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Abstract Cesaro (C, §) means are studied for orthogonal expansions with respect to
the weight function H?:l |x;|?¢i on the unit sphere, and for the corresponding weight
functions on the unit ball and the Jacobi weight on the simplex. A sharp pointwise
estimate is established for the (C, §) kernel with § > —1 and for the kernel of the
projection operator, which allows us to derive the exact order for the norm of the
Cesaro means and the projection operator on these domains.
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1 Introduction

It is well-known that Cesaro (C, §) means of the Jacobi polynomial expansions with
respect to the weight function (1 — £)®(1 + ¢)# on [—1, 1] converge uniformly if and
only if § > max{«, 8} + 1/2 ([9], [2, p. 78, Corollary 18.11]). Recently, results as
such have been extended to orthogonal expansions in several variables (see [5, 8, 10]
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and the references therein). In the present paper we study orthogonal expansions and
their Cesaro (C, §) means with respect to the weight functions h% , where

d+1

he() =[]l =0, (1.1)

on the unit sphere §9 = {x:|Ix|]| = 1} ¢ R¥t, where ||x| denotes the Euclidean
norm, as well as similar problems for orthogonal expansions on the unit ball with
respect to the weight function

d
. —1/2
WE @) = [Tl (1= Ix2) 720 i >0, (1.2)

i=1

on the unit ball B = {x : ||x|| < 1} ¢ R¢, and for the orthogonal expansion with
respect to the weight function

d
W) =[]0 = )20 =0, (1.3)

i
i=1

on the simplex T9={x:x;>0,...,xg>0,1—|x| >0}, where |x| ;== x| +- - +xg4.
A homogeneous polynomial orthogonal with respect to hf on the unit sphere is
called an A-harmonic. The theory of h-harmonics is developed by Dunkl (see [5]
and the references therein) for a family of weight functions invariant under a finite
reflection group, of which A, in (1.1) is the simplest example of the group Z‘ZHI.
Let H%(h2) denote the space of spherical h-harmonics of degree . It is known that
dimHe (h2) = ("9+1) — ("F971). The usual Hilbert space theory shows that

L7(h3, 8) ZHd(hz) = proj, (ki f)

n=0

where proj,, (hz) : L2(h%; 5 > Hﬁ (h,%) is the projection operator, which can be
written as an integral operator

proj, (hZ; f.x) = /f(y)P Lx,y)hi(do(y), xes, (1.4)

where dw(y) denotes the usual Lebesgue measure on $4, and P, (hg) is the repro-
ducing kernel of H (h2).

A fundamental result for our study is the following compact expression of this
kernel ([4, 11] or [5, p. 202])

d+1

2, _ n—i-)»,(/ Ae NP N
Pu(h2;x,y) = ¢, - [H]Mcn (u(x,y,t))il}(l—i—t,)(l 7)1 dt,

(1.5)
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where C;' is the Gegenbauer polynomial of degree 7,

d—1 d+1
b = Il 5= el =Dk,

(1.6)
u(x,y, t) =xiyit1 + -+ Xg1Ya+1td+1,

and ¢, is the normalization constant of the weight function ]_[fl=1 (14+1)(1— tl.z)"f -1
For § > —1, the Cesaro (C, §) means of the 4-harmonic expansion are defined by

n—k+4
S2(h2; f,x) = (A%)~ ZAn L Proj, (s f.x), A k_< "k )

The case § = —1 can be considered as proj,, (h%; f) itself. Evidently the (C, §) means
can be written as an integral against a kernel, K ,‘f (h,%; X, y); that is,

S3(h2: f.x) —aK/ FOVKE (2 x, y)R2 () dao(y),

where K 5(h2) is the (C 8) mean of the kernel P, (hz) and a, is the normalization
constant a, = 1/ [ g hK dw. Many results on h-harmonic expansions have been de-
veloped by now. In the following we only state those results that are essential for our
study (refer to [5] for the background and refer to [8] for results on (C, §) means). Let

P,,(a’ﬁ ) denote the n-th Jacobi polynomial, which is the orthogonal polynomial with
respect to the weight function

wP =0 -0 +0P, re[-1,1]

with the usual normalization ([9]). The Gegenbauer polynomial Cﬁ corresponds to
o = f = A — 1/2, although the normalization constant is different [9, p. 80]. Let
K,‘f (w@P; s 1) denote the (C,8) means of the kernel of the Jacobi expansion on
[—1, 1]. Then it follows from (1.5) that

1 1
K2 (h2;x,y) = CK/ Ky (wh 2272 Lu(x, y, 1))
[_1’1]d+1

d+1

< [Ta+m(1—) " ar. (1.7)
i=1
If some «; = 0, then the formula holds under the limit relation
! 1
Jim ¢ L fOa =0 tdr=S[f1) + f(=D]. (1.8)

Similar results hold for orthogonal expansions on the unit ball BY and on the
simplex 79. Let 2¢ and W denote either BY and W2 or T¢ and W/, respec-
tively. Let fo (W) denote the space of orthogonal polynomials of degree n and
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proj,, (W) : L2(W) — V,’f (W) the orthogonal projection. The Cesaro (C, §) means
of the orthogonal expansion with respect to W are defined as the (C, §) means of
proj,,(W; f). These means can also be written as integral operators,

SS(W; f,x) =af /Q FOKS(W: x, )W () dy,

where the kernel KfL(W) is the (C, §) mean of the reproducing kernels of V,f(W)
and a,{z is the normalization constant of W on 2. There is a close relation between
orthogonal expansions with respect to W,f on B? and the h-harmonic expansions
with respect to hf on §¢. In particular, it is known that

1
K (W2ix,y)= E[K,f(h%; (¢, xa+1), (v, Ya+1))
+ K2 (hgs (. xa41), (v, —ya+D)]. (1.9)

where xg411 =+/1 — || x||2, ya+1 = +/1 — ||y ||>. Because of this identity, the pointwise
estimate of the kernel Kfl (W,fg ; X, y) can be deduced from that of K S (hf ; X, y). There
is also a close relation between orthogonal polynomials on B? and those on T¢, but
it is a relation that involves a transform akin to the quadratic transform between the
Jacobi polynomials and the Gegenbauer polynomials (see [9, (4.3.4) and (4.1.5)]).
The kernel for W on 79 is more complicated as it is given by

Kfl(WKT; X, y) = ch K,‘f(w“"'*%f%); 1,2z(x,y, % — l)
[_1’1]d+l
d+1
< [T -2, (1.10)
i=1

where

Z(x, y,0) = /xiyiti + -+ Xayata + /1 — x|y 1 = |yltas1.

In the case of d = 1, the weight function W! becomes the Jacobi weight

1 1
wk1—2¢ ‘_7)(t), so that our results reduce to the result for Jacobi expansions. The
weight function W2 when d = 1 becomes the weight function

Wiy () = 121 (1 =) =0, re[-1,1],

whose corresponding orthogonal polynomials, C,(,KI’KZ), are called generalized

Gegenbauer polynomials, and they can be expressed in terms of Jacobi polynomials,

, A+ ) —1/2.u—1/2
Céz ll)(t): - nPrEA 1/2,u—1/ )(2l2—1),
(/’L+§)n
(1.11)
(A + W+t —1/2,u+1/2
Cot () = S L p AR ED (02 ),
(M+§)n+l
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where (a), = a(a+1)---(a-+n— 1). Furthermore, let C\*** denote the orthonormal
generalized Gegenbauer polynomial; then we have ([11])

- ~ A
Gt (1) G010 () = n+ —H‘CACM/ / Cy(txy +sv 1 —x2 /1 — 2

x A+ =2 (1 =2 dras, (1.12)

which plays an essential role in our proof of various lower bounds.

The convergence of the Cesaro means with respect to h,% was first proved in [10]
under the condition § > |« | + %. The critical index of the (C, §) means turns out
tobe d > |k| + d—gl — minj<j<4+1 ki, which was proved in [8] together with similar
results for orthogonal expansions on B¢ and on T¢. The main ingredient of the proof
is a sharp pointwise estimate for the (C, §) kernel function that was established for
8 > (d — 1)/2. The derivation of the estimate in [8] is elaborate and lengthy, and can-
not be extended to 6 < (d — 1) /2. Moreover, the estimate for the kernel K ;f (WKT 31X, Y)
on the simplex was established under an additional restriction on «, so that the result
on T¢ was incomplete.

In the present paper we will establish the pointwise estimate of the (C, §) kernel
for all § > —1, as well as for the kernel of the orthogonal projection operator itself,
with a much more elegant proof. As a consequence, we are able to determine the
exact order of the norm of the (C, §) means for all § > —1, including the projection
operator and the partial sum operator, for the orthogonal expansions on the sphere,
the ball, and the simplex. The deviation of the main estimate on the kernel function
K,‘z (h%; x,y) comes down to estimate a multiple integral of the Jacobi polynomial
that has boundary singularities, which in fact holds for even weaker condition than
what is needed for § > —1; both the proof and the result could be useful for other
problems. The sharpness of the norm relies on a lower bound for a double integral
of Jacobi polynomials, which was established in [8] in the case of critical index. We
will extend this lower bound to § > —1 by using asymptotic expansion of integrals,
which gives a proof that is not only more general but also more elegant even in the
case of critical index.

The paper is organized as follows. The main results are stated and proved in
the following section, assuming the estimates of the kernel. The pointwise estimate
of the kernel is established in Sect. 3. The lower bound estimate is established in
Sect. 4.

2 Main Results

Throughout this paper we denote by ¢ a generic constant that may depend on fixed
parameters such as k and p, whose value may change from line to line. Furthermore
we write A~ Bif A>cB and B > cA.

2.1 Orthogonal Expansion on the Sphere

The main estimate of the kernel function is as follows:
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Theorem 2.1 Let x = (x1,...,X4+1) € S and Y=01s---sVd+1) € s, Then for

s> —1,
2 x| < o[t i+ IE = 3l 4+
‘ n( K> Xs y)’ =c nd=@=D/2(||x — §|| 4+ n—1)3+@+D/2
T4 (sl + 1% = 5112 +n-2>-Kf] o
n(|x — y|| +n=1d+! ’
where 7= (1211, .-, |Zd+1]) for z= (21, ..., Zd+1) € 59, Furthermore, for the kernel
of projection operator,
d+1 -1z S —2\—K;j
i~ (xjyil+n= lx =yl +n"")7"
|Pn(hz;x,y)|scn"1 L 2.2)
‘ =@ DA% = 5]+ 0 D@72
In the following we take the convention that in the case § = —1, S,‘E (h%; f) is

understood to be just proj, (hz; f). This pointwise estimate was proved in [8] for § >
(d—1)/2.For1 < p <oolet] ||, p denote the usual Lp(h,%; $9) norm, where in the
case of p = oo we consider C(5¢), the space of continuous functions with uniform
norm || fl«,00 := || flloo- Let ||Sfl(h%)||,(,p denote the operator norm of S,‘z(hg) as an
operator from L? (h%; 9y to LP (h,%; $9). Asa consequence of the main estimate, we
can prove the following:

Theorem 2.2 Let § > —1 and define

d—1 k] .
o '=—— +|k|— min «;.
* 2 l<i<d+1 '

Then for p =1 and p = oo,

1, S > 0y,
i (2) 1y, ~ % and 185021, ~ |logn,  5=or.
n%toe . 1 <8 <oy.

In particular, Sg(h,%; f) converges in L[’(h,%; S for all 1 < p < oo if and only if
8> 0.

The last statement means that o, is the critical index of the (C, §) means, which

was proved earlier in [8]. The results for § < o, are new. Let us mention two partic-
ularly interesting cases. One is § = 0 for which S? becomes the partial sum operator

Su(hzs £) =) projs f,
=0

which is the best approximation to f in L2(h%; 57). The other case is the projection
operator itself.
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Corollary 2.3 For p =1 o0r 0o, [|Sy(h2)|c,p ~ | proj, (h2) ||, p ~ n°

The proof of Theorem 2.1 will be given in Sect. 3. The estimate of the norm
||S‘s (h2)|| «,p for p =1 and p = oo in Theorem 2.2 implies that the same estimate
holds for 1 < p < oco. For § > o, this shows that ||S‘S(h2)||,( p is bounded for 1 <
p < oo. For § < oy, however, the estimate is not sharp. For example, we know that
Il proj, (h2: Flle.2 < I1f lle.2-

While the proof of Theorem 2.2 follows along the same line as that of [8, Theo-
rem 2.1], which is concerned only with the case of the critical index, it is necessary
to provide proofs for several subtle points, especially for the lower bound. Below we
shall present a self-contained proof. The proof is naturally divided into two parts; one
deals with the upper bound of the norm, and the other is concerned with the lower
bound of the norm.

Proof of Theorem 2.2 (upper bound) We shall prove the upper bound for the norm of
Sg (h,%) with § > —1. The case of the projection operator can be treated similarly.

A standard duality argument shows that ||Sﬁ (h,zc)||,(,1 = ||Sfl (h%)”,(,oo so that we
only need to consider the case of the || - ||, norm, which is given by

”Sﬁ(h%) ||K‘OO = sup a, /Sd |K,f(hf; X, y)}hf(y) dw(y). 2.3)

xesd

We claim that
|K2(h2: %, y)|R2(p) <cn? (1 4+nl2=51) 7Y, x,yesd, @4

with 8(8) = min{d + 1, § — o, + d}. Once the claim (2.4) is proven, then we have

/ |K2(h; x, y) |h2(v) de(y) < cn? / (1+n6)"P®(sing)? do

1, 8 > oy,
~ 1logn, § =0y,
n~to 1 <8 <oy,

which together with (2.3) will give the desired upper bound of || Sg (h,%) ll, p-
For the proof of (2.4), we shall use Theorem 2.1. Without loss of generality we
may assume |x1| = maxj<j<q+1 |X;|. Set

Iix,y) = (Jxjyil +n X =31 +n72) 9y, 1<j<d+1.

Since [x1] =maxi<j<g41 |xj] = ﬁ, we have
— “
L, y) <™ nl* <d+1D7.

For j > 2,if |x;] = 217 — 3|l then [y;] < |x;| + | — 7]l < 3|x;|, and hence
o ) 3\ i 3\ i B B )
10, y) < ;)] Kf|y,;|2kfs(5) 5(5) (1+nl% = 511)
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whereas if |x;| < 2|lx — y|| then |y;| < |x;| + [lx — y|| < 3||x — yl|, and hence

L, y) < (n % =5l +n72) 79 31E = 71)™ <99 (1 +n)% — 71)°

Consequently, it follows that

d+1 d+1 Kl
[T <[]0y <e(l+nlz—51)",
j=1 j=2

in which «; can be replaced by minj<;<4+1 «;. Thus, we obtain

| d+1
Iay) =n(1+nl5 - 5])7° 1'[1<x y)
< en?(14n)% - yu)*‘”‘””. 2.5)
Similarly, one can show thatfor 1 < j <d 41,
Tix,y) o= (Ixjyl + 1% = FI1P+n72) 9y <c,
which implies that
1921 7 e, y) o
J(x,y):= <enl(1+n|x =7y ) (2.6)
D= e et = e (L nlE =)
Since Theorem 2.1 shows that
K3 (h2:x, y)[R2(0) < c(I (e y) + T (x, ).
the claim (2.4) follows by (2.5) and (2.6). U

Proof of Theorem 2.2 (lower bound) The lower bound of the norm || Sﬁ (h%) ll,p fol-
lows from the lower bound in Theorem 2.4 below. Here we only consider the case of
the projection operator.

Lete; =(1,0,...,0),...,eq+1 =(0,...,0, 1) be the standard basis of RA+L By
(1.5) and (1.12),

n 4 Ak
Ak

PalBfx.ej) = CP TP ME T () = LTI ),

where the second equal sign follows from [5, p. 27]. Consequently, if minj<; <441 ki =
kjforl<j<d+1,then

[proits (12) | (= / | Pa(h2; x, ¢;) [h2(x) dw(x)

A
"+ Ak fyc“" D () |2 (x) deo (x)
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n+ k (0 ,k5)
> — / ‘CU Kj ])|w(fKK/(-xj)d-x]

Next we write the last integral as twice of the integral over [0, 1], as justified by
(1.11), and then change variable 2x12. — 1+ ¢. Using (1.11) we then conclude that

1
||pr0j’§n(h,%)||,( | zcn"”%/ |P,EUK_%’K'/_%)(I)}w(‘”*%’“’*%)(t)dt~n"“
’ -1

where the last step follows from the classical estimate for the integral of Jacobi poly-
nomials in [9, (7.34.1)]. The case of proj’gn 11 (h,%) is handled similarly. [l

2.2 Orthogonal Expansion on the Ball

The pointwise upper bound of the kernel Kfl(WKB ;x,y) can be derived from The-
orem 2.1 using the identity (1.9). In fact, for our main results on the norm of
(C, 5) means, we can use (1.9) directly. For 1 < p < oo let | - ||W1§’p denote the

LP(WK’.B : B?) norm, where in the case of p = oo we consider C(B%) with uniform
norm || flws o0 = Il flloc- Let ISS(W2B)||,., denote the operator norm of S2(W2F)

as an operator from L?(WE; BY) to LP (WE; BY).
Theorem 2.4 Let § > —1 and define o, := % + |k| — mini<j<g+1i. Then for
p=1oroo,

1, S > 0y,

[S2(WE) lwp , ~ {logn. =0,

n=%toe . _1 <8 <oy.

In particular, S, WB, f) converges in L/’(WKB; BY) forall 1 < p < oo if and only if
8> 0. Furthermore

Jproi, (W) ]y, ~ 1%

unless mini<j<q+1 ki = Kq+1 and n is odd, in which case the norm has an upper
bound of ¢ n°«

Again the fact that o, is the critical index of the (C, §) means was proved earlier
in [8]. The results for § < o, are new. Let S,, (WKB; f) denote the partial sum operator

n
= Z proj,, (W
j=0

Corollary 2.5 For p=1 or oo, ”Sn(WKB)”Wf,p ~ n%

Recall that the weight function W2 becomes wy, 4, in the case of d = 1, so that
the results of Theorem 2.4 and its corollary hold for the generalized Gegenbauer
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expansions. Moreover, let K,‘Sl (wy,u; s, t) denote the (C, §) kernel for the generalized
Gegenbauer expansion with respect to w;,;, and define

1
TS (w0 1) = / K3 5.0 0) ds: @.7)

then the following proposition plays an essential role in establishing the lower bound
in Theorem 2.4.

Proposition 2.6 Assume u > 0and § < \. If A > u then

_ logn, ifé§=A,
T2 (w3 1), T2 (w53 0) > cn 0+
n Waps D, Ty (wpeas 0) = 1, if—1<8<A.

This proposition will be established in Sect. 4. Below we use the proposition to
prove Theorem 2.4.

Proof of Theorem 2.4 The upper bound of the norm in Theorem 2.4 follows easily
from that of Theorem 2.2 as shown in the proof in [8, p. 286]. For the lower bound
estimate, the case § > —1 follows essentially the proof in [8], which is based on the
following inequality (see (2.3)),

IS0%0)] = af [ [KEWE 30| WPy = A

where e is a fixed point in BY. Let e) = (1,0,...,0),...,e4 =1(0,...,0,1) be the
standard basis of RY. Following [8, p. 287], we have

An(e)) =T (Wi—c;i 1), 1=j<d, and  A,00) =T, Wiey 1 he—rcgsr 0):

from which the lower bound of the norm estimate in Theorem 2.4 follows from Propo-
sition 2.6.

Next we consider the norm of the projection operator. If minj<;<441&; = «; for
1 <j <d,thenby (1.5) and (1.12)

n—+ A
Ak

~ A’ — iy . ~ )\. —Kj, . )" —Kj, .
Pa(WB:x,e;) = Cy* I ()E D () = CHTID (1)),

so that the proof follows exactly as in the case of lower bound of Theorem 2.4. We are
left with the case of minj<;<4+1 ki = kq+1. In this case, it follows by the projection
operator version of (1.9) and (1.12) that

Po(WE; x,0) = CY %) (0) L+ (x)). 2.8)

Hence, using the structure constants given in [5, p. 27] and (1.11), we obtain that

2n+Ar (A
e (ka1 +3),

Pan(WE; x,0) = (—1)" PLTEITD ()2 ),

K
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Using the polar coordinates and then changing variable 27> — 1 > ¢, it follows that

/;J|P211(WKB;X, 0)|WKB(x)dx

N LIRS R L]
Nn(fx+§/ \pn 2 2 (t)|w(’(d+17§s0‘k7§)(t)dtNn(fk
again by [9, (7.34.1)]. (]

Note that by (2.8) and (1.12), Pr,41 (W,f ; x, 0) = 0 so that the above method fails
when k441 =minj<j<qy1«; and n is odd.

2.3 Orthogonal Expansion on the Simplex

As mentioned in the introduction, the pointwise estimate of K (W[; x, y) is more
complicated, and it does not follow directly from that of K,f (h,%; x,y). To state the
result, we introduce the following notation: for x = (x1,...,x4),y = (y1,...,Yd) €
T4,

£ = (VXL oo VA VEar), § = (U Vs V)

with xz41 :=1 — |x| and ygz41 := 1 — |y|. Both of these two are points in 54 as
|x| =x1 + -+ 4+ x4 by definition.

Theorem 2.7 Let § > —1. For x,y € T,

[ x5y +n g — ¢l + 727

néf(dfl)/Z(”g -+ n71)6+(d+1)/2
145 (/735 + 11E — ¢ 112 +n2>K-f]
n(€ — ¢l +n=1dt! '

Furthermore, for the kernel of the projection operator,

KW x)] =]

d+1 -1 —2\—k;
i1 (VXY +nllE =Sl +nm)7
|P,,(WKT;x,y)|<cH’ i A (2.9)

=T @R(g — g a1

This estimate was proved in [8] for § > (d — 2)/2 and an additional restriction
on k. As in the case of B¢ we let || - ”WKT,P denote the L”(WKT; 77) norm and let

||S,‘§(WKT) ll.,  denote the operator norm of Sﬁ(WKT) as an operator from LP(WK.T; T4)
to LP(WI; T9).

Theorem 2.8 Let § > —1 and define o, := % + |k| — mini<j<q+1«;. Then for
p=1oroo,

1, § > 0y,
||pr0jn(WKT)HWkT,p~n”" and ||S;SI(WKT)||WIZ‘J;N logn, 3 =0y,
n=toe 1 <§ <oy.
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In particular, Sfl(WKT; f) converges in LP(WKT; TY) for all 1 < p < oo if and only if
> 0.

The fact that o, is the critical index of the (C, §) means was proved in [8] under
an additional condition of Z?:]I (2«; — |ki]) > 1 + minj <;<g—1 «;. This restriction
is now removed. Let Sn(W,(T ; f) denote the partial sum operator of the orthogonal
expansion.

Corollary 2.9 For p=1o0r 0o, [Ss(WD)llyr , ~ Il proj, (Wllyr , ~n.

Proof of Theorem 2.8 The proof of the upper bound follows from the proof of [8,
Theorem 2.9], which reduces the estimate to the one in Theorem 2.2 for all §, and the
same reduction holds also for the projection operator. For the lower bound estimate,
we note that ([8, p. 290])

K (Wi x,e)) = K3 (w3570 1,20, — 1), 1<j<d,

n

Kfl(WKT;x,O) = K,‘f(w()”ﬁ"ﬁ%"(f*%); 1,1 — 2|x|);

and the similar formulas hold for the projection operator, in which the right-hand
side holds with P,(w@B): s, 1) := PP (5) B\*P) (1), where P{*P)(s) is the ortho-
normal polynomial. Consequently, as in [8], the lower bound estimate reduces to that
of Jacobi expansions at the point x = 1, for which the relevant results can be deduced
easily from [9, Chap. 9] (see Lemma 3.6 below). (]

The results stated above are for the norm of the operators. For the pointwise con-
vergence, we have the following result.

Theorem 2.10 Let f be continuous on T¢. If § > (d — 1)/2, then the (C, ) means
Sﬁ(WKT : ) converge to f at every point in the interior of T and, furthermore, the
convergence is uniform over any compact set contained in the interior of T?.

This theorem was proved in [8] under the condition Z‘ji} (ki — |ki]) = 1. The
proof uses a local estimate of the kernel derived from the main estimate in Theo-
rem 2.7, hence is valid now for all § > (d — 1)/2. Similar pointwise convergences
also hold for S¢ and BY, see [8].

3 Pointwise Estimates of the Kernels

The center piece of the pointwise estimate on the (C, §) kernel is an estimate of
integrals on Jacobi polynomials. This is presented in the first subsection, from which
the estimate of the kernels will be derived in the subsequent subsections.
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3.1 Main Estimate
The following theorem contains the key ingredient for our pointwise estimate.

Theorem 3.1 Assume kj >0, a; #0 and ¢; € C®°[—1,1] for j =1,2,...,m. Let
la| := Z;”:l lajl <1.Ifa>B,a>||— % :=Z?’=llcj — % and |x| + |a| <1, then

m m
'/[ Lo e (Zaﬂj +x) [Teiepa -yt

j=1 j=1
[T=i(ajl +n~ ' YT=Tal = Ix[+n~ )"
(1 +nyT—TJa] = k@3l

k
where the constant ¢ < ¢’ max| < j<, Maxg=0 ||<p;. )||.

< Cnoz—2|l(|

, 3.1

It is well-known that the Jacobi polynomials satisfy the following estimate ([9,
(7.32.5) and (4.1.3)]).

Lemma 3.2 For an arbitrary real number @ and t € [0, 1],

|pr§a,ﬂ)(t)‘ < Cn_l/z(l _y +n_2)_(“+1/2)/2,

3.2)
The estimate on [—1, 0] follows from the fact that Pn(a’ﬁ)(t) =(—-D" Pn(ﬁ’a)(—t).

The Jacobi polynomials also satisfy the following identity

(at+}.b+1) 2 d a3,

)
P = — 2 . 33
W ) nrat b ldy m ) (3.3)

Hence, in terms of the power of n, (3.2) is most useful for & < 1. In order to use the
inequality effectively, we give the following definition.

Definition 3.3 Let n, v € Ny, i, r € R with r > 0. Assume |p| +r < 1. A function
fi[=r,r] = R is said to be in class S, (p, r, u), if there exist functions F;, j =

0.1,....von [—r,r] such that F{)(x) = f(x), x € [-r.r],0 < j <v,and

. =L
|Fj@)|<en P (14nyT=lp+x) "2, xel-rr], j=0.1,...,0. 3.4)
We note that n=% P,*" € §Y(0, 1, &) for all v € Ny by (3.2) and (3.3).

Lemma 3.4 Assume § > 0 and 0 < |a| <r. Let f € S;)(p,r, ) with v > |u| +
26 + %, and let & € C*°[—1, 1] be such that supp&é C [—%, 1]. Then, for |x| <r —|a|,

1 1
‘f flat +x)(1 =)&) dt §cn_23|a|_6(1+n«/1—A)_”_ZH, (3.5)
-1
where A == |p +a+ x]|.
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Proof To simplify the notation, we define

1 1—A
B:= irnvizA
2n2|a|

First we claim that for r € [1 — B, 1],

14+ny1—lat +x+p|~1+nv/1—A=2n%alB. (3.6)

Indeed, if t € [1 — B, 1] and n/1 — A <1, then

n*(1—|p +at +x|) =n*(1 — A) +n*(A — |p +at +x|)

1+nJ1-A <2

<n’(1—A) +n*alB<1+ 5 <

so that both sides of (3.6) are bounded above and below by a constant; whereas if
te[l—B,1]and na/1 — A > 1, then

nlal|l — 1|
n\/l—lp—i-at—i-xl—n«/l—A <
| | JT=lat+x+pl++/1-A
< MalB g p = LT

from which (3.6) follows by the triangle inequality. From (3.6) and (3.4) with j =0,
we obtain

1
/ flat+x)(1 —0)°~e@) dr

max{l—B,—1}

1ol
<c(l+nv1 —A)’“/ (1=0""dt
1-B
1
<cn Pla| (1 4ny/T—A) 2%

If B> % then the desired inequality (3.5) follows from the above inequality. Hence,
we assume B < % from now on.
We now consider the integral over [—1, 1 — B]. Set

1
z={|u|+23+§J+l.

Then 1 < ¢ < v by our assumption. Since & € C*°[—1, 1] with supp & C [—%, 1], we
use (3.4), (3.6) and integration by parts £ times to obtain

@ Springer



Constr Approx

1-B
V flat+x)(1 =)’ @) dr
-1
¢ 1 . .
Z al ™ n72 (14 ny1T—A)H7 2 g

1-B
+c|a|—@/ |Fe(at +x)|(1 =)~ dr

1
2

1
<en Pla (1 +nvT—A) 72"
1-B i
+c|a|*fn*2‘/ (1+nyT—lp+x+at]) " 271 =0 ar.

Bl—

The first term is the desired upper bound in (3.5). We only need to estimate the second
term, which we denote by L. A change of variable s = |a|(1 — ¢) shows that

3

3 lal o
L:= ”72€|a|75/ (1+nyT—la+x+p—s-sgnal) 7>y
Bla|

= n"2a|7 (L) + La),

where L1 and L, are integrals over the intervals I} = [|a|B, %|a|] N[0, %] and
I, =[|a|B, %|a|] N [ﬂ, 00), respectively. If s € I] then

|A—la+x+p—s-sgnal| <|s| < (1 —A)/2

sothat 1 —|a+x 4+ p — s -sgna| ~ 1 — A by the triangle inequality. Consequently,

L
L ::/(1+n\/1—|a+x+p—s~sgna|) noaths—t=1 g
4l

IA

1 o
c(1+nv1— A)‘“‘f“/ S

Bla|
c(1+nVT—A)# 34(a )’
en (1 T A)

Ifselh,thens>(1—A)/2and 1 —|a+x+p—s5-sgnal| <1 —A+4s~sbythe
triangle inequality. Consequently, since ¢ > p + % it follows that

IA

IA

1
Ly := / (I+nyl—la+x+p—s- sgna|)_M_7+Zs‘s_g_1 ds
I

IA

1
C/ (1+nﬁ)_ﬂ_j+es3—f—lds
I

IA

Ly [ _nis_t_s
cn~H2t §T2TOTaTa gy,
la|B
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since n?|a|B > % Using the fact that £ > —u + 2§ — %, we obtain

1

-’

A= cn%*z’s(l +nv1— A)f%ﬂsfzf7
1

< Cn25_25(1 +nv1— A)_MM_E,

o

=
ST

Ly <en ™ 1 (ja|B)”

using the inequality £ > u + % Putting these estimates together completes the proof
of (3.5). O

Lemma 3.5 Let k; > 0, a; # 0, & € C®[—1, 1] with supp&; C [—4, 1] for j =
1,2,...,m, and let Z';l:l laj| < 1. Define

Fon(x) :=/ pp <Za,»zj +x> [T&apa—ipi—tar (3.7)
(11" st

j=1

for|x|<1-— Z;'.’Zl laj|. If « > B, then

m
1
m < T ny1— Ay, +x|) %27 .
| ] < e [Tlaj ™05 (1 4+ ny1T— Ay +x]) 72" (3.8)

j=1

where Ay =311 aj and Ty, =31 Kj.

Proof Since n=9 PP (x) € §(0, 1, ) for vy := |ee| + 2¢1] + 4, we can apply
Lemma 3.4 to conclude that

1
| i) = n® / P (g +x)(1 — 1)~ &1 (1) ity

i
< c|a1|_K'n_2K'(1 +ny1—la; ~|—x|)_a_7+’q,

where |ai| + |x| < 1. Hence, the conclusion of the lemma holds when m = 1.

Assuming that the conclusion of the lemma has been proved for a positive integer
m, we now consider the case of m + 1. Let vy = ||lo — Tl + 26m41] + 4. For
i=0,1,..., vy4+1 we define

m m

Fi(x) = cn,,/ Pl Py (Za,tj +x) [Ta -9 "g@ar,
(L1 o
j=1

j=1

where Cpo =1 and Cp; =2//[[l_in +a + B +1—10)=0O@m™) for i =
1,..., um+1. Using (3.3), it is easy to verify that Fi(l)(x) =f(x)fori=0,1,..., vp41.
Furthermore, the induction hypothesis shows that

m

)| Scnlajrxjnafzx_ﬁzi(l_i_nm)faf%ﬂmﬂ

j=1
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fori =0,1,..., vy, where |x| + Z;":l laj| < 1. By the definition of S¥(p, r, 1),
this shows that

m m
[ [laj1in=F2 f(x) € S;i”"“( Z lajl, o — )
j=1

Since vy41 > o — Ty | + 2641 + %, we can then apply Lemma 3.4 to the integral

1
Smr1(x) = / 1 Fon @it tmst + )4 = 1) i (1) At

to conclude that

m
[ Tlajlin 2| frupa ()]
j=1

a1
< en 72 @y |74 (14 /T — [Aggy +x]) 072

where |x| + |ap4+1] <1 — Z’/”: 1 la;|. This completes the induction and the proof. [
We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 Lety € C*°[—1, 1] satisfy ¥ (t) = 1 for % <t<landy(t) =
0 for —1 <1 < —3. We define

£, () =g;OY@OA+0)< 1, .
=1,...,m.
i) =9 (=1 -y (=) +)™1

Evidently, &1 ;,§-1,; € C*®[—-1, 1] and suppé&1,j,suppé_1,; C [—%, 1]. Since

1
/lg(tj)goj(tj)(l—tjz)Kj_ldtj
1

1
:/lg(tj)gl,j(tj)(l_tj)Kjildtj+/1g(_tj)$—l,j(tj)(l_tj)Kjildtj,

we can write

m m

J:. = / Prfa’ﬂ)<2ajl‘j+x)H(pj(l‘j)(l—tjz)l(j_ldt
(=11 i— P
j=l1 j=l1

m m
2 /11,”P"(a’ﬁ)(zejaﬂj+)€>Hés,-,j(tj)(l—tj)”fldt
}m

eefl,—1 j=1 j=1

= Z I, (x).

ee{l,—1)m
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Recall that |a| = Z;":l laj|. For & € {1, =1}, we write a(e) := Z;":l ajej. Apply-
ing Lemma 3.5 to I, gives

m
10| = en® 2K T hay 1™ (1 + /T = e+ aeyl) 27

j=1
a—2lk| - —k; —a— 3+
<n* T la; 1™ (14 ny 1= x| [a])
j=1

for each ¢ € {1, —1}", where we have used the assumption o > |k| — % and the

inequality |x + ZT:] gjaj| <|x|+ Z’;‘zl la;| in the last step. Consequently,

m
1
1< 2" 2 T a7 (1 4+ ny/T= x| = Jal) * 72", (3.9)

j=1

Finally, we claim that the desired inequality (3.1) is a consequence of (3.9). In
fact, without loss of generality, we may assume that

|aj|zn_1 l—|a|—|x|+n_2, forj=1,...,p (3.10)

and

lajl <n "1 —lal = |x|+n72, forj=p+1,....,m. (3.11)

We then apply (3.9) with m and x replaced by p and Z;": p+14jtj + x, respectively,
to obtain

m p
Mp(x, ') = )/[ o P,f“’ﬁ)(E ajtj +x> [Tesan(t—3) " ar
—1,117

j=1 j=1

P
< 2Pn® 2 Ei= [Tlajl™ (1 +nA(x))7u7%+Z§:lKj,
j=1
where 1’ := (tp41,...,tn) € [—1,17"77 and A(x) := /1 —Ja] — [x], and we have
used the inequality IZS-"ZPJrl ajtj +x| < Z;n=p+1 laj| + |x| as well as the fact that
o> Zle Kj— % Using the assumption (3.10), we then obtain

p m
My(e.t'y < en® 2K [T1ai ™ ] (n*‘A(x)+n*2)*“f(1+nA(x))*“*5+'“'
i=1 Jj=p+1

m
< en 2 T (lagl 47" AG) +n72) 7 (1A (o) 24
j=1
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Consequently, it follows that

m m
PPN ajtj+x | []esep(1 -1 S ar
/[—1,1]'" n ( a;lj x) ;i (17)( ])

j=1 j=1

m
i—1
<[ ) [T e (=2 ity
[=11m=r i=p+1

m
< en® 2 T (1l + 07" AGo) +172) ™ (14 nA o) @2,
j=1

proving the desired inequality (3.1). (]
3.2 Proof of the Pointwise Estimate of the Kernel on the Sphere

For estimating the kernel, we will need information on the (C, §) means of the Jacobi
expansion. We start with a result in [9, p. 261, (9.4.13)] and its extension in [7] given
in the following lemma.

Lemma 3.6 Forany o, B> —1 suchthata +B+5+3 >0,

J
KY(w®, 1,u) =>"bje. B.6.m) PP ) + Gl ),
j=0

where J is a fixed integer and
o .
Gl =Y diep.s.mK, " (w@P 1,u);
j=J+1
moreover, the coefficients satisfy the inequalities

|bj(e, B, 8, )| <en® 070 and |dj(a, B,8,n)| < cj PO

Since the kernel function K, 3 +J (w®P 1, u) contained in the G,‘Z term has larger
index, it could be handled by using the following estimate of the kernel function,
which was used in [1] and [3] (see Theorem 3.9 there).

Lemma 3.7 Let o, 8> —1/2. If§ > o + B + 2, then

|K,’§(w(a,ﬂ), 1, u)} <en! (1 —u +n72)7(a+3/z)'

Proof of Theorem 2.1 We start from the integral expression (1.7) of K ,‘3 (h% ;x,y). The
first step of the proof is to replace the kernel K 2 (w(“’%’“’%)) by the expansion in

Lemma3.6.Leta =8 =|k|+(d—2)/2andlet J = | + B8+ 2] = |2|x| +d]. The
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choice of J guarantees that we can apply Lemma 3.7 on Gf, term. Combining the
formula (1.7) and Lemma 3.6, we obtain

J
Kp(hZ:x.y) = bj(a. B.8,m)82;(x.y) + 2:(x.y),
j=0

where

d+1

Qi y) :CK/ PEFHITID (e, y, 1) [0 +1(1 — 25 gy,

— d+1
[-1.1] plle

and

d+1

Q2.(x,y) = CK/ G (u(x, y,1)) ]_[(1 + ) (1 — zl?)“f‘1 dt,
+1

— d
(=1.1] i=1

inwhich u(x, y, 1) =x1y1t1 + -+ + Xg41Ya+1ta+1-

Since the indices of the Jacobi polynomial in £2p are ¢ +8 4+ 1=8 + || + % and
] + %, we can use Theorem 3.1 withm =d +1,x =0and a; = x;y; to estimate
£ for all § > —1. Using the fact that 1 — (X, y) = ||x — ¥|| /2 for x, y € S¢, this shows
that bo(c, B, §, n)§2¢ is bounded by the first term in the right-hand side of (3.1). The
same estimate evidently holds for §£2;. The estimate of £2, uses Lemma 3.7, which
can be handled easily as shown in [8].

Finally, we note that Theorem 3.1 can also be applied to the kernel P, (h; x, y) in
(1.5), which gives the pointwise estimate of (2.2). [l

3.3 Proof of the Pointwise Estimate of the Kernel on the Simplex

Recall the formula for K (W; x, y) in (1.10). Setting & = || + (d —2)/2 and J =
Ll + 3/2], we again use Lemma 3.6 to break the kernel Kﬁ(WKT ; X, y) into a sum

J
K (W ix,y) = bjla.—1/2,8,1)82;(x,y) + 2:(x. ),

j=0

where
(a+8+j+1,—1) o 1

T Ki—
Qj(x,y)=cK/ o 2220y, 0P =) [0 =1) ar
(=11 i=1
and

d+1

G2z’ =) [T(1=4)" .
i=1

£2:(x,y) =CK/

[_1’1]d+
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where z(x,y,t) = Z'ji} /XjYjtj, Xa+1 = /1 — |x] and ys+1 = /1 —y|. Using
_1
the quadratic transform Pn(/\' 2)(2t2 1)=a,P (k A)(t) with a, = O (1), we have
d+1 .
S+j+1a48+j+1 —
2i(x,y) = 0(1)f Pyttt D (o y ) TT(1 = 12) a.

d+1
1,1] i=1

Since £, ¢ € §¢, we have 1 —z(x, y,1) > ||€ — ¢ ||*>/2. Hence, we can follow the same
procedure as in the proof of Theorem 2.1 to prove Theorem 2.7.

4 Lower Bound Estimate

The lower bound estimate comes down to the proof of Proposition 2.6, which gives a
lower bound of T,;; (wj, ) in (2.7) for § < . The case of § = p is already established
in [8], but the proof there is rather involved and may not work for the case § < u.
Below we shall follow a different and simpler approach, which works for § < and
gives, in particular, a simpler proof in the case of § =

Proof of Proposition 2.6 1t is known that

TS (wy s 1) = TS (w15 0)

1

't
cntr 8+2/
0

< 24(1 = 22 dr + O(1),

1 1 1
At s+ a1 _
/ P,f ity At 2)(st)(l—sz)u Vds
-1

This is proved in [8, p. 293], where the equation is stated for T,f (w;,, ;05 0). (We should
mention that in the last two displayed equations in [8, p. 293], w,, ; should have been
wjy, ) As aresult of this relation, we see that Proposition 2.6 follows from the lower
bound of the double integral of the Jacobi polynomial given in the next proposition. [

Proposition 4.1 Assume A, u >0 and A >8> —1. Let a=1+u+ 6 and b =
A+ u—1.Then

[

zcnul/Z[log”v Fo="n, @.1)

/1P( +o4) >(t (1 _tz)u—ldt |y|2“(1 _yz),\—l/zdy

1, if—1 <6 <A,
where, when @ = 0, the inner integral is defined in the sense of (1.8).

Let us denote the left-hand side of (4.1) by I,,. First, we assume that 0 < pu < 1.
Changing variables t = u/y, followed by y = cos ¢ and u = cos 6, and restricting the
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range of the outside integral, lead to

1 y 1pel _
I > c/ / PR w0y y (37 — i) du
V27210 -y

/4
=
n—!

We need the asymptotics of the Jacobi polynomials as given in [9, p. 198],

(1 _ y2)k—l/2 dy

(sing)* d¢.

T—¢ 1pel -
/ P,§a+2’ Jrz)(cosé?)(cosqu — cos?6)" 'sing do
¢

P,f“’ﬁ)(cose)
11 0\ “ 2 0 —B=3 1
=7t_7n_§<sin E) (cos 5) [cos(NO + 1) + O(1)(nsin6) ']

forn™' <@ <m—n"!, where N=n+ % and 7 = —F (o + 2) Applying this
asymptotic formula with « =a + 1/2 and 8 = b + 1/2, we obtain

/4
Iy>cn™'? / M@ ing)* dp — O E,, 4.2)

where M, (¢) is the integral over the main term of the asymptotics

T—¢ 22—l
M, ($) = / (cos”¢ B 9); cos(NO + 1) db, (4.3)
¢ (sin %) (cos %)

and E;, comes from the remainder term in the asymptotics

/4 pm—¢ _ 1
/ / (cos” ¢ — cos? )"~ d6 (sing)> d¢p.  (4.4)

SlIl a+1(COS z)b+1

Nlu

Here N=n+ %2 +landt=-Z(a+ D).
In order to handle the main part of (4.2), we first derive an asymptotic formula
for M, (¢). We need the following lemma, which follows directly from [6, p. 49].

Lemma 4.2 If0 < u < 1, g(t) is continuously differentiable on the interval [a, B],
and & € R — {0} then

B .
/ gt —a)y (B -0 dt

_imué iTpué

=T (I [e” 2T g(B)eP + ¢ 2T g(a)e’®™] + Re,

as |&| — +o0, where

B
|Re| < |s|*1/ 'Ot — ) (B -0t

@ Springer



Constr Approx

Lemma 4.3 Assume 0 < u <1, A >0 and A > 8§ > —1. Let M, (¢) be defined
by (4.3). Then for 0 < ¢ <m/4,

My (¢) = Kn (@) + Grn(9), (4.5)

where

24 (sin(2¢))* !
(r —2¢)1~ ! (sing)

a—>b
x [(—1)" (sin %) cos<N¢ +y+ M)

Ky(@)=T(wN"

2
¢ a—b
+ (cos 5) cos(N¢ + y)i|, 4.6)
y =1+ %, and the remainder satisfies
|Gu(@)| < en” 072, 47

Proof Writing cos(N6 + 1) = (¢! N0+7) 4 o=iIN0+T)) /5 wwe split M), (¢) into two
parts, M} (¢) and M,, (¢), respectively, and apply Lemma 4.2 to these integrals. For
M} (¢) we define a function fy as
(cos? ¢ — cos?@)H~1
(sin€)(cos £)" (6 — ¢)—' (x — p — O~
2 2

for ¢ <6 < — ¢ and define its value at the boundary by limit. Then it is easily seen
that

fo(0) =

sin(r —¢—0) sin(@—¢) \—1 1 . _
( (m—¢p—0)(0—9) ) (sin §)4(cos §)»” ifo (¢, 7 —¢),
f¢(9) = (sin(j'[—2¢))ll_l 1 ifo =
T—2¢ (sin%)"(cos%)b’ 1 _¢ ormw — ¢7

is continuously differentiable on [¢, & — ¢]. Hence, invoking Lemma 4.2 with& = N,
and by a straightforward computation, we obtain

it

T—¢ )
M, (9) = % /¢ f3©)eN0 O — @) r — ¢ —6)*"" ap

(sin(2¢))*~! 2471
(7 —2¢)"~1 (sing)*

¢ a—b ) - d) a—b ) u
X [(sin 5) W= =F 4l (COS 5) e’[N¢+T+r]i| + R} (9),

=T(wN™"

in which
T—¢
o= [l o g -op-ta
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Since 0 < ¢ < Z, using the fact that sinx/x is analytic and that sin(x — 0 — ¢) =
sin(6 + ¢), from the definition of f we see easily that for ¢ <0 <7 — ¢,

| £5@O)] <c(0" 2+ (@ —0)*72).

This implies that for 0 < ¢ < I,
/2
ri@] =en | [oreo - oo
¢

T—¢
+f (r =02 — 9 — p)*! d@]
/2

/2
<cn”! / OrI2(0 — ) db
¢
as a > b and the first term dominates. A simple computation shows then

29 7)2
R ()] 56'n_1¢“‘“‘2f¢ (9—¢)“‘1d9+cn—1/2¢ 92193 4g
SenT I = el 48)

sincea=A+pu+8>2u—2.
Similarly, using Lemma 4.2 with £ = — N, we derive a similar relation for M, (¢):
e—ir

2

T—¢ .
M) (¢) = / f@)e N O — ) —p—0)+
¢

(sin(2g))“—! 247!
(x = 2¢)"T (sing)°

¢ a—b
X [(sin E) e—i[N(ﬂ—¢)—%+r]

¢ a—b ) n
+ (cos 5) e’lN¢+2+ri| + R, (#),

=T (N

where the error term R, (¢) satisfies the same upper bound as in (4.8). Since
M, (¢p) = Mj((j)) + M, (¢) and N + 27 =nm + b%”n, the desired expression for
M, (¢) follows with G,,(¢) = RS (¢) + R, (¢), which satisfies the stated bound. [

Lemma 4.4 Assume that0 <pu <1, A>0and A > 6§ > —1. Then

logn, ifr=34,

% . 22X —1
/nil|Mn(¢)|<sm¢> d > cn {1’ o
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Proof Since a — b =38+ 1> 0, we can choose an absolute constant ¢ € (0, Z) satis-
fying (tan 5 £ya=b < 7. We then use (4.6), and obtain that for ¢ € (0, ¢),

a—b
K (@)] = en ™40 <|cos<N¢> +y)| - <tan %) )

> enHgT ! (cosz(Nqs +y) - %)

= %n*%*H*‘ + %n*%*H*‘ cos2N¢ +2y),

where we have used the fact that (tan %)“’b < (tan %)“’b < % for 0 < ¢ < € in the
second step, and the identity cos” t = % + % cos 2t in the last step. It follows that

f: |Kn(@)|(sin)* dp = en™" /: ¢ dgp

&
+enH f 1 ¢* "L cos2N¢ +2y)do
n—

— logn, ifA=34,
cn
- 1, if —1 <68 <4,

where we have used an integration by parts in the last step.
To complete the proof, we just need to observe that by (4.5),

/ j|Mn<¢>|<sin¢>“ de > / |Kn(@)[sing)* dp - / |Gu@)|sing)* o,

whereas by (4.7),

&
/ |Gn(@)](sin ) de < cn~ogn 4+ cnHHH,
n—l
which is smaller than the bound for the first term in magnitude as 0 < u < 1. O

Lemma 4.5 Assume 0 <pu < 1,A>0and A > § > —1. Let E, be defined by (4.4).
Then

1 3
E,<en 727079 4 en~2logn.

Proof By (4.4) and the identity c0s? 0 — cos? ¢ = sin(6 + ¢) sin( — ¢), we obtain

le

f f” ¢ sin* =10 + ¢) sin* "1 (0 — ¢)

sm"'|r1 %)(cosbJrl %)

,%/ / gHr—a— 2(9 ¢)u. 1d0¢2)»d¢

do sin® ¢ d¢

| /\
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The inner integral can be estimated by splitting the integral into two parts, over
[¢,2¢] and over [2¢, /2], respectively. Upon considering the various cases and
taking into the account that a = A + 4+ § and A > 0, we conclude that

4

T
Ey<en / (¢ 10g | +¢* 1) dg < en 370D 4 en~F logn.
-
This completes the proof of Lemma 4.5. (|

We now return to the proof of Proposition 4.1.

Proof of Proposition 4.1 (continued) We consider the following cases:
Case 1. 0 < pu < 1. This case follows directly from (4.2) and Lemmas 4.4 and 4.5.
Case 2. =0 or 1. In the case u =0, I,, in limit form reduces to

1 1 1 1 1
(a+5.b+73) (a+5.b+73) r—1/2
In_/ ‘Pna 2 2 (y)+Pna 2 2 (_y)’(l_yZ) / dy
0

w/4 1pal Lpyl
= / [P cosg) + BT (cos(r — ) |(sin ) dg.
n—l

The asymptotic formula of the Jacobi polynomial gives

Lpyl Lyl
P,EHZ’ +2)(cos¢>)+ Pn(aﬂ' +2)(cos(7r —9)

a-1/2,-172

(Sil’l %)d*H (COS %)CPH

d’ a—b ¢ a—b
x |:<cos 5) cos(N¢ + 1) + (sin 5) cos(N (rr —¢)+T):|
+ (’)((n sinqb)_l),

which is essentially the same as the asymptotic formula for M, (¢) in Lemma 4.3 with
@ =0 and a smaller remainder. Thus, a proof almost identical to that of Lemma 4.4
will yield Proposition 4.1 for u = 0. Proposition 4.1 for © = 1 can be proved in a
similar way.

Case 3. > 1.1In this case, we denote by r the largest integer smaller than . We
then use (3.3) and integrate by parts r times to obtain

y Lpyl _
/ P,E(Hz’ Jr2)(u)(yz—uz)ﬂ Ydu
—y

(—2)" /‘}’ (a+L—rptlp) dr 5 v gl
B Pr™ — du.
[lon+a+b+2—i) ), " (M)duf [(y°—u?)" ] du

Since [(y? — u®)* 1) = Ag(y, u)(y> — u*)*~"~!, where A is a nonzero constant
and ¢g(y, u) is a polynomial in y and u which satisfies g(y, y) = (—=1)"q(y, —y) =1,
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we conclude that

y 1yl _
'/ Pn(a+2’b+2)(u)(y2—u2)“ du
-y

3

y sl g1
(@’+3.b'+75) 1
/ P T g () (P —u?) T du
-y

where /' = —r e (0,11, =A+u +8and b’ = A + ' + 6. It follows that

1
1, > cn_r/
V272

/4
> cn_r/
n*l

(1 _ yZ))L—l/Z dy

y sy 1 g7, 1
(a@+5,b'+5) /1
f P T g (v, wyy (v — u?)E T du
-y

T—¢ il el r_
/ P,fi:rz’ +2)(cos€)q¢(cose)(cos2¢ —cos9)" : sin@d@’
¢

x (sing)** de,

where g¢(cos@) = g(cos¢, cos). Since p’ € (0, 11, gp(cos @) = (—1)" gy (—cos @)
=1 and sup, g Iq(;, (cosB)| < ¢ < o0, the desired lower estimate in this case follows
by a slight modification of the proofs in Cases 1 and 2.

Putting these cases together, we have completed the proof of Proposition 4.1. [
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