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Abstract. For a family of weight functions invariant under a finite reflection

group, we show how weighted Lp multiplier theorems for Dunkl transform on
the Euclidean space Rd can be transferred from the corresponding results for h-

harmonic expansions on the unit sphere Sd of Rd+1. The result is then applied

to establish a Hörmander type multiplier theorem for the Dunkl transform and
to show the convergence of the Bochner -Riesz means of the Dunkl transform

of order above the critical index in weighted Lp spaces.

1. Introduction

Let R be a reduced root system in Rd normalized so that 〈α, α〉 = 2 for all α ∈ R,
where 〈·, ·〉 denotes the standard Euclidean inner product. Given a nonzero vector
α ∈ Rd, we denote by σα the reflection with respect to the hyperplane perpendicular
to α; that is, σαx = x − 2(〈x, α〉/‖α‖2)α for all x ∈ Rd, where ‖ · ‖ denotes the
usual Euclidean norm. Let G denote the finite subgroup of the orthogonal group
O(d) generated by the reflections σα, α ∈ R. Let κ : R → R+ be a nonnegative
multiplicity function on R with the property κ(gα) = κ(α) for all α ∈ R and g ∈ G.
Associated with the reflection group G and the function κ is the weight function
hκ defined by

(1.1) hκ(x) :=
∏

α∈R+

|〈x, α〉|κ(α), x ∈ Rd,

where R+ is an arbitrary but fixed positive subsystem of R. The function hκ is
a homogeneous function of degree γκ :=

∑
α∈R+

κ(α), and is invariant under the
reflection group G. For convenience, we shall set λκ = d−1

2 + γκ for the rest of the
paper. Given 1 ≤ p ≤ ∞, we denote by Lp(Rd;h2

κ) the weighted Lebesgue space
endowed with the norm

‖f‖κ,p :=
(∫

Rd

|f(y)|ph2
κ(y) dy

) 1
p

,

with the usual change when p = ∞.
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The Dunkl transform, a generalization of the classical Fourier transform, is de-
fined, for f ∈ L1(Rd;h2

κ), by

(1.2) Fκf(x) = cκ

∫
Rd

f(y)Eκ(−ix, y)h2
κ(y) dy, x ∈ Rd,

where cκ =
(∫

Rd h
2
κ(x)e−

‖x‖2
2 dx

)−1

, and Eκ(ix, y) = Vκ

[
ei〈x,·〉

]
(y) is the weighted

analogue of the character ei〈x,y〉. Here Vκ is the Dunkl intertwining operator, whose
precise definition will be given in Section 2. The Dunkl transform plays the same
role as the Fourier transform in classical Fourier analysis, and enjoys properties
similar to those of the classical Fourier transform. (See [11]).

Several important results in classical Fourier analysis have been extended to the
setting of Dunkl transform by Thangavelu and Yuan Xu [20, 19]. The problem,
however, turns out to be rather difficult in general. One of the difficulties comes
from the fact that the generalized translation operator τy, which plays the role of
the usual translation f → f(· − y), is not positive in general (see, for instance, [19,
Proposition 3.10]). In fact, even the Lp boundedness of τy is not established in
general (see [20, 19]).

In this paper, we shall first prove a transference theorem (Theorem 3.1) between
the Lp multiplier of h-harmonic expansions on the unit sphere and that of the Dunkl
transform. This theorem, combined with the corresponding results on h-harmonic
expansions on the unit sphere recently established in [2, 3, 4], is then applied to
establish a Hörmander type multiplier theorem for the Dunkl transform (Theorem
4.1), and to show the convergence of the Bochner -Riesz means in the weighted Lp

spaces (Theorem 4.3).
The paper is organized as follows. In Section 2, we describe briefly some known

results on Dunkl transform and h-harmonic expansions, which will be needed in
later sections. The transference theorem, Theorem 3.1, is proved in Section 3. As
applications, we prove Theorems 4.1 and 4.3 in the final section, Section 4.

2. Preliminaries

In this section, we shall present some necessary material on the Dunkl transform
and the h-harmonic expansions, most of which can be found in [8, 11, 13, 14, 19].

2.1. The Dunkl transform. Let R, R+, G, κ and hκ be as defined in Section 1.
Recall that a reduced root system is a finite subset R of Rd\{0} with the properties
σαR = R and R ∩ {tα : t ∈ R} = {±α} for all α ∈ R. The Dunkl operators
associated with G and κ are defined by

(2.1) Dκ,if(x) = ∂if(x) +
∑

α∈R+

κ(α)
f(x)− f(σ(α)x)

〈x, α〉
〈α, ei〉, 1 ≤ i ≤ d,

where e1, · · · , ed are the standard unit vectors of Rd. Those operators mutually
commute, and map Pd

n to Pd
n−1, where Pd

n is the space of homogeneous polynomials
of degree n in d variables. We denote by Πd := Π(Rd) the C-algebra of polynomial
functions on Rd. An important result in Dunkl theory states that there exists a
linear operator Vκ : Πd → Πd determined uniquely by

(2.2) Vκ(Pd
n) ⊂ Pd

n, Vκ(1) = 1, and Dκ,iVκ = Vκ∂i, 1 ≤ i ≤ d.
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Such an operator is called the intertwining operator. A very useful explicit formula
for Vκ was obtained by C. F. Dunkl [6] in the case of G = Z2, and was later extended
to the more general case of G = Zd

2, (d ∈ N) by Xuan Xu [23]. In general, one has
the following important result of Rösler [13]:

Lemma 2.1. [13, Th. 1.2 and Cor. 5.3] For every x ∈ Rd, there exists a unique
probability measure µκ

x on the Borel σ-algebra of Rd such that

(2.3) VκP (x) =
∫

Rd

P (ξ) dµκ
x(ξ), P ∈ Πd.

Furthermore, the representing measures µκ
x are compactly supported in the convex

hull C(x) := co{gx : g ∈ G} of the orbit of x under G, and satisfy

(2.4) µκ
rx(E) = µκ

x(r−1E), and µκ
gx(E) = µκ

x(g−1E)

for all r > 0, g ∈ G and each Borel subset E of Rd.

In particular, the above lemma shows that the intertwining operator Vκ is pos-
itive. We point out that Lemma 2.1 will play a crucial role in the analysis of our
paper.

By means of (2.3), Vκ can be extended to the space C(Rd) of continuous functions
on Rd. We denote this extension by Vκ again.

The Dunkl transform associated with G and κ is defined by (1.2) with

(2.5) Eκ(−ix, y) := Vκ[e−i〈x,·〉](y), x, y ∈ Rd.

If κ = 0 then Vκ = id and the Dunkl transform coincides with the usual Fourier
transform, whereas if d = 1 and G = Z2 then it is closely related to the Hankel
transform on the real line.

We list some of the known properties of the Dunkl transform in the following
lemma.

Lemma 2.2. [7, 11] (i) If f ∈ L1(Rd;h2
κ) then Fκf ∈ C(Rd) and lim

‖ξ‖→∞
Fκf(ξ) = 0.

(ii) The Dunkl transform Fκ is an isomorphism of the Schwartz class S(Rd)
onto itself, and F2

κf(x) = f(−x).
(iii) The Dunkl transform Fκ on S(Rd) extends uniquely to an isometric iso-

morphism on L2(Rd;h2
κ), i.e., ‖f‖κ,2 = ‖Fκf‖κ,2.

(iv) If f and Fκf are both in L1(Rd;h2
κ) then the following inverse formula

holds:

f(x) = cκ

∫
Rd

Fκf(y)Eκ(ix, y)h2
κ(y) dy, x ∈ Rd.

(v) If f, g ∈ L2(Rd;h2
κ) then∫

Rd

Fκf(x)g(x)h2
κ(x) dx =

∫
Rd

f(x)Fκg(x)h2
κ(x) dx.

(vi) Given ε > 0, let fε(x) = ε−2−2γκf(ε−1x). Then Fκfε(ξ) = Fκf(εξ).
(vii) If f(x) = f0(‖x‖) is radial, then Fκf(ξ) = Hλκ− 1

2
f0(‖ξ‖) is again a radial

function, where Hα denotes the Hankel transform defined by

Hαg(s) =
1

Γ(α+ 1)

∫ ∞

0

g(r)
Jα(rs)
(rs)α

r2α+1 dr,

and Jα denotes the Bessel function of the first kind.
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Statements (i)-(vi) of Lemma 2.2 above were proved by M. F. E. de Jeu [11],
and were, in fact, contained in Corollaries 4.7 and 4.22, Theorems 4.26 and 4.20,
Lemmas 4.13 and 4.3 (3) of [11] , respectively. Statement (vii) of Lemma 2.2 was
proved by Dunkl [7] and was stated more explicitly in [19, Proposition 2.4].

Given y ∈ Rd, the generalized translation operator f → τyf is defined on
L2(Rd;h2

κ) by

Fκ(τyf)(ξ) = Eκ(−iξ, y)Fκf(ξ), ξ ∈ Rd.

It is known that τyf(x) = τxf(y) for a.e. x ∈ Rd and a.e. y ∈ Rd. In general,
the operator τy is not positive (see, for instance, [19, Proposition 3.10]), and it
is still an open problem whether τyf can be extended to a bounded operator on
L1(Rd;h2

κ). On the other hand, however, it was shown in [19, Theorem 3.7] that
the generalized translation operator τy can be extended to all radial functions in
Lp(Rd;h2

κ), 1 ≤ p ≤ 2, and τy : Lp
rad(Rd;h2

κ) → Lp(Rd;h2
κ) is a bounded operator,

where Lp
rad(Rd;h2

κ) denotes the space of all radial functions in Lp(Rd;h2
κ).

The generalized convolution of f, g ∈ L2(Rd;h2
κ) is defined by

(2.6) f ∗κ g(x) =
∫

Rd

f(y)τxg̃(y)h2
κ(y) dy,

where g̃(y) = g(−y). Since τy is a bounded operator from Lp
rad(Rd;h2

κ) to Lp(Rd;h2
κ)

for 1 ≤ p ≤ 2, it follows that the definition of f ∗κ g can be extended to all
g ∈ Lp

rad(Rd;h2
κ) and f ∈ Lp′(Rd;h2

κ) with 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1. The
generalized convolution satisfies the following basic property

(2.7) Fκ(f ∗κ g)(ξ) = Fκf(ξ)Fκg(ξ).

More properties on the generalized translation operator and the generalized con-
volution can be found in [19].

2.2. h-harmonic expansions. Let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit
sphere of Rd equipped with the usual Lebesgue measure dσ(x). For the weight
function hκ given in (1.1), we consider the weighted Lebesgue space Lp(h2

κ; Sd−1)
of functions on Sd−1 endowed with the finite norm

‖f‖Lp(h2
κ;Sd−1) ≡ ‖f‖κ,p :=

( ∫
Sd−1

|f(y)|ph2
κ(y)dσ(y)

)1/p

, 1 ≤ p <∞,

and for p = ∞ we assume that L∞ is replaced by C(Sd−1), the space of continuous
functions on Sd−1 with the usual uniform norm ‖f‖∞. We shall use the notation
‖ · ‖κ,p to denote the weighted norm for functions defined either on Rd or on Sd−1

whenever it causes no confusion.
A homogeneous polynomial is called an h-harmonic if it is orthogonal to all

polynomials of lower degree with respect to the inner product of L2(h2
κ; Sd−1).

Let Hd
n(h2

κ) denote the space of all h-harmonics of degree n, and let projκn :
L2(h2

κ; Sd−1) → Hd
n(h2

κ) denote the orthogonal projection operator. The projec-
tion projκn has an integral representation

(2.8) projκn f(x) :=
∫

Sd−1
f(y)Pκ

n (x, y)h2
κ(y) dσ(y), x ∈ Sd−1,
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where Pκ
n (x, y) is the reproducing kernel of Hd

n(h2
κ) which can be written in terms

of the interwining operator Vκ as (see [22, Theorem 3.2, (3.1)])

(2.9) Pκ
n (x, y) =

n+ λ′k
λ′κ

Vκ

[
C

λ′k
n (〈x, ·〉)

]
(y), x, y ∈ Sd−1

with λ′κ := λκ − 1
2 = γκ + d−2

2 . Here Cλ
n denotes the standard Gegenbauer polyno-

mial of degree n and index λ as defined in [18]. By means of (2.8) and (2.9), the
projection projκn f can be extended to all f ∈ L1(h2

κ; Sd−1).
The following Marcinkiewitcz type multiplier theorem was proved recently in [2,

Theorem 2.3]:

Theorem 2.3. Let {µj}∞j=0 be a sequence of real numbers that satisfies

(i) sup
j
|µj | ≤ c <∞,

(ii) sup
j≥1

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ c <∞, with r being the smallest integer ≥ d
2 + γκ,

where 4µl = µl − µl+1 and 4j+1µl = 4jµl − 4jµl+1. Then {µj} defines an
Lp(h2

κ; Sd−1) multiplier for all 1 < p <∞; that is,∥∥∥∥∥∥
∞∑

j=0

µj projκj f

∥∥∥∥∥∥
κ,p

≤ Apc‖f‖κ,p, 1 < p <∞,

where Ap is independent of {µj} and f .

When κ = 0, the theorem becomes part (1) of [1, Theorem 4.9] on the ordinary
spherical harmonic expansions.

For δ > −1, the Cesàro (C, δ) means of the h-harmonic expansion are defined by

Sδ
n(h2

κ; f, x) := (Aδ
n)−1

n∑
k=0

Aδ
n−k projκk f(x), Aδ

n−k =
(
n− k + δ

n− k

)
.

In the case when G = Zd
2 and hκ(x) =

∏d
i=1 |〈x, ei〉|κ(ei), the following result

was proved recently in [3]:

Theorem 2.4. Let G = Zd
2 and let 1 ≤ p ≤ ∞ satisfy | 1p −

1
2 | ≥

1
2σκ+2 with

σκ := d−2
2 + γκ − min

1≤i≤d
κ(ei).

Then
sup
n∈N

‖Sδ
n(h2

κ; f)‖κ,p ≤ c‖f‖κ,p for all f ∈ Lp(h2
κ; Sd−1)

if and only if

(2.10) δ > δκ(p) := max
{

(2σκ + 1)
∣∣∣1
p
− 1

2

∣∣∣− 1
2
, 0

}
.

3. A transference theorem

The main goal in this section is to establish a transference theorem between the
Lp multipliers of h-harmonic expansions on the unit sphere Sd := {x ∈ Rd+1 :
‖x‖ = 1} and those of the Dunkl transform in Rd. Let G, R, hκ be as defined in
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Section 1. Given g ∈ G, we denote by g′ the orthogonal transformation on Rd+1

determined uniquely by

g′x′ = (gx, xd+1) for x′ = (x, xd+1) with x ∈ Rd and xd+1 ∈ R.
Then G′ := {g′ : g ∈ G} is a finite reflection group on Rd+1 with a reduced root
system R′ := {(α, 0) : α ∈ R}. Let κ′ denote the nonnegative multiplicity function
defined on R′ with the property κ′(α, 0) = κ(α). We denote by Vκ′ the intertwining
operator on C(Rd+1) associated with the reflection group G′ and the multiplicity
function κ′. Define the weight function

hκ′(x, xd+1) := hκ(x) =
∏

α∈R+

|〈x, α〉|κ(α), x ∈ Rd, xd+1 ∈ R.

Recall that projκ
′

n : L2(Sd;h2
κ′) → Hd+1

n (h2
κ′) denotes the orthogonal projection

onto the space of h-harmonics.
Our main result is the following.

Theorem 3.1. Let m : [0,∞) → R be a continuous and bounded function, and let
Uε, ε > 0, be a family of operators on L2(Sd;h2

κ′) given by

(3.1) projκ
′

n

(
Uεf

)
= m(εn) projκ

′

n f, n = 0, 1, · · · .

Assume that

(3.2) sup
ε>0

‖Uεf‖Lp(Sd;h2
κ′ )

≤ A‖f‖Lp(Sd;h2
κ′ )
, ∀f ∈ C(Sd)

for some 1 ≤ p ≤ ∞. Then the function m(‖ · ‖) defines an Lp(Rd;h2
κ) multiplier;

that is,
‖Tmf‖Lp(Rd;h2

κ) ≤ cd,κA‖f‖Lp(Rd;h2
κ), ∀f ∈ S(Rd),

where Tm is an operator initially defined on L2(Rd;h2
κ) by

(3.3) Fκ(Tmf)(ξ) = m(‖ξ‖)Fκf(ξ), f ∈ L2(Rd;h2
κ), ξ ∈ Rd.

In the case of ordinary spherical harmonics (i.e., κ = 0), Theorem 3.1 is due to
Bonami and Clerc [1, Theorem 1.1].

3.1. Lemmas. The proof of Theorem 3.1 relies on several lemmas.

Lemma 3.2. If f ∈ Πd+1 then for any x ∈ Rd and xd+1 ∈ R,

(3.4) Vκ′f(x, xd+1) = Vκ[f(·, xd+1)](x) =
∫

Rd

f(ξ, xd+1) dµκ
x(ξ),

where dµκ
x is given in (2.3).

Proof. Clearly, the second equality in (3.4) follows directly from (2.3). To show the
first equality, we set Ṽκf(x, xd+1) = Vκ[f(·, xd+1)](x) for f ∈ C(Rd+1) and x ∈ Rd.
Since Vκ′ is a linear operator uniquely determined by (2.2), it suffices to show that
the following conditions are satisfied:

Ṽκ(Pd+1
n ) ⊂ Pd+1

n , Ṽκ(1) = 1 and Dκ′,iṼκ = Ṽκ∂i, 1 ≤ i ≤ d+ 1.

Indeed, these conditions can be easily verified using the properties of Vκ in (2.2),
and the following identities, which follow directly from (2.1):

Dκ′,ig(x, xd+1) = Dκ,i

[
g(·, xd+1)

]
(x), 1 ≤ i ≤ d,

Dκ′,d+1g(x, xd+1) = ∂d+1g(x, xd+1), for g ∈ Πd+1, x ∈ Rd and xd+1 ∈ R.



A TRANSFERENCE THEOREM 7

This completes the proof of Lemma 3.2. �

To formulate the next lemma, we define the mapping ψ : Rd → Sd by

ψ(x) :=
(
ξ sin ‖x‖, cos ‖x‖

)
for x = ‖x‖ξ ∈ Rd and ξ ∈ Sd−1.

Given N ≥ 1, we denote by NSd := {x ∈ Rd+1 : ‖x‖ = N} the sphere of radius
N in Rd+1, and define the mapping ψN : Rd → NSd by

(3.5) ψN (x) := Nψ
( x
N

)
=

(
Nξ sin

‖x‖
N

,N cos
‖x‖
N

)
with x = ‖x‖ξ ∈ Rd and ξ ∈ Sd−1.

Lemma 3.3. If f : NSd → R is supported in the set {x ∈ NSd : arccos(N−1xd+1) ≤
1}, then∫

Sd

f(Nx)h2
κ′(x) dσ(x) = N−2λκ−1

∫
B(0,N)

f
(
ψN (x)

)
h2

κ(x)
( sin(‖x‖/N)

‖x‖/N

)2λκ

dx,

where B(0, N) = {y ∈ Rd : ‖y‖ ≤ N}.

Proof. First, using the polar coordinate transformation

(ξ, θ) ∈ Sd−1 × [0, π] → x := (ξ sin θ, cos θ) ∈ Sd,

and the fact that dσ(x) = sind−1 θ dθdσ(ξ), we obtain∫
Sd

f(Nx)h2
κ′(x) dσ(x) =

∫ π

0

[∫
Sd−1

f(Nξ sin θ,N cos θ)h2
κ′(ξ sin θ, cos θ) dσ(ξ)

]
(sin θ)d−1 dθ

=
∫ 1

0

∫
Sd−1

f(Nξ sin θ,N cos θ)h2
κ(θξ) dσ(ξ)

( sin θ
θ

)d−1+2γκ

θd−1 dθ,

where the last step uses the identity hκ′(y, yd+1) = hκ(y), the fact that h2
κ is a

homogeneous function of degree 2γκ, and the assumption that f is supported in
the set {x ∈ NSd : arccos(N−1xd+1) ≤ 1}. Using the usual spherical coordinate
transformation in Rd, the last double integral equals∫

‖y‖≤1

f
(Ny sin ‖y‖

‖y‖
, N cos ‖y‖

)
h2

κ(y)
( sin ‖y‖

‖y‖

)2λκ

dy

= N−d−2γκ

∫
‖x‖≤N

f
(
N

x

‖x‖
sin

‖x‖
N

,N cos
‖x‖
N

)
h2

κ(x)
( sin(‖x‖/N)

‖x‖/N

)2λκ

dx

= N−2λκ−1

∫
B(0,N)

f(ψNx)h2
κ(x)

( sin(‖x‖/N)
‖x‖/N

)2λκ

dx,

where the first step uses the homogeneity of the weight hκ and the change of
variables y = x

N . This proves the desired formula. �

Remark 3.1. It is easily seen that the restriction ψN

∣∣
B(0,N)

of the mapping ψN on

B(0, N) is a bijection from B(0, N) to {x ∈ NSd : arccos(N−1xd+1) ≤ 1}. Thus,
given a function f : B(0, N) → R, there exists a unique function fN supported in
{x ∈ NSd : arccos(N−1xd+1) ≤ 1} such that

(3.6) fN (ψNx) = f(x), ∀x ∈ B(0, N).
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On the other hand, using Lemma 3.3, we have

∫
Sd

fN (Nx)h2
κ′(x) dσ(x) = N−2λκ−1

∫
B(0,N)

f(x)h2
κ(x)

( sin(‖x‖/N)
‖x‖/N

)2λκ

dx.

(3.7)

The formula (3.7) will play an important role in our proof of Theorem 3.1.

We also need a small observation on a formula of Rösler [14] for τyf(x):

Lemma 3.4. If f(x) = f0(‖x‖) is a continuous radial function in L2(Rd;h2
κ),

then for a.e. y ∈ Rd and a.e. x ∈ Rd,

(3.8) τyf(x) = Vκ

[
f0

(√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉

)]
(
y

‖y‖
).

Formula (3.8) was first proved in [14] under the assumption that f is a radial
Schwartz function. Thangavelu and Yuan Xu [19, Proposition 3.3] later observed
that it also holds for radial functions f ∈ L(Rd;h2

κ) with Fκf ∈ L(Rd;h2
κ). Clearly,

our assumption in Lemma 3.4 is slightly weaker than that of [19, Proposition 3.3].
Lemma 3.4 can be deduced from the result of Rösler [14], using a density argu-

ment.

Proof. We first choose a sequence of even, C∞ functions gj on R satisfying

sup
|t|≤2j+1

|gj(t)− f0(t)| ≤ 2−j
(∫ 2j

0

s2λκ ds
)− 1

2
.

Let ϕj be an even, C∞ function on R such that χ[2−j ,2j ](|t|) ≤ ϕj(t) ≤ χ[2−j−1,2j+1](|t|),
and let fj(x) ≡ fj,0(‖x‖) := gj(‖x‖)ϕj(‖x‖) for x ∈ Rd. Then it’s easily seen that
{fj} is a sequence of radial Schwartz functions on Rd satisfying

(3.9) lim
j→∞

sup
2−j≤|t|≤2j

|fj,0(t)− f0(t)| = 0

and

(3.10) lim
j→∞

‖fj − f‖κ,2 = 0.

Since each fj is a radial Schwartz function, by Lemma 2.1 and the already proven
case of Lemma 3.4 (see [14]), we obtain

(3.11) τy(fj)(x) =
∫
‖ξ‖≤1

fj,0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)dµκ

y/‖y‖(ξ).

Next, we fix y ∈ Rd, and set

An ≡ An(y) := {x ∈ Rd : 2−n ≤
∣∣∣‖x‖ − ‖y‖

∣∣∣ ≤ ‖x‖+ ‖y‖ ≤ 2n}

for n ∈ N and n ≥ n0(y) := [log ‖y‖/ log 2] + 1. Since

(‖x‖ − ‖y‖)2 ≤ ‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉| ≤ (‖x‖+ ‖y‖)2

for all ‖ξ‖ ≤ 1, it follows by (3.9) that

lim
j→∞

fj,0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉) = f0(

√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)
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uniformly for x ∈ An(y) and ‖ξ‖ ≤ 1. This together with (3.11) and Lemma 2.1
implies

lim
j→∞

τy(fj)(x) =
∫
‖ξ‖≤1

f0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)dµκ

y/‖y‖(ξ)

=Vκ

[
f0(

√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉)

]
(
y

‖y‖
)

for every x ∈ An(y) \ {0} and n ≥ n0(y). On the other hand, however, by (3.10),
we have

lim
j→∞

‖τy(fj)− τyf‖κ,2 = 0

for all y ∈ Rd. Thus,

τy(f)(x) = Vκ

[
f0(

√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉)

]
(
y

‖y‖
)

for a.e. x ∈ An(y) and all n ≥ n0(y). Finally, observing that the set

Rd \
( ∞⋃

n=n0(y)

An(y)
)

= {x ∈ Rd : ‖x‖ = ‖y‖}

has measure zero in Rd, we deduce the desired conclusion. �

Remark 3.2. By (2.4) and the supporting condition of the measure dµκ
x, we observe

that

(3.12) VκF (rx) =
∫

Rd

F (rξ) dµκ
x(ξ), for all F ∈ C(Rd), x ∈ Rd, and r > 0.

Thus, (3.8) can be rewritten more symmetrically as

(3.13) τyf(x) = Vκ

[
f0

(√
‖x‖2 + ‖y‖2 − 2〈x, ·〉

)]
(y).

Lemma 3.5. Let Φ ∈ L1(R, |x|2λκ) be an even, bounded function on R, and let TΦ

be an operator L2(Rd;h2
κ) → L2(Rd;h2

κ) defined by

Fκ(TΦf)(ξ) := Fκf(ξ)Φ(‖ξ‖), f ∈ L2(Rd;h2
κ).

Then TΦ has an integral representation

TΦf(x) =
∫

Rd

f(y)K(x, y)h2
κ(y) dy, for f ∈ S(Rd) and a.e. x ∈ Rd,

where

K(x, y)(3.14)

=c
∫ ∞

0

Φ(s)Vκ

[Jλκ− 1
2
(s

√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)

(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)λκ− 1

2

]
(y)s2λκ ds.

Furthermore, K(x, y) = K(y, x) for a.e. x ∈ Rd and a.e. y ∈ Rd.

Proof. Let g(x) = Hλκ− 1
2
Φ(‖x‖), where x ∈ Rd and Hα denotes the Hankel trans-

form. Since Φ is an even function in L1(R, |x|2λκ)∩L∞(R), it follows by the prop-
erties of the Hankel transform that g is a continuous radial function in L2(Rd;h2

κ)
and Fκg(ξ) = Φ(‖ξ‖). Thus, using (2.7), we have

TΦf(x) = f ∗κ g(x) =
∫

Rd

f(y)τyg(x)h2
κ(y) dy
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for f ∈ L2(Rd;h2
κ). Since g is a continuous radial function in L2(Rd;h2

κ), by Lemma
3.4 and Remark 3.2 it follows that

K(x, y) : = τyg(x) = Vκ

[
Hλκ− 1

2
Φ(

√
‖x‖2 + ‖y‖2 + 2〈x, ·〉)

]
(y)

= c

∫ ∞

0

Φ(s)Vκ

[Jλκ− 1
2
(s

√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)

(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)λκ− 1

2

]
(y)s2λκ ds,

where the last step uses (2.3), the inequality∣∣∣Φ(s)
Jλκ− 1

2
(rs)

(rs)λκ− 1
2

∣∣∣ ≤ c|Φ(s)|

and Fubini’s theorem. This proves the desired equation (3.14). That K(x, y) =
K(y, x) follows from the fact that τxg(y) = τyg(x). �

Our final lemma is a well known result for the ultraspherical polynomials:

Lemma 3.6. [18, (8.1.1), p.192] For z ∈ C and µ ≥ 0,

(3.15) lim
k→∞

k1−2µCµ
k

(
cos

z

k

)
=

Γ(µ+ 1
2 )

Γ(2µ)

(z
2

)−µ+ 1
2
Jµ− 1

2
(z).

This formula holds uniformly in every bounded region of the complex z-plane.

3.2. Proof of Theorem 3.1. We follow the idea of the proof of Theorem 1.1 of
[1]. We first prove the theorem under the additional assumption |m(t)| ≤ c1e

−c2t

for all t > 0 and some c1, c2 > 0. By Lemma 3.5, the operator Tm has an integral
representation

Tmf(x) =
∫

Rd

f(y)K(x, y)h2
κ(y) dy,

where K(x, y) is given by (3.14) with Φ = m. Thus, it is sufficient to prove that

(3.16) I :=
∣∣∣∫

Rd

∫
Rd

f(y)g(x)K(x, y)h2
κ(x)h2

κ(y) dxdy
∣∣∣ ≤ cA

whenever f ∈ Lp(Rd;h2
κ) and g ∈ Lp′(Rd;h2

κ) both have compact supports and
satisfy ‖f‖Lp(Rd;h2

κ) = ‖g‖Lp′ (Rd;h2
κ) = 1.

To this end, we choose a positive number N to be sufficiently large so that the
supports of f and g are both contained in the ball B(0, N). By Remark 3.1, there
exist functions fN and gN both supported in {x ∈ NSd : arccos(N−1xd+1) ≤ 1}
and satisfying

(3.17) fN

(
ψN (x)

)
= f(x), gN

(
ψN (x)

)
= g(x), x ∈ Rd,

where ψN is defined by (3.5). It’s easily seen from (3.7) that

‖fN (N ·)‖Lp(Sd;h2
κ′ )

≤ cN− 2λκ+1
p , ‖gN (N ·)‖Lp′ (Sd;h2

κ′ )
≤ cN

− 2λκ+1
p′ .

Thus, using (2.8), (2.9), (3.1) and the assumption (3.2) with ε = 1
N , we obtain

IN := N2λκ+1

×
∣∣∣∫

Sd

∫
Sd

[ ∞∑
n=0

m(N−1n)Pκ′

n (x, y)
]
fN (Ny)gN (Nx)h2

κ′(x)h
2
κ′(y) dσ(x) dσ(y)

∣∣∣
≤ cA,(3.18)
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where Pκ′

n (x, y) = n+λκ

λκ
Vκ′ [Cλκ

n (〈x, ·〉)](y). Setting

HN (x, y) = N−2λκ−1
∞∑

n=0

m(N−1n)Pκ′

n

(
ψ(

x

N
), ψ(

y

N
)
)
,

and invoking (3.17) and Lemma 3.3, we obtain

IN =
∣∣∣∫

Rd

∫
Rd

HN (x, y)f(y)g(x)h2
κ(x)h2

κ(y)
( sin(‖x‖/N)

‖x‖/N

)2λκ

(3.19)

×
( sin(‖y‖/N)

‖y‖/N

)2λκ

dx dy
∣∣∣.

On the other hand, setting

bN (ρ, x, y) = N−2λκ−1
∞∑

n=0

m(
n

N
)Pκ′

n

(
ψ(

x

N
), ψ(

y

N
)
)(∫ n+1

N

n
N

t2λκ dt
)−1

χ[ n
N , n+1

N )(ρ),

we have

HN (x, y) =
∫ ∞

0

bN (ρ, x, y)ρ2λκ dρ.

Hence, by (3.19),

IN =
∣∣∣∫

Rd

∫
Rd

[∫ ∞

0

bN (ρ, x, y)ρ2λκ dρ
]
f(y)g(x)h2

κ(x)h2
κ(y)(3.20)

×
( sin(‖x‖/N)

‖x‖/N

)2λκ
( sin(‖y‖/N)

‖y‖/N

)2λκ

dx dy
∣∣∣.

The key ingredient in our proof is to show that limN→∞ IN = cI, where c is a
constant depending only on d and κ. In fact, once this is proven, then the desired
estimate (3.16) will follow immediately from (3.18).

To show limN→∞ IN = cI, we make the following two assertions:
Assertion 1. For any N > 0 and x, y ∈ Rd,

|bN (ρ, x, y)| ≤ ce−c2ρ,

where c is independent of x, y and N .
Assertion 2. For any fixed x, y ∈ Rd and ρ > 0,

lim
N→∞

bN (ρ, x, y) = cm(ρ)Vκ

[Jλκ− 1
2

(
ρu(x, y, ·)

)
(
ρu(x, y, ·)

)λκ− 1
2

]
(y),(3.21)

where u(x, y, ξ) =
√
‖x‖2 + ‖y‖2 − 2〈x, ξ〉, and c is a constant depending only on

d and κ.
For the moment, we take the above two assertions for granted, and proceed with

the proof of Theorem 3.1. By Assertion 1 and Hölder’s inequality, we can apply
the dominated convergence theorem to the integrals in (3.20), and obtain

lim
N→∞

IN =
∣∣∣∫

Rd

∫
Rd

[∫ ∞

0

lim
N→∞

bN (ρ, x, y)ρ2λκ dρ
]
f(y)g(x)h2

κ(x)h2
κ(y) dx dy

∣∣∣,
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which, using Assertion 2, equals

= c
∣∣∣∫

Rd

∫
Rd

[∫ ∞

0

m(ρ)Vκ

[Jλκ− 1
2

(
ρu(x, y, ·)

)
(
ρu(x, y, ·)

)λκ− 1
2

]
(y)ρ2λκ dρ

]
f(y)g(x)h2

κ(x)h2
κ(y)dx dy

∣∣∣
= c

∣∣∣∫
Rd

∫
Rd

K(x, y)f(y)g(x)h2
κ(x)h2

κ(y) dx dy
∣∣∣ = cI,

where the second step uses (3.14). Thus, we have shown the desired relation
limN→∞ IN = cI, assuming Assertions 1 and 2.

Now we return to the proofs of Assertions 1 and 2. We start with the proof
of Assertion 1. Assume that n

N ≤ ρ < n+1
N for some n ∈ Z+. Then |m( n

N )| ≤
c1e

−c2
n
N ≤ ce−c2ρ, and

∫ n+1
N

n
N

t2λκ dt ≥ cN−1ρ2λκ . Hence,

|bN (ρ, x, y)| = N−2λκ−1
∣∣∣m(

n

N
)Pκ′

n

(
ψ(

x

N
), ψ(

y

N
)
)∣∣∣(∫ n+1

N

n
N

t2λκ dt
)−1

≤ cN−2λκρ−2λκe−c2ρn+ λκ

λκ

∣∣∣Vκ′

[
Cλκ

n (〈ψ(
x

N
), ·〉

](
ψ(

y

N
)
)∣∣∣

≤ c(Nρ)−2λκe−c2ρn2λκ ≤ ce−c2ρ,

where we used (2.9) in the second step, and the positivity of Vκ and the estimate
|Cλκ

n (t)| ≤ cn2λκ−1 in the third step. This proves Assertion 1.
Next, we show Assertion 2. A straightforward calculation shows that for n

N ≤
ρ ≤ n+1

N and ρ > 0,(∫ n+1
N

n
N

t2λκ dt
)−1

=
N

ρ2λκ
(1 + oρ(1)), as N →∞.

This implies that for n
N ≤ ρ ≤ n+1

N and ρ > 0,

bN (ρ, x, y) = m(ρ)
n2λκ

(Nρ)2λκ
n−2λκPκ′

n

(
ψ(

x

N
), ψ(

y

N
)
)
(1 + oρ(1))

= cm(ρ)n−2λκ+1Vκ′

[
Cλκ

n (〈ψ(
x

N
), ·〉)

]
(
y

‖y‖
sin

‖y‖
N

, cos
‖y‖
N

)

+ oρ(1),

where we used the continuity ofm in the first step, and the estimate n−2λκ

∣∣∣Pκ′

n

(
ψ( x

N ), ψ( y
N )

)∣∣∣ ≤
c, as well as the fact that lim

N→∞

n2λκ

(Nρ)2λκ
= 1 in the last step (see [4]). Thus, using

Lemma 3.2 and (3.12), we obtain

bN (ρ, x, y)

=cm(ρ)n−2λκ+1

∫
Rd

Cλκ
n

( 1
‖x‖

sin
‖x‖
N

d∑
j=1

xjξj + cos
‖y‖
N

cos
‖x‖
N

)
× dµκ

y
‖y‖ sin ‖y‖

N

(ξ) + oρ(1)

= cm(ρ)n−2λκ+1

∫
‖ξ‖≤‖y‖

Cλκ
n

(
cos θN (x, y, ξ)

)
dµκ

y(ξ) + oρ(1),(3.22)
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where θN (x, y, ξ) ∈ [0, π] satisfies

cos θN (x, y, ξ) =
( 1
‖x‖‖y‖

d∑
j=1

xjξj

)
sin

‖x‖
N

sin
‖y‖
N

+ cos
‖x‖
N

cos
‖y‖
N

,

Since

cos θN (x, y, ξ) = 1− 1
2N2

(
‖x‖2 + ‖y‖2 − 2

d∑
j=1

xjξj

)
+O‖x‖,‖y‖(N−4)

= 1− 1
2N2

u(x, y, ξ)2 +O‖x‖,‖y‖(N−4),

it follows that

θN (x, y, ξ) = 2 arcsin
( 1

2N

√
u(x, y, ξ)2 +O‖x‖,‖y‖(N−2)

)
=

1
N

√
u(x, y, ξ)2 +O‖x‖,‖y‖(N−2) +O‖x‖,‖y‖(N−2)

=
ρu(x, y, ξ) + o‖x‖,‖y‖,ρ(1)

n
,

where the last step uses the uniform continuity of the function t ∈ [0,M ] →
√
t for

any M > 0, and the relation limN→∞
n

Nρ = 1.
Thus, by (3.22) and (3.15), we have

lim
N→∞

bN (ρ, x, y)

= cm(ρ) lim
N→∞

∫
‖ξ‖≤‖y‖

n−2λκ+1Cλκ
n

(
cos

ρu(x, y, ξ) + ox,y,ρ(1)
n

)
dµκ

y(ξ)

= cm(ρ)
∫
‖ξ‖≤‖y‖

(ρu(x, y, ξ))−λκ+ 1
2 Jλκ− 1

2
(ρu(x, y, ξ)) dµκ

y(ξ)

= cm(ρ)Vκ

[
(ρu(x, y, ·))−λκ+ 1

2 Jλκ− 1
2
(ρu(x, y, ·))

]
(y),

where we used the fact that ‖Cλκ
n ‖∞ ≤ cn2λκ−1, the bounded convergence theorem

and (3.15) in the last step. This proves Assertion 2.
In summary, we have shown the theorem with the additional assumption |m(t)| ≤

c1e
−c2t.
Finally, we prove that the conclusion of Theorem 3.1 remains true without the

additional assumption |m(t)| ≤ c1e
−c2t. To this end, let mδ(t) = m(t)e−δt for

δ > 0, and define Tmδ
: L2(Rd, h2

κ) → L2(Rd;h2
κ) by

Fκ(Tmδ
f)(ξ) = mδ(ξ)Fκf(ξ), f ∈ L2(Rd;h2

κ).

It is known (see [8, p. 191]) that given any ε > 0, f 7→
∑∞

n=0 e
−nε projκ̃n f is a

positive operator on Lp(Sd;h2
κ̃) that satisfies

sup
ε>0

∥∥∥ ∞∑
n=0

e−nε projκ̃n f
∥∥∥

Lp(Sd;h2
κ̃
)
≤ ‖f‖Lp(Sd;h2

κ̃
).

Indeed, this follows from [6, Theorem 4.2] and the fact that Vκ is positive, which
was proved in [13]. Thus, applying Theorem 3.1 for the already proven case, we
have

(3.23) sup
δ>0

∥∥∥Tmδ
f
∥∥∥

Lp(Rd;h2
κ)
≤ cA‖f‖Lp(Rd;h2

κ).
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On the other hand, from the definition we can decompose the operator Tmδ
as

(3.24) Tmδ
f = Pδ(Tf),

where Fκ(Tf)(ξ) = m(‖ξ‖)Fκf(ξ) and

Fκ(Pδf)(ξ) = e−δ‖ξ‖Fκf(ξ).

The function Pδf is called the Poisson integral of f , and it can be expressed as a
generalized convolution (see [3])

Pδf(x) := (f ∗κ Pδ)(x)

with

Pδ(x) := 2γκ+ d
2
Γ(γκ + d+1

2 )
√
π

δ

(δ2 + ‖x‖2)γκ+ d+1
2

.

It was shown in [3, Theorem 6.2] that

lim
δ→0+

Pδf(x) = f(x), a.e. x ∈ Rd

for any f ∈ Lq(Rd;h2
κ) with 1 ≤ q <∞. Since m is bounded, Tf ∈ L2(Rd;h2

κ) for
f ∈ L2(Rd;h2

κ). Thus, for any f ∈ S, using (3.24),

(3.25) lim
δ→0+

Tmδ
f(x) = lim

δ→0+
Pδ(Tf)(x) = Tf(x), a.e. x ∈ Rd,

which combined with (3.23) and the Fatou theorem implies the desired estimate

‖Tf‖Lp(Rd;h2
κ) ≤ cA‖f‖Lp(Rd;h2

κ).

This completes the proof of the theorem.

4. Applications

4.1. Hörmander’s multiplier theorem and the Littlewood-Paley inequal-
ity. As a first application of Theorem 3.1, we shall prove the following Hörmander
type multiplier theorem:

Theorem 4.1. Let m : (0,∞) → R be a bounded function satisfying ‖m‖∞ ≤ A
and Hörmander’s condition

(4.1)
1
R

∫ 2R

R

|m(r)(t)| dt ≤ AR−r, for all R > 0,

where r is the smallest integer ≥ λκ + 1. Let Tm be an operator on L2(Rd;h2
κ)

defined by
Fκ(Tmf)(ξ) = m(‖ξ‖)Fκf(ξ), ξ ∈ Rd.

Then
‖Tmf‖κ,p ≤ CpA‖f‖κ,p

for all 1 < p <∞ and f ∈ S(Rd).

Proof. Let µ` = m(`ε) for ε > 0 and ` = 0, 1, · · · . Then

|4rµ`| = εr
∣∣∣∫

[0,1]r
m(r)

(
εt1 + · · ·+ εtr + ε`

)
dt1 · · · dtr

∣∣∣
≤

∫
[0,ε]r

|m(r)
(
t1 + · · ·+ tr + ε`

)
|dt1 · · · dtr ≤ εr−1

∫ ε(r+`)

ε`

|m(r)(t)| dt.
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This implies that for 2j ≥ r

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ 2j(r−1)εr−1
2j+1∑
l=2j

∫ ε(r+`)

ε`

|m(r)(t)| dt

≤ (r − 1)2j(r−1)εr−1

∫ ε(2j+1+r)

2jε

|m(r)(t)| dt

≤ 2j(r−1)(r − 1)εr−1

∫ 2j+2ε

2jε

|m(r)(t)| dt ≤ crA,

where the last step uses (4.1). On the other hand, however, for 2j ≤ r, we have

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ cr max
j
|µj | ≤ crA.

Thus, using Theorem 2.3, we deduce

sup
ε>0

∥∥∥ ∞∑
n=0

m(εn) projκ
′

n f
∥∥∥

Lp(Sd;h2
κ′ )

≤ c‖f‖Lp(Sd;h2
κ′ )
.

The desired conclusion then follows by Theorem 3.1. �

Remark 4.1. Hörmander’s condition is normally stated in the following form

(4.2)
( 1
R

∫ 2R

R

|m(r)(t)|2 dt
) 1

2 ≤ AR−r, for all R > 0.

See, for instance, [10, Theorem 5.2.7]. Clearly, the condition (4.1) in Theorem 4.1
is weaker than (4.2). On the other hand, however, Theorem 4.1 is applicable only
to radial multiplier m(‖ · ‖).

Corollary 4.2. Let Φ be an even C∞–function that is supported in the set {x ∈
R : 9

10 ≤ |x| ≤ 21
10} and satisfies either∑

j∈Z
Φ(2−jξ) = 1, ξ ∈ R \ {0},

or ∑
j∈Z

|Φ(2−jξ)|2 = 1, ξ ∈ R \ {0}.

Let 4j be an operator defined by

Fκ(4jf)(ξ) = Φ(2−j‖ξ‖)Fκf(ξ), ξ ∈ Rd.

Then we have
‖f‖κ,p ∼κ,p ‖(

∑
j∈Z

|4jf |2)
1
2 ‖κ,p

holds for all f ∈ Lp(Rd;h2
κ) and 1 < p <∞.

Proof. Corollary 4.2 follows directly from Theorem 4.1. Since the proof is quite
standard (see, for instance, [17] ), we omit the details. �
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4.2. The Bochner-Riesz means. Given δ > −1, the Bochner-Riesz means of
order δ for the Dunkl transform are defined by

(4.3) Bδ
R(h2

κ; f)(x) = c

∫
‖y‖≤R

(
1− ‖y‖2

R2

)δ

Fκf(y)Eκ(ix, y)h2
κ(y) dy, R > 0.

Convergence of the Bochner -Riesz means in the setting of Dunkl transform was
studied recently by Thangavelu and Yuan Xu [19, Theorem 5.5], who proved that
if δ > λκ := d−1

2 + γκ and 1 ≤ p ≤ ∞ then

(4.4) sup
R>0

‖Bδ
R(h2

κ; f)‖κ,p ≤ c‖f‖κ,p.

Our next result concerns the critical indices for the validity of (4.4) in the case
of G = Zd

2:

Theorem 4.3. Suppose that G = Zd
2, f ∈ Lp(Rd;h2

κ), 1 ≤ p ≤ ∞, and | 1p −
1
2 | ≥

1
2λκ+2 . Then (4.4) holds if and only if

(4.5) δ > δκ(p) := max
{

(2λκ + 1)
∣∣∣1
p
− 1

2

∣∣∣− 1
2
, 0

}
.

It should be pointed out that the result of [19, Theorem 5.5] is applicable to the
case of a general finite reflection group G, while Theorem 4.3 above applies to the
case of Zd

2 only.

Proof. We start with the proof of the sufficiency. Assume that κ := (κ1, · · · , κd)
and hκ(x) :=

∏d
j=1 |xj |κj . Let κ′ = (κ, 0) and hκ′(x, xd+1) = hκ(x) for x ∈ Rd and

xd+1 ∈ R. Set m(t) = (1 − t2)δ
+. By the equivalence of the Riesz and the Cesàro

summability methods of order δ ≥ 0 (see [9]), we deduce from Theorem 2.4

sup
ε>0

∥∥∥ ∞∑
n=0

m(εn) projκ
′

n f
∥∥∥

Lp(Sd;h2
κ′ )

≤ c‖f‖Lp(Sd;h2
κ′ )

whenever | 1p −
1
2 | ≥

1
2σκ′+2 and δ > δκ′(p), where σκ′ = λκ and δκ′(p) = δκ(p).

Thus, invoking Theorem 3.1, we conclude that for δ > δκ(p),

‖Bδ
1(h2

κ; f)‖κ,p ≤ c‖f‖κ,p.

The estimate (4.4) then follows by dilation. This proves the sufficiency.
The necessity part of the theorem follows from the corresponding result for the

Hankel transform. To see this, let f(x) = f0(‖x‖) be a radial function in Lp(Rd, h2
κ).

Using (4.3) and Lemma 2.2 (vii), we have

Bδ
R(h2

κ; f)(x) =
∫ R

0

(
1− r2

R2

)δ

Hλκ− 1
2
f0(r)r2λκ

[∫
Sd−1

Eκ(ix, ry′)h2
κ(y′) dσ(y′)

]
dr.

However, by [19, Proposition 2.3] applied to n = 0 and g = 1, we have∫
Sd−1

Eκ(ix, ry′)h2
κ(y′) dσ(y′) = c

(r‖x‖
2

)−λκ+ 1
2
Jλκ− 1

2
(r‖x‖).

It follows that

Bδ
R(h2

κ; f)(x) = c

∫ R

0

(
1− r2

R2

)δ

Hλκ− 1
2
f0(r)

(r‖x‖
2

)−λκ+ 1
2
Jλκ− 1

2
(r‖x‖)r2λκ dr

= cB̃δ
Rf0(‖x‖),
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where B̃δ
R denotes the Bockner-Riesz mean of order δ for the Hankel transform

Hλκ− 1
2
. However, it is known (see [21]) that B̃δ

R, 0 < δ < λκ, is bounded on
Lp((0,∞), t2λκ) if and only if

(4.6)
2λκ + 1
λκ + δ + 1

< p <
2λκ + 1
λκ − δ

.

Thus, to complete the proof of the necessity part of the theorem, by (4.6), we just
need to observe that if f(x) = f0(‖x‖) is a radial function in Lp(Rd;h2

κ), then

‖f‖κ,p = c‖f0‖Lp(R;|x|2λκ ).

�

Remark 4.2. In the unweighted case, for the classical Fourier transform, Theorem 4.3
is well known, and in fact, it follows from the following Tomas-Stein restriction the-
orem (see, for instance, [10, Section 10.4]):

(4.7) ‖f̂‖L2(Sd−1) ≤ Cp‖f‖Lp(Rd), 1 ≤ p ≤ 2d+ 2
d+ 3

,

where f̂ denotes the usual Fourier transform of f . In the weighted case, while
estimates similar to (4.7) can be proved for the Dunkl transform Fκf (see [12,
Theorem 4.1]), they do not seem to be enough for the proof of Theorem 4.3. A
similar fact was indicated in [3] for the case of the Cesàro means for h-harmonic
expansions on the unit sphere, where global estimates for the projection operators
have to be replaced with more delicate local estimates, which are significantly more
difficult to prove than the corresponding global estimates.
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