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Cointegration
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Cointegration

» A process is said to be stationary if the unconditional
distribution is constant (in time). For example,

» Random walk
Yt =ye-1+ee, with & ~ N(0,0%)

is non-stationary

» Auto-regressive of order 1: AR(1)
yi=a+ byt 1+er, with b<1, and &; ~N(O,U2)

is stationary
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Cointegration

> A time-series is said to be integrated of order d (i.e., /(d))
if the d-times difference is stationary. For example,

» Random walk
Ye = Ye—1+ ¢, with g, ~ N(0, sigma®)

is 1(1), since
Dyr =yt — yr-1=¢t
has a stationary distribution

> AR(1) is 1(0)

» Most Economic models are /(0) or /(1)
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Cointegration

» It is often the case that two (or more) time-series appear to
be non-stationary, but a linear combination is stationary

» If y, is a vector-valued process that is /(d) and there exists a
vector b such that b'y, is I(d*) with d* < d, then y, is said
to be cointegrated and b is the cointegrating vector.

» Most of the time d =1 and d* =0
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Cointegration
» For example, two price processes x and y are given by
x¢ = (X0 — %50) +o W + %5t7
ye= (- %50) +o W — %5t7

where
dEt = R(Q—et)dt—l—ndBt,

and W and B are correlated Brownian motions.
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Cointegration

» How to estimate from data? First need a model...
> A pair of prices S = (S}, S2)¢>0 satisfies the continuous
analog of a Vector Auto-Regressive (VAR(1)) model

where
» K is a positive semi-definite 2 x 2 matrix,

» O is a2 x 1 vector,

» o is a 2 X 2 matrix, equal to the Cholesky decomposition of
¥ and

» W is a 2 x 1 independent Brownian motion.
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Cointegration

» Diagonalize k, so that k = U & U~! where U is the matrix
of eigenvectors of k, and & is a diagonal matrix.

» Then, §; = U™'S; will satisfy decoupled SDEs

dS:1 = Re1(01 — Se1) dt + (6 dW,),
dgt,Z - i’/:"t,Z(é2 - §t72) dt + (5’ th)2

> these are the cointegrating factors
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Cointegration

» With this model, we can estimate from data by regressing

Then,
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Cointegration

» Using INTC and SMH prices at 1-minute intervals

1.01
1.005
w0
S
= 1
~
0.995
0.99
0 100 200 300 400
Time
-61.4 0.7
— -
i) ﬂ A = 0.024599 2 X = 0.093935
S 616 Iy g 06
= My =
Yy =
E 618§ | W \‘ gos "
E 62 i) It m J‘Tﬁ ) B oal I m} VY
v __ . ny \ /
& MY f ‘?N KVUBAS g \LHN"“LW*"@W‘M’M"*'
= \ | Voo E L Y-
26221 | || T 03 g
Q | =3
- 62.4 : ~ 0.2
"o 100 200 300 400 "o 100 200 300 400
Time Time

(c) S. Jaimungal, 2016 Algo Trading July, 2016 10 / 25



Pairs Trading
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Naive Pairs Trading

» Pairs trading assumes that two assets are cointegrated and
often are behave as a vector autoregressive (VAR) model

Ast:A+BSt_1+€t,

€; are iid bivariate normal with mean zero.

» |t can be seen as a discrete version of the continuous time
model
dSt = H(O — St) dt+0’th,

» To estimate the model, regress the vector of price changes on
the price at the interval start.

> The eigenvector with the largest eigenvalue represents the
cointegration factor that you trade on:

Ge=aSP 4+ 85P and dC = k(O — Cr) dt + o AW .
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Naive Pairs Trading
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Figure: INTC and SMH on November 1, 2013: (left) midprice relative to
mean midprice; (right) co-integration factor. The x-axis is time in terms
of fractions of the trading day. The dashed line indicates the
mean-reverting level; the dash-dotted lines indicate the 2 standard
deviation bands.
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Naive Pairs Trading
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Naive Pairs Trading
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Figure: P&L histograms from 10,000 scenarios using the naive strategy
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Pairs Trading: Optimal Band Selection

> It is possible to formulate an optimal band selection problem

» Consider the performance criteria for exiting a long/short
position...

HO(t ) = Ee . [e,p(H) (er — c)] ,

HT(t,e) = Ee. [e_p(T_t) (—er — C):| ,

» and consider the performance criteria for entering a
long/short position...

G(T)(tvg) = Et,f |: e_p(T+_t) (H+(T+7 6"’+) — &y — C) ]lmi"(7'+v‘r—):7'+

+ eip(T_it) (H_(T_,Eq—_) +er_ — C) ﬂmin(ﬂur,Tf):T,] .
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Pairs Trading: Optimal Band Selection

» Variational inequality (VI) for optimal exiting

> a long position
max{(L — p) Hi(e) ; (e —¢c) = Hi(e)} =0
> short position
max {(£ — p)H-(¢) ; (< — c) — H_(e)} = 0.
» VI for optimal entry is
max{ (L —p)G(e) ;
(Ho(e) — e — ¢) — G(t, &)
(H_(e) +¢—c) — G(t,s)} ~0.
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Pairs Trading: Optimal Band Selection

» Two fundamental solutions to (£ — p)F =0 are
Fi(e) = / yETlgmV SR O3 du,
0

i L_1 + 243 (0—e)u—13 u?
F_(e) = ur e Vo 2% du.
0
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Pairs Trading: Optimal Band Selection

» H, and H; admit the solution
Hi(e) = AFi(e) Tecer + (e — ) Lesex
H,(e) =A F,(s) ]la>5j — (6 + C) ﬂggai R
» G admits the solution

G(e) = (AF(e) + BF () Tec(ens )
+ (He(e) —e—¢) Lece, + (H-(e) +2—¢) Lexe. .
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Pairs Trading: Optimal Band Selection

2.2

1.

oe]

16

1.4

(c) S. Jaimungal, 2016

Figure: The optimal entry trigger
level and corresponding value
function for the double entry-exit
problem.
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Pairs Trading: Multiple Assets

» Both of the previous approaches hardwire the portfolio... what
about dynamically changing the positions?

> A model with short-term alpha in log prices

dyk = vk <6kat dt+> ow dW{) ,

i=1
where ay = ag+ Y11 aj log Y{.

> Interestingly, this model can be shown to be a cointegration
model of log-prices

> We pose the trading problem as a portfolio optimization one
and seek to maximize the performance criteria

Hﬂ(tvxay) = Et,xvy [_ exp(—’y X;'r)] ;
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Pairs Trading: Multiple Assets

» The value function, after using the feedback control, solves
the non-linear PDE

LHQUI'LH

OH + a8 DyH + 3D H - = =0.

» Value function admits the ansatz

H(t,x,y) = —exp {—’y (X—I— h (t, aop + E,Ll a; Iogyi))}

and
Oh — %Tr(A Q) d,h+ %(a’Qa) Onah + AL a®=0,
with the feedback control
Tt = % (Q716)a —ad.h.
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Pairs Trading: Multiple Assets

» The function h can be solved exactly and leads to
— Qs T 2
h(t, Oé) = E;a |:7 " O d5:| s

the measure P* is the one which renders Y; P*-martingales

» Can also show that the relationship
sup E¢xy [— exp (=7 XT)]
weA
= —exp (—yx - %5'(25 Ef vy UtTag dsD

holds.
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Pairs Trading: Multiple Assets
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Pairs Trading: Multiple Assets
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Figure: Histogram of the P&L of the optimal pairs trading strategy.
Sharpe Ratio
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