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Strong Convergence of Spherical Harmonic
Expansions on H 1(Sd−1)

Feng Dai

Abstract. Let σ δk denote the Cesàro means of order δ > −1 of the spherical harmonic
expansions on the unit sphere Sd−1, and let Ej ( f, H1) denote the best approximation
of f in the Hardy space H1(Sd−1) by spherical polynomials of degree at most j . It is
known that λ := (d−2)/2 is the critical index for the summability of the Cesàro means
on H1(Sd−1). The main result of this paper states that, for f ∈ H1(Sd−1),

N∑
j=0

1

j + 1
‖σλj ( f )− f ‖H1 ≈

N∑
j=0

1

j + 1
Ej ( f, H1),

where “≈” means that the ratio of both sides lies between two positive constants inde-
pendent of f and N .

1. Introduction

In this Introduction we shall describe the main results and their background with a
“minimum” of definitions. We shall give necessary details and appropriate definitions,
as needed, in the following sections.

Let Sd−1 = {x ∈ Rd : |x | = 1} be the unit sphere in d-dimensional Euclidean space
Rd equipped with the usual Lebesgue measure dσ(x) normalized by

∫
Sd−1 dσ(x) = 1,

and let H p(Sd−1), 0 < p ≤ 1, denote the Hardy spaces on Sd−1. For an integer n ≥ 0,
let Pn denote the space of all spherical polynomials of degree at most n (i.e., the space
of all polynomials in d-variables restricted to Sd−1). By En( f, H p) we denote the best
approximation of f in H p(Sd−1) by spherical polynomials of degree ≤ n:

En( f, H p) := inf{‖ f − g‖H p : g ∈ Pn}.
For any distribution f on Sd−1 we associate its expansion in spherical harmonics:

f ∼
∞∑

k=0

Yk( f ),
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where Yk( f ) is the orthogonal projection of f on the space of spherical harmonics of
degree k. Given δ > −1, the Cesàro means of order δ of f are defined by

σ δN ( f )(x) = 1

AδN

N∑
k=0

AδN−kYk( f )(x), N = 0, 1, 2, . . . ,

where

Aδk =
(

k + δ
k

)
, k = 0, 1, 2, . . . .

The special value λ := (d − 2)/2 is known as the critical index for the summability of
σ δk on H 1(Sd−1). Indeed, it was proved in [7] that, for δ > λ,

sup
k
‖σ δk ‖(H 1,H 1) <∞,

whereas

‖σλk ‖(H 1,L1) ≥ cd log(k + 1).

Throughout this paper, we will keep λ := (d − 2)/2.
The purpose of this paper is to show the strong summability of the Cesàro mean σλk

on H 1(Sd−1). The background for this problem is as follows. In 1983, Smith [11]
proved that, for every f ∈ H 1(T),

1

log N

N∑
k=1

1

k
‖Sk( f )‖H 1(T) ≤ C‖ f ‖H 1(T),

where T = S1 denotes the unit circle and Sk( f ) denotes the usual kth partial sum of
Fourier series. A new proof of this inequality was given by Belinskii [1] in 1996. In the
multidimensional case, this inequality was generalized by the authors in [10] in 1990
for f ∈ H p(Td), 0 < p < 1, and by K. Y. Wang and the current author in a recent
paper [9] for f ∈ H p(Sd), 0 < p < 1, for the summability at the critical index.
However, its multidimensional generalization for the space H 1 seems to be much more
complicated. Indeed, the two-dimensional result for rectangle partial sums with bounded
ratio of sides was obtained in [15], while its multidimensional result for the cubic partial
sums and modified H 1 was obtained by Belinskii in [2].

It was Bochner [3] who first pointed out that when the dimension d > 1, summability at
the “critical index” (d−1)/2 was the correct analogue of the convergence, for phenomena
near L1. (For the unit sphere Sd−1, the dimension is d − 1 and the critical index is
(d − 2)/2.) In this sense, versions of many of the results for Sk are known for σλk on the
multidimensional sphere Sd−1. (See [4], [7] and [14].)

In this paper, we shall prove

Theorem 1. For f ∈ H 1(Sd−1), we have

1

log N

N∑
k=1

‖σλk ( f )‖H 1

k
≤ Cd‖ f ‖H 1 .
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As a consequence, we have

Corollary 2. For f ∈ H 1(Sd−1),

N∑
j=0

1

j + 1
‖σλj ( f )− f ‖H 1 ≈

N∑
j=0

1

j + 1
Ej ( f, H 1),

with the constants of equivalence being independent of f and N .

We remark that in the case d = 2, Corollary 2 for the partial sums of Fourier series
on S1 (= T) is due to Belinskii [1].

It should be pointed out that although we only consider the situation for Sd−1 here our
method works equally well for the Bockner–Riesz means with critical index (d − 1)/2
on Td . (The proof in this case will appear elsewhere.)

The paper is organized as follows. In Section 2, we give some definitions and describe
the atomic characterization of the Hardy spaces. In Section 3, a new characterization of the
Hardy spaces in terms of the maximal Cesàro operators and some of its useful corollaries
are given. After that, in Section 4, we prove the main results, Theorem 1 and Corollary
2. In Section 5, we state some analogous results for the spaces H p(Sd−1), 0 < p < 1.
In Section 6, the final section, the main results are extended for the generalized Riesz
operators.

2. Hardy Spaces H p(Sd−1), 0 < p ≤ 1, on Sd−1

The main purpose in this section is to give some definitions and describe the atomic
characterization of the Hardy spaces H p(Sd−1), 0 < p ≤ 1. Most material below can
be found in [7] and [6].

Let S ≡ S(Sd−1) denote the set of indefinitely differentiable functions on Sd−1 en-
dowed with the usual test function topology and let S ′ ≡ S ′(Sd−1) be the dual of S. S
is called the space of test functions and S ′ the space of distributions. (One may think
of a function on Sd−1 as a function defined on the annulus about Sd−1 by extending the
function to be constant along rays through the origin. This allows us to associate with

γ = (γ1, . . . , γd), Dγ =
(
∂

∂x1

)γ1

· · ·
(
∂

∂xd

)γd

, |γ | = γ1 + · · · + γd ,

a differential operator of order |γ | by differentiating in Rd and restricting to Sd−1. The
topology on S is that induced by the seminorms

Nm(ϕ) =
∑
|γ |=m

‖Dγ ϕ‖∞, m = 0, 1, 2, . . .).

The pairing of f ∈ S ′ and ϕ ∈ S is given by 〈 f, ϕ〉. If f is an integrable function on
Sd−1, we set 〈 f, ϕ〉 = ∫Sd−1 f (u)ϕ(u) dσ(u).

For x ∈ Sd−1 and z ∈ Bd := {(z1, . . . , zd) ∈ Rd : z2
1 + · · · + z2

d ≤ 1}, let

Pz(x) = cd
1− |z|2
|z − x |d .
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Pz belongs to S and is called the Poisson kernel, cd is chosen so that
∫

Sd−1 Pz(x) dσ(x) =
1 for all z ∈ Bd . For f ∈ S ′, we call the function

F(z) = 〈 f, Pz〉, z ∈ Bd ,

the Poisson integral of f .
For a distribution f we define the radial maximal function, P+ f (x),

P+ f (x) = sup
0≤r<1

|〈 f, Pr x 〉|, x ∈ Sd−1.

Definition 2.1 ([6]). The Hardy space H p(Sd−1) is the linear space of distributions f
with ‖P+ f ‖p <∞. We set ‖ f ‖H p = ‖P+ f ‖p.

It is well known that if p > 1, ‖P+ f ‖p is equivalent to ‖ f ‖p. Thus, H p(Sd−1)

coincides with L p(Sd−1) if p > 1. For the remainder of this paper we assume 0 < p ≤ 1.
We now turn to the “atomic” characterization of Hardy spaces. For x ∈ Sd−1 and

r ∈ (0, π), by B(x, r) we denote the spherical cap

B(x, r) := {y ∈ Sd−1 : 0 ≤ arccos xy ≤ r}.
Definition 2.2 ([6]). A regular p-atom, 0 < p ≤ 1, centered at x ∈ Sd−1, is a function
a ∈ L∞(Sd−1) satisfying:

(i) supp a ⊂ B(x, s) for some s > 0;
(ii) ‖a‖∞ ≤ s−(d−1)/p; and

(iii)
∫

Sd−1 a(u)Y (u) dσ(u) = 0, for every spherical harmonic of degree less than or
equal to [(d − 1)(1/p − 1)].

An exceptional atom is a function a ∈ L∞(Sd−1) with ‖a‖∞ ≤ 1.

Theorem A ([6]). Let 0 < p ≤ 1. If {aj }∞j=0 is a sequence of exceptional or regular
p-atoms, and {cj }∞j=0 is a sequence of complex numbers with( ∞∑

j=0

|cj |p
)1/p

<∞,

then
∑∞

j=0 cj aj converges in H p and∥∥∥∥∥
∑

j

cj aj

∥∥∥∥∥
H p

≤ A

(∑
j

|cj |p
)1/p

,

where A > 0, depends on p and d .
Conversely, if f ∈ H p(Sd−1) there exists a sequence {aj } of exceptional or p-atoms,

and a sequence {cj } of complex numbers such that

f =
∑

j

cj aj and

(∑
j

|cj |p
)1/p

≤ B‖ f ‖H p ,

where B depends on p and d .
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The conclusion of Theorem A is often described as the “atomic” characterization of
Hardy spaces.

3. A New Characterization of H p(Sd−1) and its Corollaries

In this section we will give a new characterization of H p(Sd−1), which is in terms of max-
imal Cesàro operators. We will also deduce some corollaries from this characterization,
which will be used in the proof of Theorem 1.

First, we describe some necessary notations. Let {µk} be a sequence of complex
numbers. Given a nonnegative integer �, we define ��µk by

�0µk = µk, �µk = µk − µk+1, �i+1µk = �(�iµk), i = 1, . . . , �− 1,

and define
←
��µk by

←
��µk = (−1)���µk .

Given f ∈ S ′, its maximal Cesàro mean σ δ∗ ( f ) of order δ > −1 is

σ δ∗ ( f ) = sup
k
|σ δk ( f )|.

In this section, we shall prove

Theorem 3. Suppose 0 < p ≤ 1, δ > δ(p) := (d − 1)/p − d/2, and f is a distribu-
tion on Sd−1. Then f ∈ H p(Sd−1) if and only if σ δ∗ ( f ) ∈ L p(Sd−1). Furthermore,

‖ f ‖H p(Sd−1) ≈ ‖σ δ∗ ( f )‖L p(Sd−1),

with the constants of equivalence being independent of f .

It is known that for 0 < p ≤ 1 the special value δ(p) := (d − 1)/p− d/2 of δ in the
above theorem is critical for the uniform summability of σ δk on H p in the sense that

sup
k
‖σ δk ‖(H p,H p) <∞

whenever δ > δ(p), whereas

‖σ δ(p)k ‖(H p,L p) ≥ Cp(log(k + 1))1/p.

See [7].
We shall prove a second result as well.

Theorem 4. For δ > 0, � = [δ]+ 1, and x ∈ Sd−1, we have

σ �+4
∗ (σ δL( f ))(x) ≤ Cδ(σ

�
∗ ( f )(x)+ |σ δL( f )(x)|).(3.1)

Combining these last two theorems, we obtain the following corollary, which will play
an important role in the proof of Theorem 1.
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Corollary 5. For 0 < p ≤ 1, f ∈ H p, and δ = δ(p) := (d − 1)/p − d/2, we have

‖σ δk ( f )‖H p ≤ Cp(‖ f ‖H p + ‖σ δk ( f )‖L p ).

Proof of Theorem 3. First, we assume σ δ∗ ( f ) ∈ L p(Sd−1) and will prove

‖ f ‖H p = ‖P+( f )‖L p ≤ ‖σ δ∗ ( f )‖L p .(3.2)

We note that by our assumption, σ δ∗ ( f )(x) < ∞ for a.e. x ∈ Sd−1, and hence, for
each k ∈ Z+ and a.e. x ∈ Sd−1,

(k + 1)−1−δ|Yk( f )(x)| ≤ Cδσ
δ
∗ ( f )(x) <∞.

The last “≤” holds since

Yk( f )(x) =
←
�[δ]+2

[A[δ]+1
k σ

[δ]+1
k ( f )(x)]

and since

σ [δ]+1
∗ ( f )(x) ≤ σ δ∗ ( f )(x).

Thus, for every r ∈ (0, 1) and a.e. x ∈ Sd−1,

∞∑
k=0

rk |Yk( f )(x)| <∞.

Since

(1− r)−1−δ =
∞∑

k=0

Aδkr k,(3.3)

it follows that, for a.e. x ∈ Sd−1 and every r ∈ (0, 1),

(1− r)−1−δ
∞∑

k=0

rkYk( f )(x) =
( ∞∑

k=0

Aδkr k

)( ∞∑
k=0

rkYk( f )(x)

)

=
∞∑

k=0

Aδkr kσ δk ( f )(x).

So,

Pr ( f )(x) =
∞∑

k=0

rkYk( f )(x) = (1− r)1+δ
∞∑

k=0

Aδkr kσ δk ( f )(x).

This combined with (3.3) yields

P+( f )(x) ≤ σ δ∗ ( f )(x), a.e. x ∈ Sd−1

and hence (3.2).



Strong Convergence of Spherical Harmonic Expansions on H1(Sd−1) 423

The proof of the inverse part of the theorem is essentially contained in [7]. In fact, by
the proof of Lemma 4.2 of [7], it follows that for an H p-atom supported in B(y, r), we
have

σ δ∗ (a)(x) ≤




Cp,δr−(d−1)/p+d/2+δ|x − y|−(d/2+δ), 0 < |x − y| ≤ π/2,
Cp,δr−(d−1)/p+d/2+δ|x + y|−(d/2+δ), 0 < |x + y| ≤ π/2,
Cp,δr−(d−1)/p, x ∈ Sd−1,

which implies

‖σ δ∗ (a)‖p
L p ≤ Cp,δ

(
r−(d−1)

∫
[0,r ]∪[π−r,π ]

sind−2 θ dθ + r−(d−1)+p(d/2+δ)

∫ π−r

r
(sin θ)−p(d/2+δ)+d−2 dθ

)

≤ Cp,δ.

The inverse inequality

‖σ δ∗ ( f )‖L p ≤ Cp,δ‖ f ‖H p

then follows by the atomic decomposition theorem.

Proof of Theorem 4. Let N , L ∈ Z+. We need to estimate σ �+4
N (σ δL( f ))(x). With-

out loss of generality, we may assume N , L ≥ 4�. We consider the following two
cases:

Case 1. 0 ≤ N ≤ L .
In this case, we set

µk =




A�+4
N−k AδL−k

A�+4
N AδL

, if 0 ≤ k ≤ N ,

0, if k ≥ N + 1.

Then, clearly,

σ �+4
N (σ δL( f )) =

N∑
k=0

µkYk( f ),

and straightforward computation shows that, for 0 ≤ k ≤ N ,

|��+1µk | ≤




Cδ

1

N �+1
, if 0 ≤ N ≤ L/2,

Cδ

(L − k + 1)δ+3

Lδ+�+4
, if L/2 ≤ N ≤ L .

So, using Abel’s transform �+ 1 times yields

|σ �+4
N σ δL( f )(x)| ≤ Cδσ

�
∗ ( f )(x).(3.4)
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Case 2. N ≥ L + 1.
In this case, we let

ak =




A�+4
N−k

A�+4
N

− A�+4
N−L

A�+4
N

, if 0 ≤ k ≤ N ,

0, if k ≥ N + 1,

bk =




AδL−k

AδL
, if 0 ≤ k ≤ L ,

0 if k ≥ L + 1.

Then we have

σ �+4
N (σ δL( f ))(x) =

L∑
k=0

akbkYk( f )(x)+ A�+4
N−L

A�+4
N

σ δL( f )(x).(3.5)

For δ > 0, it is easy to verify the following estimates:

|ak | ≤ Cδ

|L − k + 1|
N

,(3.6)

|�i ak | ≤ Cδ

(
1

N

)i

, i = 1, . . . , �+ 1,(3.7)

|�i bk | ≤ Cδ

(L − k + 1)δ−i

(L + 1)δ
, i = 0, 1, . . . , �+ 1.(3.8)

We also note that if δ > 0 is an integer, then

|��bk | = |�1+δbk | =
{

O(1/Lδ), if L − � ≤ k ≤ L ,
0, if 0 ≤ k ≤ L − �− 1,

(3.9)

and

|��+1bk | = |�δ+2bk | =
{

O(1/Lδ), if L − � ≤ k ≤ L ,
0, if 0 ≤ k ≤ L − �− 1.

(3.10)

If δ > 0 is not an integer, then using (3.6)–(3.8), we have, for 0 ≤ k ≤ L ,

|��+1(akbk)| ≤ Cδ

(L − k + 1)δ−[δ]−1

(L + 1)δ+1
;

if δ > 0 is an integer, then using (3.6)–(3.10), we obtain

|��+1(akbk)| ≤
{

CδL−�−1, if 0 ≤ k ≤ L − 2�,
CδL−�, if L − 2� < k ≤ L .

Hence, in either case, we have

L∑
k=0

|��+1(akbk)|k� ≤ Cδ.
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The inequality

|σ �+4
N (σ δL( f ))(x)| ≤ Cδ(σ

�
∗ ( f )(x)+ |σ δL( f )(x)|)(3.11)

then follows from (3.5).
Now a combination of (3.4) and (3.11) gives (3.1) and completes the proof.

Finally, we end this section with the following:

Corollary 6. Let {µk}∞k=0 be a sequence of complex numbers, 0 < p ≤ 1, δ(p) :=
(d − 1)/p − d/2 and � = [δ(p)]+ 1. Suppose the following conditions are satisfied:

(i) supk |µk | ≤ M <∞;
(ii)

∞∑
k=0
|��+1µk |(k + 1)� ≤ M.

Then ∥∥∥∥∥
∞∑

k=0

µkYk( f )

∥∥∥∥∥
H p

≤ C M‖ f ‖H p ,

where C > 0 is independent of M , {µk}, and f .

This corollary is probably well known. However, we would like to give an alternative
proof here using Theorem 3.

Proof. Let

T ( f ) :=
∞∑

k=0

µkYk( f ).

Then by Theorem 3, it suffices to prove

σ �+2
∗ (T f ) ≤ C Mσ �∗ ( f ).(3.12)

Applying Abel’s transform �+ 1 times gives

σ �+2
N (T f ) =

N∑
k=0

��+1

(
A�+2

N−k

A�+2
N

µk

)
A�kσ

�
k ( f )(x),(3.13)

where we define A�+2
j = 0 for j < 0. On the other hand, according to conditions (i) and

(ii), one can easily verify that, for all v = 0, 1, . . . , �,
∞∑

k=0

|�v+1µk |kv ≤ C M.

Thus
N∑

k=0

∣∣∣∣∣��+1

(
A�+2

N−k

A�+2
N

µk

)∣∣∣∣∣A�k ≤ C
�+1∑
v=0

N∑
k=0

∣∣∣∣∣��+1−v
(

A�+2
N−k−v
A�+2

N

�vµk

)∣∣∣∣∣(k + 1)�(3.14)

≤ C M.

Now combining (3.13) with (3.15), we get (3.12) and complete the proof.
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4. Proofs of the Main Results

We begin with the proof of Theorem 1.

Proof of Theorem 1. By Corollary 5, we have

‖σλk ( f )‖H 1 ≤ Cd(‖ f ‖H 1 + ‖σλk ( f )‖L1).

Therefore, it will suffice to prove

1

log N

N∑
k=1

‖σλk ( f )‖L1

k
≤ Cd‖ f ‖H 1 .(4.1)

For the proof of (4.1), we define

Eλ
k ( f )(x) := γk

∫
Sd−1

f (y)P (d−3/2,(d−3)/2)
k (xy) dσ(y),(4.2)

where P (α,β)

k denotes the Jacobi polynomial as defined in [12],

γk = �(d/2)�(k + 1)�(k + d − 1)

(4π)(d−1)/2�

(
k + d

2

)
�

(
k + d − 1

2

) ∼ k1/2.(4.3)

The operator Eλ
k was introduced by Wang [13] in the investigation of the pointwise

convergence of the Cesàro operator σλk . It is known that (see [14, (3.1.10)] or [4, Lemma
2.3])

σλk ( f )(x) = βk Eλ
k ( f )(x)+ T λ

k ( f )(x),

where

βk =
�(k + 3

2 d − 2)�(2k + 3
2 d − 1)

�(k + d − 1)�(2k + 2d − 2)
= O(1),

T λ
k ( f ) : =

∞∑
v=1

b(k, v)σ λ+vk ( f ),

|b(k, v)| ≤ Cdv
−(3/2)d .

So the proof of (4.1) is reduced to the proof of

1

log N

N∑
k=1

‖Eλ
k (a)‖L1

k
≤ Cd ,(4.4)

where a is an H 1-atom supported in B(z, r) with 0 < r < 0.1.
To prove (4.4), we need the following:
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Lemma 4.1. With the same notations as above, we have

N∑
k=1

[∫
0≤xz≤cos 9r

|Eλ
k (a)(x)| dσ(x)

]2

≤ Cdr−1 log2 1

r
,(4.5)

and ∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x) ≤ Cdkr log

1

r
.(4.6)

For the moment, we take this lemma for granted and proceed with the proof.
Since∫

xz≥cos(9r)
|Eλ

k (a)(x)| dσ(x) ≤ Cdr (d−1)/2

(∫
B(z,9r)

|Eλ
k (a)|2 dσ(x)

)1/2

≤ Cdr (d−1)/2‖a‖2 ≤ Cd

and ∫
xz≤0
|Eλ

k (a)(x)| dσ(x) ≤ Cd ,

it suffices to show

1

log N

N∑
k=1

1

k

∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x) ≤ Cd .(4.7)

To prove (4.7), we consider the following two cases:

Case 1. r−1 ≤ N .
In this case, we have, by (4.6),

[r−1]∑
k=1

1

k

∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x) ≤ Cd

[r−1]∑
k=1

r log
1

r
≤ Cd log

1

r
≤ Cd log N ,

and by (4.5),

N∑
k=[r−1]+1

1

k

∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x)

≤ Cdr1/2

(
N∑

k=[r−1]+1

∣∣∣∣
∫

0≤xz≤cos(9r)
|Eλ

k (a)(x)| dσ(x)
∣∣∣∣
2
)1/2

≤ Cd log
1

r
≤ Cd log N .

Case 2. N < r−1.
In this case, we have, by (4.6),

N∑
k=1

1

k

∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x) ≤ Cd

N∑
k=1

r log
1

r
≤ Cd Nr log

1

r
≤ Cd log N .
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The last inequality follows since the function log x/x is decreasing over (e,∞).
So, in both cases, we prove (4.4) and hence (4.1).

Now the proof of Theorem 1 is reduced to the proof of Lemma 4.1. To prove this
lemma, we define, for θ ∈ R, the average operator Sθ by

Sθ ( f )(x) :=
∫
{y∈Sd−1:x ·y=0}

f (x cos θ + y sin θ) dγ (y), x ∈ Sd−1,

with dγ being the Lebesgue measure on {y ∈ Sd−1 : x · y = 0} normalized by

γ {y ∈ Sd−1 : x · y = 0} = 1.

We need the following:

Lemma 4.2. Let a be an H 1-atom supported in B(z, r) for some z ∈ Sd−1 and r ∈
(0, 0.1). Let x ∈ Sd−1 such that 9r ≤ t := arccos xz ≤ π/2. For θ ∈ (0, π), put

gx (θ) = Sθ (a)(x) sind−2 θ.

Then we have:

(i) supp gx (·) ⊂ [t − r, t + r ].
(ii)

∫ π
0 gx (θ) dθ = 0.

(iii) |gx (θ)| ≤ Cdr−1.

Proof. Parts (i) and (ii) are obvious. To prove (iii), we write

�x,θ := {y ∈ Sd−1 : xy = cos θ},

and by dγx,θ we denote the usual Lebesgue measure on�x,θ normalized by γx,θ (�x,θ ) =
sind−2 θ. We first note that, for θ ∈ [t − r, t + r ],

γx,θ (�x,θ ∩ B(z, r)) ≤ Cdrd−2.(4.8)

For the moment, we take this for granted and proceed with the proof. By the definition,
we have

Sθ (a)(x) := 1

sind−2 θ

∫
�x,θ∩B(z,r)

a(y) dγx,θ (y),

which, by (4.8), implies

|gx (θ)| ≤ Cdθ
−(d−2)r−(d−1)rd−2θd−2 ≤ Cdr−1.

So, it remains to prove (4.8). Let u ∈ �x,θ ∩ B(z, r). Suppose u = x cos θ + ξ sin θ,
z = x cos t + ξ1 sin t , with ξ, ξ1 ∈ �x,π/2. Then, for θ ∈ [t − r, t + r ],

|u − z|2 = 4 sin2 t − θ
2
+ 2 sin θ sin(t)(1− ξ1ξ) ≤ 4 sin2 r

2
.
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So,

1− ξξ1 ≤ 4 sin2 r/2

2 sin θ sin t
≤ π

2

4

r2

θ2

and

�x,θ ∩ B(z, r) ⊂
{

x cos θ + ξ sin θ : 1− ξ1ξ ≤ π
2

4

r2

θ2

}
.

Equation (4.8) then follows since

γx,θ

{
x cos θ + ξ sin θ : 1− ξ1ξ ≤ π

2

4

r2

θ2

}
∼ (sind−2 θ)

( r

θ

)d−2
∼ rd−2.

This completes the proof.

Proof of Lemma 4.1. We first prove (4.5). Let

ϕk(θ) = ck P (d−3/2,(d−3)/2)
k (cos θ) sind−1 θ

2
cos(d−2)/2 θ

2
,

where

ck =
(∫ π

0
|P (d−3/2,(d−3)/2)

k (cos θ)|2 sin2d−2 θ

2
cosd−2 θ

2
dθ

)−1/2

=
(
(2k + 3

2 d − 2)�(k + 1)�(k + 3
2 d − 2)

�(k + d − 1
2 )�(k + d−1

2 )

)1/2

.

Then {ϕk}∞k=0 forms a complete orthonormal system over (0, π), and by (4.2) and (4.3),

Eλ
k (a)(x) = βk

∫ π

0

Sθ (a)(x)

sin θ/2
cosλ θ/2ϕk(θ) dθ,(4.9)

where

βk =



(2k + 3

2 d − 2)�(k + 3
2 d − 2)�

(
k + d − 1

2

)
�(k + d − 1

2 )�(k + 1)




1/2

(4π)(d−1)/2�

(
k + d

2

)

�

(
d

2

)
�(k + d − 1)

≤ Cd .

It follows that

N∑
k=1

|Eλ
k (a)(x)|2 ≤ Cd

∫ π

0

|Sθ (a)(x)|2
sin2 θ/2

cos2λ θ

2
dθ ≤ Cdr−1(arccos xz)−2d+2,(4.10)

where the last inequality is a consequence of Lemma 4.2. Using (4.10) and Hölder’s



430 Feng Dai

inequality, we deduce

N∑
k=1

∣∣∣∣
∫

0≤xz≤cos(9r)
|Eλ

k (a)(x)| dσ(x)
∣∣∣∣
2

≤
N∑

k=1

(∫
0≤xz≤cos(9r)

(arccos xz)−(d−1) dσ(x)

)

×
(∫

0≤xz≤cos(9r)
(arccos xz)d−1|Eλ

k (a)(x)|2 dσ(x)

)

≤ Cd log
1

r

∫
0≤xz≤cos(9r)

(
(arccos xz)d−1

N∑
k=1

|Eλ
k (a)(x)|2

)
dσ(x)

≤ Cdr−1 log
1

r

∫ π/2

9r
td−1t−2d+2td−2 dt ≤ Cdr−1

(
log

1

r

)2

,

which gives (4.5).
Finally, we prove (4.6). For simplicity, we write t = arccos xz. Then, by Lemma 4.2,

we have, for 9r ≤ t ≤ π/2,

Eλ
k (a)(x) = O(1)k1/2

∫ t+r

t−r
(Sθ (a)(x) sind−2 θ)P (d−3/2,(d−3)/2)

k (cos θ) dθ

= O(1)k1/2
∫ t+r

t−r
gx (θ)(P

(d−3/2
k , (d − 3)/2)(cos θ)

− P (d−3/2,(d−3)/2)
k (cos(t + r))) dθ,

where gx (θ) = Sθ (a)(x) sind−2 θ .
Since, for 0 < θ ≤ π/2,

∣∣∣∣ d

du
P (d−3/2,(d−3)/2)

k (u)

∣∣∣∣
u=cos θ

∣∣∣∣∣= 1
2 (k+ 3

2 d−2)|P (d−1/2,(d−1)/2)
k−1 (cos θ)|≤Cd(k+1)1/2θ−d ,

it follows by Lemma 4.2(iii) that

|Eλ
k (a)(x)| ≤ Cdkrt−d+1

∫ t+r

t−r
|gx (θ)| dθ ≤ Cdkrt−d+1.

Hence ∫
0≤xz≤cos(9r)

|Eλ
k (a)(x)| dσ(x) ≤ Cdkr

∫ π/2

9r
td−2t−d+1 dt

≤ Cdkr log
1

r
,

which gives (4.6) and completes the proof.

This completes the proof of Theorem 1.
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Now we turn to the proof of Corollary 2. We need two lemmas.
Given r > 0, we define the r th-order derivative f (r), in a distributional sense, by

f (r) ∼
∞∑

k=1

(k(k + d − 2))r/2Yk( f ).

Lemma 4.3 (Bernstein’s Inequality). For 0 < p ≤ 1, r > 0, and every spherical
polynomial TN of degree less than or equal to N ,

‖T (r)
N ‖H p ≤ C Nr‖TN‖H p ,

where C > 0 is independent of N and TN .

Lemma 4.4. Suppose r > 0 and η is a C∞-function on R with the properties that
η(x) = 1 for 0 ≤ |x | ≤ 1 and η(x) = 0 for |x | > 2. For t > 0, define

Vt ( f ) :=
∞∑

k=0

η(tk)Yk( f ).

Then, for f ∈ H p(Sd−1), 0 < p ≤ 1,

sup
t>0
‖Vt ( f )‖H p ≤ C‖ f ‖H p .

Lemma 4.3 can be obtained by standard methods (see the proof of Theorem 3.2 in
[8]), while Lemma 4.4 is a simple consequence of Corollary 6. We omit the details.

Proof of Corollary 2. The lower estimate is obvious. To prove the upper estimate, we
suppose 22m ≤ N < 22m+1

and without loss of generality, we may assume∫
Sd−1 f (x) dσ(x) = 0. Let η and Vt be as defined in Lemma 4.4. For simplicity, we

set

gj = V2−2 j−2 ( f ), j ≥ 2.

Then we have

N∑
j=20

1

j
‖ f − σλj ( f )‖H 1 ≤

m+1∑
j=3

22 j∑
k=22 j−1+1

1

k
‖ f − gj‖H 1

+
m+1∑
j=3

22 j∑
k=22 j−1+1

1

k
‖σλk ( f − gj )‖H 1

+
m+1∑
j=3

22 j∑
k=22 j−1+1

1

k
‖σλk (gj )− gj‖H 1

=: I + J + L .



432 Feng Dai

For the first sum, we have

I ≤ C
m+1∑
j=3

22 j∑
k=22 j−1+1

1

k
E22 j−2 ( f, H 1)

≤ C
m+1∑
j=3

22 j−2∑
k=22 j−3+1

1

k
Ek( f, H 1)

≤ C
N∑

j=1

1

j
Ej ( f, H 1).

For the second sum, using Theorem 1, we have

J ≤ C
m+1∑
j=3

2 j‖ f − gj‖H 1

≤ C
m+1∑
j=3

22 j−2∑
k=22 j−3+1

1

k
E22 j−2 ( f, H 1)

≤ C
N∑

j=1

1

j
Ej ( f, H 1).

To estimate the third sum, we first claim that, for 22 j−1 + 1 ≤ k ≤ 22 j
,

‖σλk (gj )− gj‖H 1 ≤ Ck−1‖g′j‖H 1 .(4.11)

For the moment we take this last inequality for granted and proceed with the proof. Using
Bernstein’s inequality (Lemma 4.3), we deduce that, for 22 j−1 + 1 ≤ k ≤ 22 j

,

k−1‖g′j‖H 1 = k−1‖(V2−2 j−2 ( f ))′‖H 1

≤ Ck−1
2 j−2∑
n=0

2n‖V2−(n−1) ( f )− V2−n ( f )‖H 1

≤ Ck−1
2 j−2∑
n=0

2n E2n−1( f, H 1),

where E2−1( f, H 1) = E0( f, H 1). This combined with (4.11) gives

L ≤ C
m+1∑
j=3

22 j∑
k=22 j−1+1

1

k2

2 j−2∑
n=0

2n E2n−1( f, H 1)

≤ C
2m−1∑
n=0

E2n−1( f, H 1)

≤ C
2m−1∑
n=2

2n−1∑
k=2n−2+1

Ek( f, H 1)

k
+ C E0( f, H 1)

≤ C
N∑

j=0

Ej ( f, H 1)

j + 1
.
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Finally, noticing that, for 0 ≤ j ≤ 20,

‖ f − σλk ( f )‖H 1 ≤ C‖ f ‖H 1 ≤ C ′E0( f, H 1),

we obtain the desired upper estimate.
Now it remains to prove (4.11). To this end, let ξ ∈ C∞(R) such that ξ(x) = 1 for

0 ≤ |x | ≤ 1
2 and ξ(x) = 0 for |x | ≥ 3

4 . Since, for j ≥ 3 and 22 j−1 + 1 ≤ k ≤ 22 j
,

gj = V2−2 j−2 ( f ) ∈ P2·22 j−2 ⊂ P[k/2]

it follows that

lim
u→∞‖σ

λ
u (gj )− gj‖C(Sd−1) = 0,

and hence

σλk (gj )− gj =
∞∑

u=k

(σ λu (gj )− σλu+1(gj ))(4.12)

= −λ
∞∑

u=k

1

(u + 1+ λ)(u + 1)

[ 3
4 k]∑
v=0

Aλu−v
Aλu

(u + 1)v

u − v + 1
ξ
(v

k

)
Yv(gj ).

For simplicity, put

av =

ξ
(
v

k

)
Aλu−v
Aλu

u + 1

u + 1− v
v

(v(v + 2λ))
1
2

, if 1 ≤ v ≤ 3
4 k,

0, if v > 3
4 k.

Then a straightforward computation shows that, for 0 ≤ v ≤ 3
4 k ≤ 3

4 u,

|��av| ≤ C(k−� + (v + 1)−�−1), � = 0, . . . , d + 1,

where �� is as defined in Section 3. So, by Corollary 6, it follows that, for u ≥ k,∥∥∥∥∥
[ 3

4 k]∑
v=0

Aλu−v
Aλu

(u + 1)v

u − v + 1
ξ

(
v

k

)
Yv(gj )

∥∥∥∥∥
H 1

=
∥∥∥∥∥

[ 3
4 k]∑
v=0

avYv(g
′
j )

∥∥∥∥∥
H 1

≤ C‖g′j‖H 1 ,

which combined with (4.12) gives (4.11).
This completes the proof of Corollary 2.

5. Strong Approximation in H p(Sd−1), 0 < p < 1

In this section, we shall state the results for H p(Sd−1), 0 < p < 1. It turns out that the
proofs in this case are much simpler.

Theorem 7. For 0 < p < 1, δ = δ(p) := (d − 1)/p − d/2, and f ∈ H p(Sd−1), we
have

1

log N

N∑
k=1

‖σ δk ( f )‖p
H p

k
≤ C‖ f ‖p

H p .
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Proof. By Corollary 5 and the atomic decomposition theorem, it suffices to prove that,
for a p-atom a,

1

log N

N∑
k=1

‖σ δk (a)‖P
L p

k
≤ Cp.

The proof of this last inequality is contained in [5] and is essentially a consequence of
the following estimates of σ δk (a), which were obtained in the proof of Lemma 4.2 of [7]:

|σ δk (a)(x)| ≤ C min{r−(d−1)/p, (kr)s−(d−1)(1/p−1)(sin θ)−(d−1)/p},
where a is a p-atom supported in a spherical cap B(y, r), θ = arccos xy and s = 0 or
[(d − 1)(1/p − 1)]+ 1.

As a consequence of Theorem 7, we have

Corollary 8. For 0 < p < 1, δ = δ(p) := (d − 1)/p − d/2, and f ∈ H p(Sd−1), we
have

N∑
j=0

1

j + 1
‖σ δj ( f )− f ‖p

H p ≈
N∑

j=0

1

j + 1
E p

j ( f, H p),

with the constants of equivalence being independent of f and N .

The proof of this last corollary is almost identical to that of Corollary 2. We omit the
details.

6. Concluding Remarks

Remark 6.1. Though we prove the results only for Cesàro means in the preceding
sections, the same method works equally well for generalized Riesz means.

For δ > −1 and α > 0, the generalized Riesz mean Rδ,αk is defined by

Rδ,αk ( f )(x) :=
k∑

j=0

(
1−

(
j

k + 1

)α)δ
Yj ( f )(x).

Given r > 0, we define the r th-order K -functional on H p(Sd−1), 0 < p ≤ 1, by

Kr ( f, t)H p := inf{‖ f − g‖H p + tr‖g(r)‖H p : g, g(r) ∈ H p}, t > 0.

We have the following results:

Theorem 9. For α > 0, 0 < p ≤ 1, δ = δ(p) := (d−1)/p−d/2 and f ∈ H p(Sd−1),
we have

1

log N

N∑
k=1

‖Rδ,αk ( f )‖p
H p

k
≤ Cp‖ f ‖p

H p .



Strong Convergence of Spherical Harmonic Expansions on H1(Sd−1) 435

Corollary 10. For α > 0, 0 < p ≤ 1, δ = δ(p) := (d − 1)/p − d/2, and f ∈
H p(Sd−1), we have

N∑
j=0

1

j + 1
‖Rδ,αj ( f )− f ‖p

H p ≈
N∑

j=0

1

j + 1
E p

j ( f, H p).

Corollary 11. For α > 0, 0 < p ≤ 1, δ = δ(p) := (d − 1)/p − d/2, and f ∈
H p(Sd−1), we have

1

log N

N∑
k=1

‖Rδ,αk ( f )− f ‖p
H p

k
≤ C K p

1

(
f,

(
1

log N

)1/p)
H p

.

We point out that this last corollary is a simple consequence of Corollary 10 and some
standard realization results on K-functionals (see [9]).

Remark 6.2. Let X be a compact rank one symmetric space (besides the sphere Sd ,
these spaces are: the real projective space Pd(R); the complex projective space Pd(C);
the quaternionic projective space Pd(H); and the Cayley projective plane P16(Cayley)).
To each distribution f on X we can associate a spherical harmonic expansion

∑∞
k=0 fk ,

i.e., the expansion of f in the series of eigenvectors of the Laplace–Beltrami operator
of X . If x ∈ X and 0 ≤ r < 1, the Poisson integral of f is defined by

fr (x) =
∞∑

k=0

rk fk(x).

Let

P+ f (x) := sup
0≤r<1

| fr (x)|.

The Hardy space H p(X), 0 < p ≤ 1, is then defined by the condition

‖ f ‖H p =
(∫

X
|P+ f (x)|p dx

)1/p

<∞.

Everything has been proved in the preceding sections for the Hardy spaces on Sd

can be extended to these Hardy spaces. Most of the proofs go through with hardly any
change.
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