even in the unweighted case. Our proofs are based on the investigation
of a new maximal function for spherical polynomials.
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1. Introduction

Various important, weighted, algebraic and trigonometric polynomial inequalities such
as Bernstein, Marcinkiewicz, Nikolskii, Schur, Remez, etc., have been proved for 1 � p �
∞ by G. Mastroianni and V. Totik in a recent remarkable paper [13] under minimal as-
sumption on the weights. It turns out that in most cases this minimal assumption is the
doubling condition. Sometimes, however, as for the Remez and Nikolskii inequalities, one
needs the slightly stronger A∞ condition. In [8] Erdélyi showed that most of the inequal-
ities proved in [13] hold even if 0 < p < 1, while in [9] he established the important
Markov–Bernstein-type inequalities for trigonometric polynomials with respect to dou-
bling weights on a finite interval [−ω,ω]. We refer to [8,9,12–14] for further information.

Our main purpose in this paper is to show multivariate analogues of the weighted poly-
nomial inequalities proved in [8,13]. We will illustrate our method mainly for the spherical
polynomials on the unit sphere Sd−1 of Rd . However, polynomial inequalities on other
multivariate domains, such as compact two-point homogeneous manifolds, and the unit
ball Bd of R

d will also be deduced. We shall discuss polynomial inequalities only for
0 < p < ∞, as in most cases those for p = ∞ can be derived directly from known weighted
inequalities for trigonometric polynomials and the fact that any spherical polynomial of de-
gree at most n on S

d−1 restricted to a great circle of S
d−1 is a trigonometric polynomial of

degree at most n.
We organize this paper as follows. Section 2 contains some basic notations and facts

concerning harmonic analysis on the unit sphere S
d−1. In Section 3, we introduce a new

maximal function for spherical polynomials on S
d−1 and prove a fundamental theorem

(Theorem 3.1) related to this new maximal function, as well as some of its useful corollar-
ies. Based on the results obtained in Section 3, we obtain Marcinkiewicz–Zygmund (MZ)
type inequalities and positive cubature formulae with doubling weights, Bernstein-type
and Schur-type inequalities with doubling weights, as well as Remez-type and Nikolskii-
type inequalities with A∞ weights for spherical polynomials on S

d−1 in Sections 4, 5
and 6, respectively. After that, in Section 7, a few remarks concerning weighted polyno-
mial inequalities on general compact two-point homogeneous manifolds are given without
detailed proofs. Finally, in Section 8, we deduce analogous weighted polynomial inequali-
ties on the unit ball Bd of R

d from those already proven weighted inequalities for spherical
polynomials on the sphere S

d−1.
Throughout the paper, the letter C denotes a general positive constant depending only

on the parameters indicated as subscripts, and the notation A ∼ B means that there exist
two inessential positive constants C1, C2 such that C1A � B � C2A.

2. Harmonic analysis on SSS
d−1

This section is devoted to a brief description of some basic facts and notations concern-
ing harmonic analysis on the unit sphere Sd−1 = {x ∈ Rd : |x| = 1} of Rd . Most of the
material in this section can be found in [1,16,21].
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Let dσ(x) be the usual rotation-invariant measure on Sd−1 normalized by

∫
Sd−1

dσ(x) = 1.

Given a weight function w, we denote by Lp,w ≡ Lp,w(Sd−1) (0 < p < ∞) the Lebesgue
space on S

d−1 endowed with the quasi-norm

‖f ‖p,w =
( ∫

Sd−1

∣∣f (x)
∣∣pw(x)dσ(x)

) 1
p

,

and we write, for a measurable subset E of S
d−1,

w(E) :=
∫
E

w(x)dσ(x).

We denote by d(x, y) the geodesic distance arccosx · y between two points x and y

on S
d−1, and by B(x, r) := {y ∈ S

d−1: d(x, y) � r} the spherical cap with center x ∈ S
d−1

and radius r ∈ (0,π). Also, for a measurable subset E ⊂ S
d−1, we denote by χE the char-

acteristic function of E and |E| the Lebesgue measure σ(E) of E. Given an integer n � 0,
the restriction to S

d−1 of a harmonic homogeneous polynomial in d variables of total
degree n is called a spherical harmonic of degree n, while the restriction to S

d−1 of a poly-
nomial in d variables of degree at most n is called a spherical polynomial of degree at
most n. We denote by Hd

n the space of all spherical harmonics of degree n on S
d−1 and

Πd
n the space of all spherical polynomials of degree at most n on S

d−1. It is well known
that Πd

n can be written as a direct sum
⊕n

k=0 Hd
k of the spaces of spherical harmonics and

that the orthogonal projection Yk of L2(S
d−1) onto Hd

k can be expressed as follows:

Yk(f )(x) = (2k + d − 2)�
(

d−1
2

)
�(k + d − 2)

�(d − 1)�
(
k + d−1

2

)
×
∫

Sd−1

f (y)P
( d−3

2 , d−3
2 )

k (x · y)dσ(y), x ∈ S
d−1,

where and throughout the paper, P
(α,β)
k denotes the usual Jacobi polynomial as defined in

[19, pp. 58–60]. Let η be a C∞-function on [0,∞) with the properties that η(x) = 1 for
0 � x � 1 and η(x) = 0 for x � 2. We define, for an integer n � 1,

Kn(t) =
2n∑

k=0

η

(
k

n

)
(2k + d − 2)�

(
d−1

2

)
�(k + d − 2)

�(d − 1)�
(
k + d−1

2

) P
( d−3

2 , d−3
2 )

k (t), t ∈ [−1,1].
(2.1)
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Then, evidently, for all f ∈ Πd
n ,

f (x) =
∫

Sd−1

f (y)Kn(x · y)dσ(y), x ∈ S
d−1. (2.2)

We will keep the notations Kn and η for the rest of this paper.
Given ε > 0, we say a finite subset Λ ⊂ S

d−1 is ε-separable if

min
ω,ω′∈Λ
ω 	=ω′

d(ω,ω′) � ε,

while we say it is maximal ε-separable if it is ε-separable and satisfies

max
x∈Sd−1

min
ω∈Λ

d(x,ω) < ε.

A weight function w on S
d−1 is a doubling weight if there exists a constant L > 0

(called the doubling constant) such that for any x ∈ S
d−1 and t > 0

w
(
B(x,2t)

)
� Lw

(
B(x, t)

)
.

Following [13], we set w0(x) = w1(x) and

wn(x) = nd−1
∫

B(x, 1
n
)

w(y)dσ (y), n = 1,2, . . . , x ∈ S
d−1.

From the definition, it is easily seen that for a doubling weight w and an integer n � 0,

wn(x) � L
(
1 + nd(x, y)

)s
wn(y) for all x, y ∈ S

d−1, (2.3)

where L denotes the doubling constant of w and s = logL/ log 2.
Many of the weights on S

d−1 that appear in analysis satisfy the doubling condition; in
particular, all weights of the form

hα,v(x) =
m∏

j=1

|x · vj |αj , x ∈ S
d−1, (2.4)

where α = (α1, . . . , αm), αj > 0, v = (v1, v2, . . . , vm) and vj ∈ S
d−1. (The proof of this

fact will be given in Section 5.) It is worthwhile to point out that the weights hα,v play an
important role in the theory of multivariate orthogonal polynomials. (For details, we refer
to a series of interesting papers [5,11,22–26] by Y. Xu and his collaborators.)
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3. A fundamental theorem and its useful corollaries

Let w be a doubling weight on S
d−1 and L be its doubling constant. Suppose that

s = logL/ log 2 and wn, Kn are as defined in Section 2. For β > 0 and f ∈ C(Sd−1), we
define

f ∗
β,n(x) = max

y∈Sd−1

∣∣f (y)
∣∣(1 + nd(x, y)

)−βs
, x ∈ S

d−1, n = 0,1, . . . . (3.1)

We will keep these notations for the rest of the paper.
Our main result in this section is the following theorem, which will play a fundamental

role in the proofs of the following sections.

Theorem 3.1. For 0 < p � ∞, f ∈ Πd
n and β > 1

p
, we have

‖f ‖p,w � ‖f ∗
β,n‖p,w � C‖f ‖p,w,

where C > 0 depends only on d , L and β when β is close to 1
p

.

For the proof of Theorem 3.1, we need the following lemma, which was proved in [3,
Lemma 3.3].

Lemma 3.2. For θ ∈ [0,π] and any positive integer �,∣∣K(i)
n (cos θ)

∣∣� C�,in
d−1+2i min

{
1, (nθ)−�

}
, i = 0,1, . . . , n = 1,2, . . . ,

where K
(0)
n (t) = Kn(t), K

(i)
n (t) = ( d

dt
)i{Kn(t)} for i � 1.

The point of Lemma 3.2 is that the positive integer � can be chosen as large as we like.

Proof of Theorem 3.1. The first inequality ‖f ‖p,w � ‖f ∗
β,n‖p,w is evident. For the proof

of the second inequality, we define, for g ∈ L1,w ,

Mw(g)(x) = sup
0<r�π

1

w(B(x, r))

∫
B(x,r)

∣∣g(y)
∣∣w(y)dσ(y).

Mw is the weighted Hardy–Littlewood maximal function and it is known that for any dou-
bling weight w and all 1 < p � ∞,

∥∥Mw(g)
∥∥

p,w
� C

(
p

p − 1

) 1
p ‖g‖p,w, (3.2)

where C > 0 depends only on the doubling constant of w, and it is understood that
(

p
p−1 )1/p = 1 when p = ∞. In the case of R

d , the proof of (3.2) can be found in [20,

pp. 223–225], and the proof given there works equally well for the case of S
d−1.
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We claim that for all f ∈ Πd
n and β > 0

f ∗
β,n(x) � C1

(
Mw

(|f | 1
β
)
(x)
)β (3.3)

where C1 > 0 depends only on d , L and β when β is big. Combining (3.2) with (3.3) we
will deduce the desired inequality

‖f ∗
β,n‖p,w � C‖f ‖p,w

for β > 1/p.
For the proof of the claim (3.3), we set, for δ > 0 and y,u ∈ S

d−1,

An,δ(y,u) := max
z∈B(y, δ

n
)

∣∣Kn(y · u) − Kn(z · u)
∣∣. (3.4)

Then, using Lemma 3.2 with i = 0,1, it is easy to verify that for any integer � > 0,

An,δ(y,u) � Cd,�

{
nd−1, if θ ∈ [0, 4δ

n
],

δnd−1 min{1, (nθ)−�}, if θ ∈ [ 4δ
n

,π], (3.5)

where θ = d(y,u). Now we use (2.2) to obtain that for f ∈ Πd
n and x, y ∈ S

d−1,

max
z∈B(y, δ

n
)

|f (y) − f (z)|
(1 + nd(x, y))βs

� f ∗
β,n(x)

∫
Sd−1

(
1 + nd(x,u)

1 + nd(x, y)

)βs

An,δ(y,u) dσ (u)

� f ∗
β,n(x)

∫
Sd−1

(
1 + nd(y,u)

)βs
An,δ(y,u) dσ (u) � Cβδf ∗

β,n(x),

where the last inequality follows by (3.5), and Cβ > 0 is a constant increasing with β . It
then follows that for x, y ∈ S

d−1 and δ ∈ (0, 1
4 ),

∣∣f (y)
∣∣ 1

β
(
1 + nd(x, y)

)−s

� 2
1
β
(
1 + nd(x, y)

)−s min
z∈B(y, δ

n
)

∣∣f (z)
∣∣ 1

β + (2Cβδf ∗
β,n(x)

) 1
β

� 2
1
β
(
1 + nd(x, y)

)−s
( ∫

B(y, δ
n
)

w(z) dσ (z)

)−1 ∫
B(y, δ

n
)

∣∣f (z)
∣∣ 1

β w(z) dσ (z)

+ (2Cβδf ∗
β,n(x)

) 1
β

=: I + (2Cβδf ∗
β,n(x)

) 1
β . (3.6)

To estimate I , we consider the following two cases.
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Case 1. θ := d(x, y) � 4δ
n

. In this case, B(y, δ
n
) ⊂ B(x, 5δ

n
) and

∫
B(y, δ

n
)

w(z) dσ (z) � L−4
∫

B(y, 16δ
n

)

w(z) dσ (z) � L−4
∫

B(x, 5δ
n

)

w(z) dσ (z).

It follows that

I � 2
1
β L4

( ∫
B(x, 5δ

n
)

w(z) dσ (z)

)−1 ∫
B(x, 5δ

n
)

∣∣f (z)
∣∣ 1

β w(z) dσ (z)

� 2
1
β L4Mw

(|f | 1
β
)
(x);

Case 2. 4δ
n

� θ = d(x, y) � π . In this case, B(y, δ
n
) ⊂ B(x,2θ) and

∫
B(y, δ

n
)

w(z) dσ (z) � L−1
(

3θn

δ

)−s ∫
B(y,3θ)

w(z) dσ (z)

� L−1
(

3θn

δ

)−s ∫
B(x,2θ)

w(z) dσ (z).

It follows that

I � L2
1
β

(
3θn

δ

)s

(1 + nθ)−s

( ∫
B(x,2θ)

w(z) dσ (z)

)−1 ∫
B(x,2θ)

∣∣f (z)
∣∣ 1

β w(z) dσ (z)

� L2
1
β

(
3

δ

)s

Mw

(|f | 1
β
)
(x).

Therefore, in either case, we have

I � 2
1
β C2δ

−sMw

(|f | 1
β
)
(x), (3.7)

where C2 > 0 depends only on the doubling constant L. Now substituting (3.7) into (3.6),
letting δ = (4Cβ)−1, and taking the supremum over all y ∈ S

d−1, we deduce

(
f ∗

β,n(x)
) 1

β � C22
1
β (4Cβ)sMw

(|f | 1
β
)
(x) + 2− 1

β
(
f ∗

β,n(x)
) 1

β ,

and the claim (3.3) with C1 = 4sβ+1C
β
2 C

sβ
β

(21/β−1)β
follows. This completes the proof. �

As an immediate consequence of Theorem 3.1, we have the following result, which
seems to be of independent interest.
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Corollary 3.3. For any δ
n

-separable subset Λ ⊂ Sd−1, f ∈ Πd
n and 0 < p < ∞,

(∑
ω∈Λ

∣∣osc(f )(ω)
∣∣pw

(
B

(
ω,

δ

n

))) 1
p

� Cδ‖f ‖p,w, (3.8)

where

osc(f )(ω) = max
x,y∈B(ω, δ

n
)

∣∣f (x) − f (y)
∣∣, (3.9)

C > 0 depends only on d , L and p when p is small.

In the unweighted case, (3.8) was proved for 1 � p < ∞ in [3], but the proof there does
not work for 0 < p < 1.

Proof. Using (2.2), we obtain, for any ω ∈ Λ,

max
y,z∈B(ω, δ

n
)

∣∣f (y) − f (z)
∣∣� 2

∫
Sd−1

∣∣f (u)
∣∣An,δ(ω,u)dσ (u),

where An,δ is defined by (3.4). Thus, by (3.5) and a straightforward computation, we have

osc(f )(ω) � 2f ∗
2/p,n(ω)

∫
Sd−1

(
1 + nd(u,ω)

) 2s
p An,δ(ω,u)dσ (u) � Cδf ∗

2/p,n(ω),

where C > 0 depends only on d , L and p when p is small. Noticing that

f ∗
2/p,n(y) ∼ f ∗

2/p,n(ω) for y ∈ B

(
ω,

δ

n

)
,

we obtain

∑
ω∈Λ

∣∣osc(f )(ω)
∣∣p ∫

B(ω, δ
n
)

w(y)dσ (y) � (Cδ)p
∑
ω∈Λ

∫
B(ω, δ

n
)

(
f ∗

2/p,n(y)
)p

w(y)dσ(y)

� (Cδ)p
∫

Sd−1

(
f ∗

2/p,n(y)
)p

w(y)dσ(y)

� (Cδ)p
∫

Sd−1

∣∣f (y)
∣∣pw(y)dσ(y),

where in the second inequality we have used the δ
n

-separable property of the set Λ, and in
the last inequality we have used Theorem 3.1. This completes the proof. �
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We also have the following useful corollary.

Corollary 3.4. For f ∈ Πd
n and 0 < p < ∞,

C−1‖f ‖p,wn � ‖f ‖p,w � C‖f ‖p,wn,

where C > 0 depends only on d , L and p when p is small.

Proof. We note that each wn is again a doubling weight with a doubling constant depend-
ing only on d and that of w. Thus, by Theorem 3.1 it will suffice to prove that

‖f ∗
2/p,n‖p,w ∼ ‖f ∗

2/p,n‖p,wn, (3.10)

where f ∗
β,n is defined by (3.1) with s > 0 replaced by a possibly bigger number s′ de-

pending only on the doubling constant L. To show (3.10) we let Λ ⊂ S
d−1 be a maximal

1
n

-separable subset. Then noticing that for x ∈ B(ω, 1
n
),

f ∗
2/p,n(x) ∼ f ∗

2/p,n(ω) and wn(x) ∼ wn(ω),

we obtain

‖f ∗
2/p,n‖p

p,w ∼
∑
ω∈Λ

∫
B(ω, 1

n
)

(
f ∗

2/p,n(x)
)p

w(x)dσ(x)

∼ n−(d−1)
∑
ω∈Λ

(
f ∗

2/p,n(ω)
)p

wn(ω) ∼
∑
ω∈Λ

∫
B(ω, 1

n
)

(
f ∗

2/p,n(x)
)p

wn(x) dσ (x)

∼ ‖f ∗
2/p,n‖p,wn

proving (3.10). This completes the proof. �

4. Marcinkiewicz–Zygmund (MZ) inequalities and positive cubature formulae with
doubling weights

Our first result in this section is the following

Theorem 4.1. Let w be a doubling weight on S
d−1. Then there exists a positive constant ε

depending only on d and the doubling constant of w such that for any δ ∈ (0, ε) and
any maximal δ

n
-separable subset Λ ⊂ S

d−1 there exists a sequence of positive numbers
λω ∼ w(B(ω, δ

n
)), (ω ∈ Λ) for which the following holds for all f ∈ Πd

n :

∫
Sd−1

f (x)w(x)dσ (x) =
∑
ω∈Λ

λωf (ω). (4.1)
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Our next result connects positive cubature formulae and MZ inequalities.

Theorem 4.2. Let w be a doubling weight on S
d−1 and μ be a finite positive measure

on S
d−1. Suppose that the following equality holds for all f ∈ Πd

3n:∫
Sd−1

f (x)w(x)dσ (x) =
∫

Sd−1

f (x)dμ(x). (4.2)

Then for all 0 < p < ∞ and f ∈ Πd
n , we have∫

Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) ∼

∫
Sd−1

∣∣f (x)
∣∣p dμ(x), (4.3)

with the constants of equivalence depend only on d , p and the doubling constant of w.

Remarks. (i) Of particular interest is the case when the measure μ in Theorem 4.2 is sup-
ported in a finite subset of S

d−1. In this case, equality (4.2) is called a positive cubature
formula, while equivalence (4.3) is called a Marcinkiewicz–Zygmund (MZ) type inequal-
ity.

(ii) In the unweighted case, positive cubature formulae and MZ inequalities (for 1 �
p � ∞) on Sd−1 were first established by Mhaskar et al. in the fundamental paper [15],
while the estimate λω ∼ |B(ω, δ

n
)| for the coefficients in the cubature formula (4.1) (with

w ≡ 1) was obtained recently by Narcowich et al. in the paper [17]. Also in the unweighted
case, a different proof of MZ inequalities and positive cubature formulae on S

d−1 was given
in [3]. Compared with that of [15], the proof in [3] is simpler and works for all compact
two-point homogeneous manifolds.

(iii) In the unweighted case, Theorem 4.2 can be easily proved by the standard dual-
ity technique. This technique, however, does not work in the weighted case considered
here since the spaces of spherical harmonics are not mutually orthogonal with respect to a
measure other than dσ(x).

For the proof of Theorem 4.1, we need two lemmas, the first of which is from [15,
Proposition 4.1]. Let X be a finite-dimensional normed linear space, X∗ be its dual, and
Z ⊂ X∗ be a finite subset with cardinality m. We say Z is a norming set for X if the
operator x �→ (y∗(x))y∗∈Z from X to R

m is injective. A functional x∗ ∈ X∗ is said to be
positive with respect to Z if for all x ∈ X, x∗(x) � 0 whenever miny∗∈Z y∗(x) � 0.

Lemma 4.3 ((Mhaskar et al. [15])). Let X be a finite-dimensional normed linear space, X∗
be its dual, Z ⊂ X∗ be a finite, norming set for X, and x∗ ∈ X∗ be positive with respect
to Z. Suppose further that supx∈X miny∗∈Z y∗(x) > 0. Then there exists a sequence of
nonnegative numbers �y∗ , (y∗ ∈ Z) such that for any x ∈ X,

x∗(x) =
∑
y∗∈Z

�y∗y∗(x).
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Our next lemma can be stated as follows.

Lemma 4.4. Let w be a doubling weight and μ be a finite positive measure on S
d−1. If

(4.2) holds for all f ∈ Πd
n , then the following condition must be satisfied:

μ

(
B

(
x,

2

n

))
� Cw

(
B

(
x,

2

n

))
for all x ∈ S

d−1,

where C depends only on d and the doubling constant of w.

Proof. For a fixed x ∈ S
d−1, we set

gx(y) = K[n/4](x · y)

K[n/4](1)
,

where K[n/4] is as defined in (2.1). Note that by Bernstein’s inequality for trigonometric
polynomials,

∣∣K[n/4](x · y) − K[n/4](1)
∣∣� n

4

(
d(x, y)

)‖K[n/4]‖∞ = n

4

(
d(x, y)

)
K[n/4](1).

This means that for d(x, y) � 2
n

,

gx(y) � 1

2
.

It then follows that

1

4
μ

(
B

(
x,

2

n

))
�
∫

Sd−1

∣∣gx(y)
∣∣2 dμ(y) =

∫
Sd−1

∣∣gx(y)
∣∣2w(y)dσ(y) (by (4.2))

� C

∫
Sd−1

∣∣gx(y)
∣∣2wn(y)dσ (y) (by Corollary 3.4)

� Cwn(x)

∫
Sd−1

∣∣gx(y)
∣∣2(1 + nd(x, y)

)s
dσ (y) (by (2.3))

� Cn−(d−1)wn(x) (by Lemma 3.2 and the fact that K[n/4](1) ∼ nd−1)

� C

∫
B(x, 2

n
)

w(y)dσ (y),

proving the lemma. �
Now we are in a position to prove Theorem 4.1.
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Proof of Theorem 4.1. We get the idea from [17]. Let C2 � 1 be a constant depending
only on d and L such that the conclusion of Corollary 3.3 with p = 1 and C = C2 holds.
Set ε = 1

6C2
and suppose Λ ⊂ S

d−1 is a maximal δ
n

-separable subset with 0 < δ < ε. Set

n1 = [ εn
δ

]
, δ1 = n1

n
δ and

Λ(x) =
∑
ω∈Λ

χB(ω,δ1/n1)(x), x ∈ S
d−1.

Then n1 � n, 0 < δ1 � ε and 1 � Λ(x) � Cd .
Now consider the following linear functional on Πd

n1
:

�(f ) = 2
∫

Sd−1

f (y)w(y)dσ (y) −
∑
ω∈Λ

( ∫
B(ω,

δ1
n1

)

w(x)

Λ(x)
dσ(x)

)
f (ω).

It will be shown that there exists a sequence of nonnegative numbers μω, ω ∈ Λ such that

�(f ) =
∑
ω∈Λ

μωf (ω) for all f ∈ Πd
n1

. (4.4)

We claim that (4.4) is enough for the proof of Theorem 4.1. In fact, once (4.4) is proved
then setting

λω = 1

2
μω + 1

2

∫
B(ω,

δ1
n1

)

w(x)

Λ(x)
dσ(x),

we obtain the cubature formula (4.1) for all f ∈ Πd
n1

⊃ Πd
n . Furthermore, by Lemma 4.4

and the definition of λω, it is easily seen that the equivalence

λω ∼
∫

B(ω, 1
n1

)

w(y) dσ (y) ∼
∫

B(ω, δ
n
)

w(y)dσ (y)

holds for all ω ∈ Λ.
The proof of (4.4) is based on Corollary 3.3. In fact, by Corollary 3.3, it is easily seen

that each f ∈ Πd
n1

is uniquely determined by its restriction to the set Λ. (This can also be
seen from the proof below.) Thus, in view of Lemma 4.3, it will suffice to prove that for
any f ∈ Πd

n1
with minω∈Λ f (ω) � 0,

�(f ) � 0.

To see this, we note that if ω ∈ Λ and f (ω) � 0, then for all x ∈ B(ω, δ1 ),

n1
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f (x) � max
z∈B(ω,

δ1
n1

)

∣∣f (z)
∣∣− max

z∈B(ω,
δ1
n1

)

(∣∣f (z)
∣∣− f (ω) + f (ω) − f (x)

)

� max
z∈B(ω,

δ1
n1

)

∣∣f (z)
∣∣− 2 osc(f )(ω),

where

osc(f )(ω) = max
y,z∈B(ω,

δ1
n1

)

∣∣f (y) − f (z)
∣∣. (4.5)

Thus, for f ∈ Πd
n1

with minω∈Λ f (ω) � 0, we have

∫
Sd−1

f (x)w(x)dσ (x)

=
∑
ω∈Λ

∫
B(ω,

δ1
n1

)

f (x)

Λ(x)
w(x)dσ(x)

�
∑
ω∈Λ

(
max

z∈B(ω,
δ1
n1

)

∣∣f (z)
∣∣) ∫

B(ω,
δ1
n1

)

w(x)

Λ(x)
dσ(x) − 2

∑
ω∈Λ

osc(f )(ω)

∫
B(ω,

δ1
n1

)

w(x)

Λ(x)
dσ(x)

�
∑
ω∈Λ

∫
B(ω,

δ1
n1

)

∣∣f (x)
∣∣w(x)

Λ(x)
dσ(x) − 2

∑
ω∈Λ

osc(f )(ω)

∫
B(ω,

δ1
n1

)

w(x) dσ (x),

which, by Corollary 3.3 and the fact that Λ is maximal δ1
n1

-separable, is greater than or
equal

(1 − 2C2δ1)‖f ‖1,w. (4.6)

But, on the other hand, again by Corollary 3.3, we have

∣∣∣∣
∫

Sd−1

f (x)w(x)dσ (x) −
∑
ω∈Λ

( ∫
B(ω,

δ1
n1

)

w(x)

Λ(x)
dσ(x)

)
f (ω)

∣∣∣∣

�
∑
ω∈Λ

∫
B(ω,

δ1
n1

)

∣∣f (x) − f (ω)
∣∣w(x)

Λ(x)
dσ(x)

�
∑
ω∈Λ

osc(f )(ω)

∫
B(ω,

δ1 )

w(x) dσ (x) � C2δ1‖f ‖1,w. (4.7)
n1
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Therefore, combining (4.6) with (4.7), we have, for f ∈ Πd
n1

with minω∈Λ f (ω) � 0,

�(f ) � (1 − 3C2δ1)‖f ‖1,w � 0

as desired. This completes the proof. �
For the proof of Theorem 4.2, we need two more lemmas.

Lemma 4.5. Suppose that w is a doubling weight with doubling constant L,
s = logL/ log 2, n is a positive integer, and μ is a finite positive measure on S

d−1 sat-
isfying

μ

(
B

(
x,

1

n

))
� Kw

(
B

(
x,

1

n

))
for all x ∈ S

d−1. (4.8)

Then for any 0 < p < ∞ and f ∈ Πd
m with m � n, we have

∫
Sd−1

∣∣f (x)
∣∣p dμ(x) � Cp,L,dK

(
m

n

)s+1

‖f ‖p
p,w.

Proof. Let β = 1
p

s+1
s

and let Λ be a maximal 1
n

-separable subset of S
d−1. Note that, for

any x ∈ S
d−1 and m � n,

f ∗
β,m(x) = max

y∈Sd−1

(
1 + md(x, y)

)−βs∣∣f (y)
∣∣� (m

n

)− s+1
p

f ∗
β,n(x). (4.9)

It follows that for f ∈ Πd
m∫

Sd−1

∣∣f (x)
∣∣p dμ(x) � C

∑
ω∈Λ

(
f ∗

β,n(ω)
)p ∫

B(ω, 1
n
)

dμ(x)

� CK
∑
ω∈Λ

(
f ∗

β,n(ω)
)p ∫

B(ω, 1
n
)

w(x)dσ (x) (by (4.8))

� CK

∫
Sd−1

(
f ∗

β,n(y)
)p

w(y)dσ(y)

� CK

(
m

n

)s+1

‖f ∗
β,m‖p

p,w (by (4.9))

� CK

(
m

n

)s+1

‖f ‖p
p,w (by Theorem 3.1).

This completes the proof. �
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Lemma 4.6. Suppose that α is a fixed nonnegative number, n is a positive integer and f is
a nonnegative function on S

d−1 satisfying

f (x) � C1
(
1 + nd(x, y)

)α
f (y) for all x, y ∈ S

d−1. (4.10)

Then for any 0 < p < ∞, there exists a nonnegative spherical polynomial g ∈ Πd
n such

that

C−1f (x) � g(x)p � Cf (x) for any x ∈ S
d−1, (4.11)

where C > 0 depends only on d , C1, p and α. In addition, if e ∈ S
d−1 is a fixed point

and f (x) = F(x · e) is a nonnegative zonal function on S
d−1 satisfying (4.10), then the

function g in (4.11) can be chosen to be a zonal polynomial of the form G(x · e).
Proof. We get the idea from [13, Lemma 3.2]. We set m = [ α

p
] + d + 1, n1 = [ n

2m
], and

define

Tn(cos θ) = γn

(
sin
(
n1 + 1

2

)
θ

sin θ
2

)2m

, (4.12)

where γn is chosen so that

π∫
0

Tn(cos θ) sind−2 θ dθ = 1.

Then it is easy to verify that γn ∼ nd−1−2m and

Tn(cos θ) � Cnd−1 min
{
1, (nθ)−2m

}
. (4.13)

Now we claim that the function

g(x) =
∫

Sd−1

f (y)
1
p Tn(x · y)dσ(y), x ∈ S

d−1, (4.14)

has the desired properties. In fact, since by definition (4.12) we can write

Tn(cos θ) =
n∑

i=0

Cn,i cosi θ,

where Cn,i are some constants, it follows that g is a nonnegative spherical polynomial of
degree at most n. Also, using (4.10) and (4.13), we have, for any x ∈ S

d−1,

g(x) � C
1
p

1 f (x)
1
p

∫
Sd−1

(
1 + nd(x, y)

) α
p Tn(x · y)dσ(y) � Cf (x)

1
p ,

proving the upper estimate.
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Meanwhile, the lower estimate is straightforward:

g(x) �
∫

d(x,y)� 1
2n

f (y)
1
p Tn(x · y)dσ(y) � Cf (x)

1
p

1
2n∫

0

nd−1θd−2 dθ � Cf (x)
1
p .

To complete the proof, we only need to note that, by definition (4.14), if f (x) = F(x ·e)
is a zonal function with pole at a fixed point e ∈ Sd−1 so is g(x). �

Now we are in a position to prove Theorem 4.2.

Proof of Theorem 4.2. The inequality∫
Sd−1

∣∣f (x)
∣∣p dμ(x) � C

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x)

follows directly from Lemmas 4.4 and 4.5. Thus, it remains to prove the inverse inequality∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � C

∫
Sd−1

∣∣f (x)
∣∣p dμ(x). (4.15)

In the case w ≡ 1, (4.15) can be easily deduced by the standard duality argument (see,
for example, [3]). This argument, however, does not work for the weighted case. Here, we
have to use a different approach.

Using (2.2) and Hölder’s inequality, we obtain that for x ∈ S
d−1 and any f ∈ Πd

n ,

∣∣f (x)
∣∣� C

( ∫
Sd−1

∣∣f (y)
∣∣2∣∣Kn(x · y)

∣∣dσ(y)

) 1
2

.

It then follows by (2.3) that, for 0 < p < ∞,

∣∣f (x)
∣∣pwn(x)

� C

( ∫
Sd−1

∣∣f (y)
∣∣2∣∣Kn(x · y)

∣∣(1 + nd(x, y)
) 2

p
s(

wn(y)
) 2

p dσ (y)

) p
2

. (4.16)

Note, by Lemma 4.6, however, that there exist a nonnegative spherical polynomial Q1 ∈
Πd

[n/2] and a nonnegative zonal spherical polynomial Q2(x · y) ∈ Πd
[n/2] such that

Q1(y) ∼ (wn(y)
) 2

p
−1

,

Q2(y · x) ∼ nd−1(1 + nd(y, x)
)−κ for any y ∈ S

d−1, (4.17)
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where κ > (d − 1)max{ 2
p
,1} is a fixed integer. Thus, using (4.16) and Lemma 3.2 with

� = κ + [ 2s
p

] + 1, we deduce

∣∣f (x)
∣∣pwn(x) � C

( ∫
Sd−1

∣∣f (y)
∣∣2Q2(x · y)Q1(y)wn(y) dσ (y)

) p
2

� C

( ∫
Sd−1

∣∣f (y)
∣∣2Q2(x · y)Q1(y)w(y)dσ (y)

) p
2

(by Corollary 3.4)

= C

( ∫
Sd−1

∣∣f (y)
∣∣2Q2(x · y)Q1(y) dμ(y)

) p
2

(by (4.2)). (4.18)

To show (4.15) for 0 < p � 2, we let Λ be a maximal 1
n

-separable subset of S
d−1. We

then obtain from (4.18) that

∣∣f (x)
∣∣pwn(x) � C

∑
ω∈Λ

∣∣∣∣
∫

B(ω, 1
n
)

∣∣f (y)
∣∣2Q2(x · y)Q1(y) dμ(y)

∣∣∣∣
p
2

� C
∑
ω∈Λ

(
f ∗

2/p,n(ω)
)(2−p)

p
2
(
Q2(x · ω)

) p
2
(
wn(ω)

)1− p
2

×
( ∫

B(ω, 1
n
)

∣∣f (y)
∣∣p dμ(y)

) p
2

.

Integrating with respect to x ∈ Sd−1, we obtain

‖f ‖p
p,w � C‖f ‖p

p,wn

� Cn(d−1)(
p
2 −1)

∑
ω∈Λ

(
f ∗

2/p,n(ω)
)(2−p)

p
2
(
wn(ω)

)1− p
2

( ∫
B(ω, 1

n
)

∣∣f (y)
∣∣p dμ(y)

) p
2

� C

( ∫
Sd−1

∣∣f (y)
∣∣p dμ(y)

) p
2

×
( ∑

ω∈Λ

∫
B(ω, 1 )

∣∣f ∗
2/p,n(y)

∣∣pwn(y) dσ (y)

)1− p
2

(by Hölder’s inequality)
n
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� C

( ∫
Sd−1

∣∣f (y)
∣∣p dμ(y)

) p
2 ‖f ∗

2/p,n‖p(1− p
2 )

p,wn

� C

( ∫
Sd−1

∣∣f (y)
∣∣p dμ(y)

) p
2 ‖f ‖p(1− p

2 )
p,w (by Theorem 3.1 and Corollary 3.4).

The desired inequality

‖f ‖p,w � C

( ∫
Sd−1

∣∣f (x)
∣∣p dμ(x)

) 1
p

in the case 0 < p � 2 then follows.
It remains to show (4.15) for 2 < p < ∞. In this case, using (4.18) and Hölder’s in-

equality, we obtain

∣∣f (x)
∣∣pwn(x) � C

( ∫
Sd−1

∣∣f (y)
∣∣pQ2(x · y)dμ(y)

)

×
( ∫

Sd−1

Q2(x · y)
∣∣Q1(y)

∣∣ p
p−2 dμ(y)

) p
2 −1

. (4.19)

Note that by Lemma 4.6 and (4.17), there exists a nonnegative spherical polynomial Q3 ∈
Πd

n such that

Q3(y) ∼ Q1(y)
p

p−2 ∼ wn(y)−1 for all y ∈ S
d−1.

It then follows by Lemmas 4.4 and 4.5 that

( ∫
Sd−1

Q2(x · y)
∣∣Q1(y)

∣∣ p
p−2 dμ(y)

) p
2 −1

� C

( ∫
Sd−1

Q2(x · y)Q3(y)wn(y) dσ (y)

) p
2 −1

� C

( ∫
Sd−1

Q2(x · y)dσ(y)

) p
2 −1

� C, (4.20)

where the last inequality follows by (4.17). Now combining (4.19) with (4.20) and inte-
grating with respect to x ∈ S

d−1, we conclude, for 2 < p < ∞,

‖f ‖p
p,w � C‖f ‖p

p,wn
� C

∫
d−1

∣∣f (y)
∣∣p dμ(y)
S
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as desired.
This completes the proof. �

5. Bernstein-type and Schur-type inequalities with doubling weights

Given a positive integer � and two vectors x, ξ ∈ Sd−1 with x · ξ = 0, we define the �th
tangent directional derivative ( ∂

∂ξ
)�f (x) of f ∈ C�(Sd−1) in the direction ξ at the point x

by

(
∂

∂ξ

)�

f (x) =
{(

∂

∂θ

)�(
f (x cos θ + ξ sin θ)

)}∣∣∣∣
θ=0

.

One of the main results in this section is the following Bernstein-type inequality.

Theorem 5.1. Let � > 0 be an integer, w be a doubling weight and 0 < p < ∞. Then for
all f ∈ Πd

n ,

( ∫
Sd−1

sup
x·ξ=0
ξ∈S

d−1

∣∣∣∣
(

∂

∂ξ

)�

f (x)

∣∣∣∣
p

w(x)dσ(x)

) 1
p

� Cn�‖f ‖p,w

where C > 0 depends only on d , �, the doubling constant of w and p when p is small.

In the unweighted case, Theorem 5.1 for 1 � p � ∞ is due to Ditzian [4].
We denote by � the usual Laplace–Beltrami operator on S

d−1. It is well known that if
f ∈ C2(Sd−1) and {ξi}d−1

i=1 ∪ {x} ⊂ S
d−1 is an orthonormal basis for R

d then

�f (x) =
d−1∑
i=1

(
∂

∂ξi

)2

f (x).

This implies that for f ∈ C2(Sd−1) and x ∈ S
d−1,

∣∣�f (x)
∣∣� (d − 1) sup

ξ ·x=0
ξ∈S

d−1

∣∣∣∣
(

∂

∂ξ

)2

f (x)

∣∣∣∣.

Therefore, as an immediate consequence of Theorem 5.1, we have

Corollary 5.2. Let w be a doubling weight, � be a positive integer and 0 < p < ∞. Then
for all f ∈ Πd

n , we have

∥∥��f
∥∥ � Cn2�‖f ‖p,w,
p,w



156 F. Dai / Journal of Functional Analysis 235 (2006) 137–170
where �i+1f = �(�if ) for i � 1, C > 0 depends only on d , �, the doubling constant
of w and p when p is small.

Theorem 5.1 and Corollary 5.2 for 0 < p < 1 are new even in the unweighted case. For
the proof of Theorem 5.1, we need the following

Lemma 5.3. Let x, y be two fixed points on S
d−1, ξ ∈ S

d−1 be such that ξ · x = 0 and let

ϕ(θ) ≡ ϕx,y,ξ (θ) = Kn(x · y cos θ + ξ · y sin θ).

Then for any positive integers v and m, we have

∣∣ϕ(v)(0)
∣∣� Cnd−1+v min

{
1,
(
nd(x, y)

)−m}
, (5.1)

where C > 0 depends only on v and m.

Proof. By induction on v it can be easily seen that ϕ(v)(θ) can be written in the form

ϕ(v)(θ) =
v∑

i=1

∑
j0+j1+j2+j3=i

j1+j3�2i−v
j0,j1,j2,j3∈Z+

Cj0,j1,j2,j3K
(i)
n

(
t (θ)

)(
t (θ)

)j0
(
t ′(θ)

)j1

× (t ′′(θ)
)j2
(
t ′′′(θ)

)j3, (5.2)

where t (θ) = x · y cos θ + y · ξ sin θ , and Cj0,j1,j2,j3 are some absolute constants. We
note that for y ∈ Sd−1 and ξ ∈ Sd−1 with ξ · x = 0, |y · ξ | �

√
1 − (x · y)2. Thus, us-

ing Lemma 3.2 with � = m + v, we conclude that for 1 � i � v and any j0, j1, j2, j3 ∈ Z+
satisfying j0 + j1 + j2 + j3 = i and j1 + j3 � 2i − v,

∣∣K(i)
n

(
t (0)

)(
t (0)

)j0
(
t ′(0)

)j1
(
t ′′(0)

)j2
(
t ′′′(0)

)j3
∣∣� Cnd−1+v min

{
1,
(
nd(x, y)

)−m}
.

The desired inequality (5.1) then follows by (5.2). This completes the proof. �
Proof of Theorem 5.1. By the definition and (2.2), we have, for f ∈ Πd

n and x, ξ ∈ Sd−1

with x · ξ = 0,

(
∂

∂ξ

)�

f (x) =
∫

Sd−1

f (y)ϕ
(�)
x,y,ξ (0) dσ (y)

with ϕx,y,ξ as defined in Lemma 5.3. It then follows by Lemma 5.3 with m > 2
p
s + d − 1

that
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∣∣∣∣
(

∂

∂ξ

)�

f (x)

∣∣∣∣� Cnd−1+�

∫
Sd−1

∣∣f (y)
∣∣(1 + nd(x, y)

)−m
dσ(y)

� Cnd−1+�f ∗
2/p,n(x)

∫
Sd−1

(
1 + nd(x, y)

)−m+ 2
p

s
dσ (y)

� Cn�f ∗
2/p,n(x).

This combined with Theorem 3.1 gives the desired Bernstein’s inequality and therefore
completes the proof. �

Our next result is the following Schur-type inequality.

Theorem 5.4. Let 0 < p < ∞, w be a doubling weight and let hα,v be defined by (2.4) with
α = (α1, . . . , αm), αj > 0, v = (v1, . . . , vm) and vj ∈ S

d−1. Then for all f ∈ Πd
n ,

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � Cn|α|

∫
Sd−1

∣∣f (x)
∣∣phα,v(x)w(x)dσ (x),

where |α| =∑m
j=1 αj , C depends only on d , m, α, the doubling constant of w, and p when

p is small.

To the best of our knowledge, Theorem 5.4 is new even in the case w(x) ≡ 1.
Theorem 5.4 is a direct consequence of Corollary 3.4 and the following lemma.

Lemma 5.5. Let w be a doubling weight. Then hα,v(x)w(x) is again a doubling weight,
and moreover

wn(x) � Cn|α|(hα,vw)n(x), x ∈ S
d−1,

where C > 0 depends only on d , m, α and the doubling constant of w.

Proof. Without loss of generality, we may assume that vi 	= vj if i 	= j . For simplicity, we
set, for fixed θ ∈ (0,π) and x ∈ S

d−1,

A = {i: 1 � i � m, |x · vi | < 4θ
}
, B = {i: 1 � i � m, |x · vi | � 4θ

}
.

We then claim that∫
B(x,θ)

hα,v(y)w(y)dσ (y) ∼
∫

B(x,2θ)

hα,v(y)w(y)dσ (y)

∼
(∏

i∈A
θαi

)(∏
j∈B

|x · vj |αj

) ∫
w(y)dσ(y), (5.3)
B(x,θ)
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where the constants of equivalence depend only on d , hα,v and the doubling constant of w.
The desired conclusion of Lemma 5.5 will follow directly from this claim.

For the proof of the claim (5.3), we first note that, for y ∈ B(x,2θ),

hα,v(y) ∼
(∏

i∈A
|y · vi |αi

)(∏
j∈B

|x · vj |αj

)
�
(∏

i∈A
(6θ)αi

)(∏
j∈B

|x · vj |αj

)
. (5.4)

Next, we let ε
d,m

> 0 be a sufficiently small constant depending only on d and m and set,
for 1 � j � m,

Ej =
{
y ∈ B

(
x,

θ

4

)
:

∣∣∣∣d(y, vj ) − π

2

∣∣∣∣� εd,mθ

}
.

Then a straightforward calculation shows that for each 1 � j � m, |Ej | � Cdεd,mθd−1 and
therefore

m∑
j=1

|Ej | � Cdεd,mmθd−1 � 1

2

∣∣∣∣B
(

x,
θ

4

)∣∣∣∣
provided that εd,m is small enough. Thus, there must exist a point y0 ∈ B(x, θ

4 ) such that

|y0 · vj | � sin(εd,mθ), 1 � j � m.

It follows that B(y0,
εd,mθ

2 ) ⊂ B(x, θ) and for any y ∈ B(y0,
εd,mθ

2 ) and i ∈ A,

5θ > |y · vi | � sin

(
εd,mθ

2

)
� εd,mθ

π
.

This together with (5.4) means that

hα,v(y) ∼
(∏

i∈A
θαi

)∏
j∈B

|x · vj |αj for y ∈ B

(
y0,

εd,mθ

2

)
. (5.5)

Therefore, we have(∏
i∈A

θαi

)(∏
j∈B

|x · vj |αj

) ∫
B(x,θ)

w(y)dσ (y)

� C

(∏
i∈A

θαi

)(∏
j∈B

|x · vj |αj

) ∫
B
(
y0,

εd,mθ

2
)
w(y)dσ(y)

� C

∫
B
(
y ,

εd,mθ )
hα,v(y)w(y)dσ (y)
0 2
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� C

∫
B(x,θ)

hα,v(y)w(y)dσ (y) � C

∫
B(x,2θ)

hα,v(y)w(y)dσ (y)

� C

(∏
i∈A

θαi

)(∏
j∈B

|x · vj |αj

) ∫
B(x,θ)

w(y)dσ (y),

where in the second inequality we have used (5.5), while in the last inequality we have
used (5.4). This proves the claim (5.3) and therefore completes the proof. �

6. Remez-type and Nikolskii-type inequalities with A∞ weights

We say a weight w on S
d−1 is an A∞ weight if there exists a constant β � 1 (called A∞

constant) such that

∫
B(x,r)

w(y)dσ (y) � β

( |B(x, r)|
|E|

)β ∫
E

w(y)dσ(y)

for all spherical caps B(x, r) ⊂ S
d−1 and all measurable subsets E ⊂ B(x, r).

We start with the following Remez-type inequality.

Theorem 6.1. Let w be an A∞ weight on S
d−1 and let 0 < td−1 � 1

2 . Then for any 0 <

p < ∞, f ∈ Πd
n and E ⊂ S

d−1 with |E| = td−1, we have

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � Cnt+1

∫
Sd−1\E

∣∣f (x)
∣∣pw(x)dσ(x),

where C > 0 depends only on d , p and the A∞ constant of w.

To the best of our knowledge, Theorem 6.1 is new even in the unweighted case.
It was shown in [13, pp. 54–56] that Remez-type inequality does not, in general, hold

for an arbitrary doubling weight.

Proof. First, we show that for any f ∈ Πd
n ,

‖f ‖C(Sd−1) � Cnt sup
x∈Sd−1\E

∣∣f (x)
∣∣, (6.1)

where E ⊂ S
d−1 and |E| = td−1 � 4

5 . Let x0 ∈ S
d−1 be such that |f (x0)| = ‖f ‖C(Sd−1).

We denote by C(x0, y) the great circle on S
d−1 passing through x0 and y ∈ S

d−1\{x0},
and by dγx0,y the one-dimensional Lebesgue measure on C(x0, y) normalized by
γx0,y(C(x0, y)) = 2π . Since the restriction of f ∈ Πd

n to any great circle is a trigonometric
polynomial of degree at most n, by the Remez-type inequality for the usual trigonometric
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polynomials (see [2,7]) it will suffice to show that there exists a point y0 ∈ Sd−1\{x0} such
that

γx0,y0

(
E ∩ C(x0, y0)

)
� min{Cdt, 2π − εd}, (6.2)

where Cd > 0 and εd ∈ (0,π) denote two constants depending only on d . For the proof
of (6.2), we set Ec = S

d−1\E and

S(x0) = {y ∈ S
d−1: y · x0 = 0

}
.

We denote by dσx0(y) the Lebesgue measure on S(x0) normalized by
∫
S(x0)

dσx0(y) = 1.
It will be shown that ∫

S(x0)

(
γx0,y

(
E ∩ C(x0, y)

))d−1
dσx0(y) � C′

d td−1, (6.3)

and ∫
S(x0)

γx0,y

(
Ec ∩ C(x0, y)

)
dσx0(y) � ε′

d > 0, (6.4)

from which we will conclude that there must exist a y0 ∈ S(x0) such that

γx0,y0

(
E ∩ C(x0, y0)

)
� Cdt and γx0,y0

(
Ec ∩ C(x0, y0)

)
� εd > 0,

and the desired inequality (6.1) will then follow. In fact, noticing that

γx0,y

(
E ∩ C(x0, y)

)=
π∫

−π

χ
E

(
x0 cos θ + y sin θ

)
dθ,

and setting

E(x0, y) = {θ ∈ [−π,π]: | sin θ | � sin
[
8−1γx0,y

(
C(x0, y) ∩ E

)]}
,

we have

td−1 = |E| = C′′
d

∫
S(x0)

π∫
−π

χ
E
(x0 cos θ + y sin θ)

∣∣sind−2 θ
∣∣dθ dσx0(y)

� C′′
d

∫
S(x0)

∫
E(x0,y)

χ
E
(x0 cos θ + y sin θ)

∣∣sind−2 θ
∣∣dθ dσx0(y)

� 1

2
C′′

d

∫ (
sin

(
γx0,y(E ∩ C(x0, y))

8

))d−2

γx0,y

(
E ∩ C(x0, y)

)
dσx0(y),
S(x0)
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which implies (6.3), and meanwhile, recalling that σ(Sd−1) = 1, we have

1

5
�
∣∣Ec
∣∣= C′′

d

∫
S(x0)

π∫
−π

χ
Ec (x0 cos θ + y sin θ)

∣∣sind−2 θ
∣∣dθ dσx0(y)

� C′′
d

∫
S(x0)

γx0,y

(
Ec ∩ C(x0, y)

)
dσx0(y),

which gives (6.4). This completes the proof of (6.2) and hence (6.1).
Next, we show that for 0 < p < ∞ and f ∈ Πd

n ,

∫
Sd−1

∣∣f (x)
∣∣p dσ(x) � Cnt+1

∫
Sd−1\E

∣∣f (x)
∣∣p dσ(x), (6.5)

where E ⊂ Sd−1 and |E| = td−1 � 3
4 . We get the idea from [6,7]. Set α = ( 16

15 )
1

d−1 , and

F = {x ∈ S
d−1:

∣∣f (x)
∣∣� ‖f ‖∞C−αnt

}
,

with C > 0 being the same as in (6.1). Then by the already proven inequality (6.1) it
follows that |F | � (αt)d−1 and hence |F ∩ Ec| � 1

15 |E|. Therefore, we have

∫
E

∣∣f (x)
∣∣p dσ(x) � |E|‖f ‖p∞ � 15Cαntp

∫
Ec∩F

∣∣f (x)
∣∣p dσ(x)

� 15Cαpnt

∫
Sd−1\E

∣∣f (x)
∣∣p dσ(x)

and (6.5) then follows.
Finally, we show that for any A∞ weight w, 0 < p < ∞ and all f ∈ Πd

n ,

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � Cnt+1

∫
Sd−1\E

∣∣f (x)
∣∣pw(x)dσ(x), (6.6)

where |E| = td−1 � 1
2 . Let {ωi}M(n,δ)

i=1 be a maximal δ
n

-separable subset of S
d−1 with δ > 0

to be specified later, and let

B∗
1 = B

(
ω1,

δ

n

)
−

M(n,δ)⋃
B

(
ωj ,

δ

4n

)

j=2
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and

B∗
i = B

(
ωi,

δ

n

)
−
[(

i−1⋃
k=1

B∗
k

)
∪
(

M(n,δ)⋃
j=i+1

B

(
ωj ,

δ

4n

))]
, 2 � i � M(n, δ).

Then the following properties can be easily verified:

B∗
i ∩ B∗

j = ∅ if i 	= j ;

B

(
ωi,

δ

4n

)
⊂ B∗

i ⊂ B

(
ωi,

δ

n

)
for 1 � i � M(n, δ);

M(n,δ)⋃
i=1

B∗
i = S

d−1.

Now setting

Λ∗ =
{
i: 1 � i � M(n, δ),

∣∣B∗
i ∩ E

∣∣> 2

3
|B∗

i |
}
,

we have

∑
i∈Λ∗

|B∗
i | � 3

2
|E| = 3

2
td−1,

and hence, using Corollary 3.4, Lemma 4.6 and the already proven inequality (6.5), we
obtain ∫

Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � Cnt+1

∫
Sd−1\⋃i∈Λ∗ B∗

i

∣∣f (x)
∣∣pwn(x) dσ (x)

� Cnt+1
∑
i /∈Λ∗

∫
B(ωi,

δ
n
)

∣∣f (x)
∣∣pwn(x) dσ (x)

� Cnt+1
∑
i /∈Λ∗

∣∣f (ξi)
∣∣p ∫

B(ωi,
δ
n
)

wn(x) dσ (x)

+ Cnt+1
∑
i /∈Λ∗

∣∣osc(f )(ωi)
∣∣p ∫

B(ωi,
δ
n
)

wn(x) dσ (x),

where ∣∣f (ξi)
∣∣= min

x∈B(ω , δ )

∣∣f (x)
∣∣
i n
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and

osc(f )(ωi) = max
x,y∈B(ωi ,

δ
n
)

∣∣f (x) − f (y)
∣∣.

Since wn is a doubling weight with the doubling constant depending only on that of w, it
follows by Corollaries 3.3 and 3.4 that

∑
i /∈Λ∗

∣∣osc(f )(ωi)
∣∣p ∫

B(ωi,
δ
n
)

wn(x) dσ (x) � Cδp

∫
Sd−1

∣∣f (x)
∣∣pwn(x) dσ (x)

� Cδp

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x).

On the other hand, however, by the A∞-property of w it follows that for i /∈ Λ∗,

∣∣f (ξi)
∣∣p ∫

B(ωi,
δ
n
)

wn(x) dσ (x) � Cδd−1
∣∣f (ξi)

∣∣p ∫
B(ωi,

1
n
)

w(x)dσ (x)

� Cδd−1−s
∣∣f (ξi)

∣∣p ∫
B(ωi,

δ
n
)

w(x)dσ (x)

� Cδd−1−s
∣∣f (ξi)

∣∣p ∫
B(ωi,

δ
n
)\E

w(x)dσ(x)

� Cδd−1−s

∫
B(ωi,

δ
n
)\E

∣∣f (x)
∣∣pw(x)dσ(x),

where in the first inequality we have used the fact that wn(x) ∼ wn(ωi) for x ∈ B(ωi,
δ
n
), in

the second inequality we have used the doubling property of w, and in the third inequality
we have used the definition of Λ∗ and the A∞ property of w.

Therefore, noticing that
∑M(n,δ)

i=1 χB(ωi ,
δ
n
)(x) � Cd , we deduce

∫
Sd−1

∣∣f (x)
∣∣pw(x)dσ(x) � Cnt+1δd−1−s

∫
Sd−1\E

∣∣f (x)
∣∣pw(x)dσ(x)

+ δpCnt+1
∫

Sd−1

∣∣f (x)
∣∣pw(x)dσ(x).

Now letting δ = ( 1
2 )

1
p C

−(nt+1) 1
p , we obtain the desired inequality (6.6) and therefore com-

plete the proof. �
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As a consequence of Theorem 6.1, we have the following Nikolskii-type inequality:

Corollary 6.2. Let w be an A∞ weight and let 0 < p < q < ∞. Then for all f ∈ Πd
n ,

( ∫
Sd−1

∣∣f (x)
∣∣qw(x)dσ (x)

) 1
q

� Cn
(d−1)

( 1
p
− 1

q

)( ∫
Sd−1

∣∣f (x)
∣∣pw(x)

p
q dσ (x)

) 1
p

.

The proof of Corollary 6.2 is almost identical to that of [13, Theorem 5.5], therefore we
omit the detail.

7. Weighted polynomial inequalities on compact two-point homogeneous manifolds

Let X be a compact two-point homogeneous space of dimension d − 1. Besides the
sphere Sd−1, these spaces are: the real projective space P d−1(R); the complex projective
space P d−1(C); the quaternionic projective space P d−1(H); and the Cayley projective
plane P 16(Cayley) (with d = 17). These spaces are the compact symmetric spaces of rank
one and their geometry is quite similar to that of the sphere S

d−1.
Let dσ(x) denote the Riemannian measure on X normalized by

∫
X

dσ(x) = 1, and let
d(·,·) be the Riemannian metric on X normalized so that all geodesics on X have the same
length 2π . We denote by B(x, r) the ball centered at x ∈ X and having radius r > 0, i.e.,
B(x, r) = {y ∈ X: d(x, y) � r}, and |E| the measure σ(E) of a measurable subset E ⊂ X.
The definitions of doubling weights and A∞ weights can be easily extended to the space X.

It is known that the spectrum of the Laplace–Beltrami operator � on X is discrete, real,
non-positive and can be arranged in decreasing order

0 = λ0 > λ1 > λ2 > · · · .

We denote by Hk the eigenspace of � corresponding to the eigenvalue λk . For an integer
N � 0, we put ΠN ≡ ΠN(X) =⊕N

k=0 Hk , and we call the functions in ΠN the spherical
polynomials of degree at most N . In the case X = S

d−1, these functions coincide with the
ordinary spherical polynomials. We refer to [1, Section 7], [10, Chapter I, Section 4] and
[3] for more background information.

Most of the inequalities that have been proved in the preceding sections for the spherical
polynomials on S

d−1 can be extended to the spherical polynomials on X. The proofs go
through with hardly any change.

8. Weighted polynomial inequalities on the unit ball Bd

Our main purpose in this section is to establish analogous weighted polynomial in-
equalities on the unit ball Bd = {x ∈ R

d : |x| � 1}. We refer to [24,25] for Fourier analysis
on Bd . Here we only introduce some basic concepts that will be needed. We denote by dx

the usual Lebesgue measure on Bd and |E| the measure of a subset E ⊂ Bd . Given an
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integer n � 0, let Pd
n denote the space of all polynomials in d variables of total degree � n

on R
d . We introduce the following metric on Bd :

ρ(x, y) =
√

|x − y|2 +
(√

1 − |x|2 −
√

1 − |y|2
)2

for x, y ∈ Bd.

For r > 0, x ∈ Bd we set

Bρ(x, r) = {y ∈ Bd : ρ(x, y) � r
}
.

We say a weight w on Bd is a doubling weight if for any x ∈ Bd and r > 0,

∫
Bρ(x,2r)

w(y)dy � L

∫
Bρ(x,r)

w(y)dy,

while we say a finite subset Λ ⊂ Bd is maximal ( δ
n
, ρ)-separable if Bd ⊂⋃y∈Λ Bρ(y, δ

n
)

and miny 	=y′∈Λ ρ(y, y′) � δ
n

.
There is an important connection between the integration on Bd and the integration on

the unit sphere S
d = {x ∈ R

d+1: |x| = 1}, proved by Xu (see [22, Lemma 2.1]): for any
integrable function f on Bd , we have

∫
Bd

f (x) dx = Cd

∫
Sd

T (f )(z)|zd+1|dσ(z), (8.1)

where and throughout this section T (f ) is defined for a function f on Bd by

T (f )(z) = f (x) for z = (x, zd+1) ∈ S
d ,

and dσ(z) denotes the rotation invariant measure on S
d normalized by

∫
Sd dσ (z) = 1.

By (8.1) it is easily seen that w has the doubling property on Bd if and only if
|zd+1|T (w)(z) does so on S

d . Therefore, by Lemma 5.5 it follows that all the classical
weights

wα(x) = |x1|α1 . . . |xd |αd
(
1 − |x|2)αd+1− 1

2 , x ∈ Bd, (8.2)

with α = (α1, . . . , αd,αd+1), αi � 0, 1 � i � d + 1, have the doubling property on Bd .
Invoking (8.1) and Theorems 4.1 and 4.2, we have the following cubature formulae and

Marcinkiewicz–Zygmund inequalities on Bd .

Theorem 8.1. Let w be a doubling weight on Bd . Then there exists a constant γ > 0
depending only on d and the doubling constant of w such that for any 0 < δ < γ and
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any maximal ( δ
n
, ρ)-separable subset Λ ⊂ Bd there exists a sequence of positive numbers

λω ∼ ∫
Bρ(ω,δ/n)

w(y)dy, ω ∈ Λ, such that for any f ∈Pd
3n,

∫
Bd

f (x)w(x)dx =
∑
ω∈Λ

λωf (ω)

and moreover, for any f ∈Pd
n and 0 < p < ∞,

∫
Bd

∣∣f (x)
∣∣pw(x)dx ∼

∑
ω∈Λ

∣∣f (ω)
∣∣p( ∫

Bρ(ω, δ
n
)

w(y)dy

)
,

where the constants of equivalence depend only on d , the doubling constant of w and p.

Cubature formulae with different properties on Bd were previously constructed by many
authors (see, for instance, [18,22,24]). Moreover, it was shown by Xu [22] that cubature
formulae on Bd are, in fact, closely related to those on S

d . For the MZ inequalities, how-
ever, the result obtained in Theorem 8.1 seems new even in the unweighted case.

Next, we show the following analogue of Bernstein-type inequality:

Theorem 8.2. Let w be a doubling weight on Bd and let 0 < p < ∞. Then for all f ∈ Pd
n

we have

( ∫
Bd

(
ϕ
(|x|))|α|p∣∣Dαf (x)

∣∣pw(x)dx

) 1
p

� Cn|α|
( ∫

Bd

∣∣f (x)
∣∣pw(x)dx

) 1
p

,

where ϕ(t) = √
1 − t2, α = (α1, α2, . . . , αd) ∈ Z

d+, Dα = ( ∂
∂x1

)α1 . . . ( ∂
∂xd

)αd , and |α| =∑d
j=1 αj .

In the case of the interval [−1,1], an inequality similar to that in Theorem 8.2 for p � 1
was proved by Mastroianni and Totik [13, Theorem 7.3]. For d > 1, however, to the best
of our knowledge, Theorem 8.2 seems new even in the unweighted case.

Proof. First, note by Lemma 5.5, that for any β � 0, (ϕ(|x|))βw(x) is again a doubling
weight. Therefore, it suffices to show that for 1 � i � d and f ∈ Pd

n

( ∫
d

(
ϕ
(|x|))p∣∣∣∣∂f (x)

∂xi

∣∣∣∣
p

w(x)dx

) 1
p

� Cn

( ∫
d

∣∣f (x)
∣∣pw(x)dx

) 1
p

. (8.3)
B B
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We claim that for each 1 � i � d and any z = (x, zd+1) ∈ Sd ,

ϕ
(|x|)∣∣∣∣∂f (x)

∂xi

∣∣∣∣� √
d sup

ξ∈S
d

ξ ·z=0

∣∣∣∣∂T (f )(z)

∂ξ

∣∣∣∣, (8.4)

where ∂T (f )(z)/∂ξ denotes the tangent derivative of T (f ) at z in the direction ξ , as
defined in Section 5. Once the claim (8.4) is proved, then using (8.1), Lemma 5.5 and
Theorem 5.1, we have

∫
Bd

∣∣∣∣ϕ(|x|)∂f (x)

∂xi

∣∣∣∣
p

w(x)dx � C
p
d

∫
Sd

(
sup
ξ∈S

d

ξ ·z=0

∣∣∣∣∂T (f )(z)

∂ξ

∣∣∣∣
)p

|zd+1|T (w)(z) dσ (z)

� C
p
d np

∫
Sd

∣∣T (f )(z)
∣∣p|zd+1|T (w)(z) dσ (z)

= C
p
d np

∫
Bd

∣∣f (x)
∣∣pw(x)dx

proving the desired inequality (8.3).
Therefore, it remains to prove the claim (8.4). Without loss of generality, we may as-

sume 0 < |x| < 1. We then take an orthonormal basis {ξj }d+1
j=1 = {ξj (z)}d+1

j=1 of R
d+1, where

z = (x, zd+1) ∈ S
d ,

ξj = ξj (z) = (aj,1(z), . . . , aj,d (z),0
) ∈ S

d , 1 � j � d − 1,

ξd = ξd(z) =
(

x1

|x| , . . . ,
xd

|x| ,−
|x|

zd+1

)
|zd+1| ∈ S

d ,

ξd+1 = ξd+1(z) = z ∈ S
d .

Then by the definition, it is easily seen that

⎛
⎜⎝

∂f (x)
∂x1
...

∂f (x)
∂xd

⎞
⎟⎠= Q(z)

⎛
⎜⎜⎜⎜⎝

∂T (f )(z)
∂ξ1
...

∂T (f )(z)
∂ξd−1

1
ϕ(|x|)

∂T (f )(z)
∂ξd

⎞
⎟⎟⎟⎟⎠ ,

where

Q(z) =

⎛
⎜⎜⎜⎝

a1,1(z) a2,1(z) . . . ad−1,1(z)
x1|x|

a1,2(z) a2,2(z) . . . ad−1,2(z)
x2|x|

...
...

...
...

...
xd

⎞
⎟⎟⎟⎠ .
a1,d (z) a2,d (z) . . . ad−1,d (z) |x|
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Since Q(z) is an orthogonal matrix it follows that

max
1�i�d

∣∣∣∣∂f (x)

∂xi

∣∣∣∣� √
d
(
1 − |x|2)− 1

2

(
sup
ξ∈S

d

ξ ·z=0

∣∣∣∣∂T (f )(z)

∂ξ

∣∣∣∣
)

,

which proves the claim (8.4) and hence completes the proof. �
We say a weight w on Bd is an A∞ weight if |zd+1|T (w)(z) is an A∞ weight on S

d .
All the classical weights wα(x) defined by (8.2) are A∞ weights, as can be easily shown.

The Remez-type inequality on the unit ball Bd reads as follows.

Theorem 8.3. Suppose w is an A∞ weight on Bd , 0 < p < ∞, E ⊂ Bd , and |E| = (A
n
)d �

1
2 |Bd |. Then for any f ∈Pd

n ,

∫
Bd

∣∣f (x)
∣∣pw(x)dx � C

√
nA+1

∫
Bd\E

∣∣f (x)
∣∣pw(x)dx.

Theorem 8.3 seems new even in the unweighted cases.

Proof. Let

Ẽ = {(x, zd+1) ∈ S
d : x ∈ E

}
.

We claim that

σ(Ẽ) � Cd

√|E|. (8.5)

(In fact, it can be shown that σ(Ẽ) ∼ √|E|.)
To show (8.5), we let εd > 0 be a sufficiently small absolute constant so that

σ
({

(x, zd+1) ∈ S
d : |zd+1| � εdσ (Ẽ)

})
� 1

2
σ(Ẽ).

Then

|E| = Cd

∫
Ẽ

|zd+1|dσ(z) �
∫

Ẽ∩{z∈Sd : |zd+1|>εdσ(Ẽ)}
|zd+1|dσ(z) � 1

2
Cdεd

(
σ(Ẽ)

)2

and inequality (8.5) follows.
Next, note, by the definition, that for any A∞ weight w on Bd , |zd+1|T (w)(z) is an A∞

weight on S
d . Thus, using Theorem 6.1, it follows that
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∫
Bd

∣∣f (x)
∣∣pw(x)dx = Cd

∫
Sd

∣∣T (f )(z)
∣∣pT (w)(z)|zd+1|dσ(z)

� Cn(σ(Ẽ))
1
d +1

∫
Sd\Ẽ

∣∣T (f )(z)
∣∣pT (w)(z)|zd+1|dσ(z)

� C
√

nA+1
∫

Bd\E

∣∣f (x)
∣∣pw(x)dx

proving the desired Remez-type inequality. �
Finally, a simple use of (8.1) and Corollary 6.2 gives the following Nikolskii-type in-

equality:

Theorem 8.4. Let 0 < p < q < ∞ and let w be an A∞ weight on Bd . Then for any f ∈Pd
n ,

( ∫
Bd

∣∣f (x)
∣∣qw(x)dx

) 1
q

� Cn
d( 1

p
− 1

q
)

( ∫
Bd

∣∣f (x)
∣∣pw(x)

p
q ϕ
(|x|) p

q
−1

dx

) 1
p

.
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