Algorithmic Trading: Statistical Arbitrage PIMS Summer School

Sebastian Jaimungal, U. Toronto **Álvaro Cartea**, U. Oxford many thanks to

José Penalva,(U. Carlos III) Luhui Gan (U. Toronto) Ryan Donnelly (Swiss Finance Institute, EPFL) Damir Kinzebulatov (U. Laval) Jason Ricci (Morgan Stanley)

July, 2016

2 / 25

- ► A process is said to be **stationary** if the **unconditional** distribution is constant (in time). For example,
 - Random walk

$$y_t = y_{t-1} + \varepsilon_t$$
, with $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$

is non-stationary

Auto-regressive of order 1: AR(1)

$$y_t = a + b y_{t-1} + \varepsilon_t$$
, with $b < 1$, and $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$

is **stationary**

- \blacktriangleright A time-series is said to be integrated of order d (i.e., I(d)) if the *d*-times difference is stationary. For example,
 - Random walk

$$y_t = y_{t-1} + \varepsilon_t$$
, with $\varepsilon_t \sim \mathcal{N}(0, sigma^2)$

is I(1), since

$$\mathcal{D}y_t := y_t - y_{t-1} = \varepsilon_t$$

has a stationary distribution

- ► AR(1) is I(0)
- ▶ Most Economic models are I(0) or I(1)

(c) S. Jaimungal, 2016

- ▶ It is often the case that two (or more) time-series appear to be non-stationary, but a linear combination is stationary
- If y_t is a vector-valued process that is I(d) and there exists a vector b such that b'y_t is I(d*) with d* < d, then y_t is said to be cointegrated and b is the cointegrating vector.
- ▶ Most of the time d = 1 and $d^* = 0$

July, 2016

5 / 25

(c) S. Jaimungal, 2016 Algo Trading

For example, two price processes x and y are given by

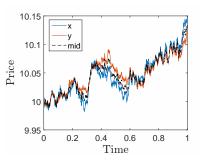
$$x_t = (x_0 - \frac{1}{2}\varepsilon_0) + \sigma W_t + \frac{1}{2}\varepsilon_t,$$

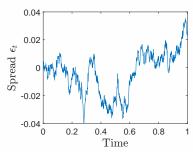
$$y_t = (y_0 - \frac{1}{2}\varepsilon_0) + \sigma W_t - \frac{1}{2}\varepsilon_t,$$

where

$$d\varepsilon_t = \kappa \left(\theta - \varepsilon_t\right) dt + \eta dB_t,$$

and W and B are correlated Brownian motions.





- How to estimate from data? First need a model...
- A pair of prices $\mathbf{S} = (S_t^1, S_t^2)_{t \ge 0}$ satisfies the continuous analog of a Vector Auto-Regressive (VAR(1)) model

$$d\mathbf{S}_t = \kappa(\mathbf{\theta} - \mathbf{S}_t) dt + \boldsymbol{\sigma} d\mathbf{W}_t$$

where

- \triangleright κ is a positive semi-definite 2 \times 2 matrix,
- \bullet is a 2 × 1 vector.
- \triangleright σ is a 2 \times 2 matrix, equal to the **Cholesky decomposition** of Σ , and
- **W** is a 2×1 independent Brownian motion.

4□ > 4個 > 4 = > 4 = > = 900

- **Diagonalize** κ , so that $\kappa = \boldsymbol{U} \tilde{\kappa} \boldsymbol{U}^{-1}$ where \boldsymbol{U} is the matrix of eigenvectors of κ , and $\tilde{\kappa}$ is a diagonal matrix.
- ▶ Then. $\tilde{\mathbf{S}}_t = \mathbf{U}^{-1}\mathbf{S}_t$ will satisfy decoupled SDEs

$$d\tilde{\mathbf{S}}_{t,1} = \tilde{\kappa}_{t,1}(\tilde{\boldsymbol{\theta}}_1 - \tilde{\mathbf{S}}_{t,1}) dt + (\tilde{\sigma} d\mathbf{W}_t)_1$$

$$d\tilde{\mathbf{S}}_{t,2} = \tilde{\kappa}_{t,2}(\tilde{\boldsymbol{\theta}}_2 - \tilde{\mathbf{S}}_{t,2}) dt + (\tilde{\sigma} d\mathbf{W}_t)_2$$

these are the cointegrating factors

(c) S. Jaimungal, 2016

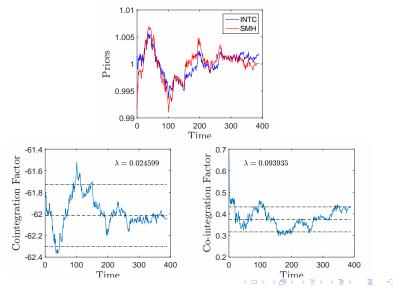
With this model, we can estimate from data by regressing

$$\mathbf{S}_{n+1} = \mathbf{A} + \mathbf{B} \, \mathbf{S}_n + \boldsymbol{\varepsilon}_n$$

Then,

$$\widehat{\kappa} = \frac{1}{\Delta t} (\mathbb{I} - \widehat{\mathbf{B}}),$$
 $\widehat{\boldsymbol{\theta}} = (\mathbb{I} - \widehat{\mathbf{B}})^{-1} \widehat{\mathbf{A}}$

Using INTC and SMH prices at 1-minute intervals



Pairs Trading

► Pairs trading assumes that two assets are cointegrated and often are behave as a vector autoregressive (VAR) model

$$\Delta \boldsymbol{S}_t = \boldsymbol{A} + \boldsymbol{B} \, \boldsymbol{S}_{t-1} + \boldsymbol{\varepsilon}_t \,,$$

 ε_t are iid bivariate normal with mean zero.

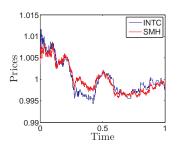
It can be seen as a discrete version of the continuous time model

$$d\boldsymbol{S}_{t} = \kappa \left(\boldsymbol{\theta} - \boldsymbol{S}_{t} \right) dt + \sigma d \boldsymbol{W}_{t},$$

- To estimate the model, regress the vector of price changes on the price at the interval start.
- ► The eigenvector with the largest eigenvalue represents the cointegration factor that you trade on:

$$\zeta_t = \alpha S_t^{(1)} + \beta S_t^{(2)}$$
 and $d\zeta_t = \kappa_\zeta(\theta_\zeta - \zeta_t) dt + \sigma_\zeta dW_t^\zeta$.

(c) S. Jaimungal, 2016 Algo Trading July, 2016 12 / 25



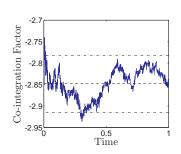


Figure: INTC and SMH on November 1, 2013: (left) midprice relative to mean midprice; (right) co-integration factor. The *x*-axis is time in terms of fractions of the trading day. The dashed line indicates the mean-reverting level; the dash-dotted lines indicate the 2 standard deviation bands.

13 / 25

(c) S. Jaimungal, 2016 Algo Trading July, 2016

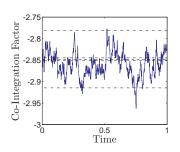
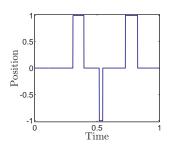
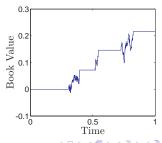


Figure: Traders often use ad hoc bands to decide when to enter and exit a long/short position in the cointegration factor... A sample path of the co-integration factor, the trading position, and the book value of the trade, using the two standard deviation banded strategy.





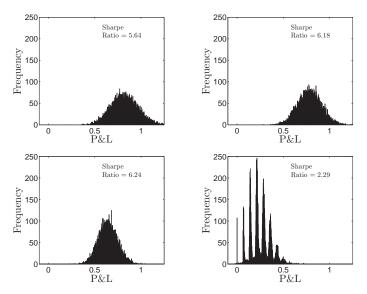


Figure: P&L histograms from 10,000 scenarios using the naive strategy with warious trigger bands.

July, 2016

- ▶ It is possible to formulate an optimal band selection problem
- Consider the performance criteria for exiting a long/short position...

$$egin{aligned} H_{+}^{(au)}(t,arepsilon) &= \mathbb{E}_{t,arepsilon} \left[\mathrm{e}^{-
ho(au-t)} \left(arepsilon_{ au} - c
ight)
ight] \,, \ H_{-}^{(au)}(t,arepsilon) &= \mathbb{E}_{t,arepsilon} \left[\mathrm{e}^{-
ho(au-t)} \left(-arepsilon_{ au} - c
ight)
ight] \,, \end{aligned}$$

▶ and consider the performance criteria for entering a long/short position...

$$\begin{split} G^{(\tau)}(t,\varepsilon) &= \mathbb{E}_{t,\varepsilon} \left[-e^{-\rho(\tau_+ - t)} \left(H_+(\tau_+,\varepsilon_{\tau_+}) - \varepsilon_{\tau_+} - c \right) \, \mathbb{1}_{\min(\tau_+,\tau_-) = \tau_+} \right. \\ &+ \left. + e^{-\rho(\tau_- - t)} \left(H_-(\tau_-,\varepsilon_{\tau_-}) + \varepsilon_{\tau_-} - c \right) \, \mathbb{1}_{\min(\tau_+,\tau_-) = \tau_-} \right] \, . \end{split}$$

4□ > 4個 > 4 = > 4 = > = 900

- Variational inequality (VI) for optimal exiting
 - ► a long position

$$\max \{(\mathcal{L} - \rho) H_{+}(\varepsilon) ; (\varepsilon - c) - H_{+}(\varepsilon)\} = 0$$

short position

$$\max \{(\mathcal{L} - \rho)H_{-}(\varepsilon) ; (-\varepsilon - c) - H_{-}(\varepsilon)\} = 0.$$

VI for optimal entry is

$$\max \Big\{ \left(\mathcal{L} - \rho \right) G(\varepsilon) ; \ \left(H_{+}(\varepsilon) - \varepsilon - c \right) - G(t, \varepsilon) \ \left(H_{-}(\varepsilon) + \varepsilon - c \right) - G(t, \varepsilon) \Big\} = 0 .$$

▶ Two fundamental solutions to $(\mathcal{L} - \rho)F = 0$ are

$$\begin{split} F_+(\varepsilon) &= \int_0^\infty u^{\frac{\rho}{\kappa}-1} \, \mathrm{e}^{-\sqrt{\frac{2\kappa}{\sigma^2}} \, (\theta-\varepsilon) \, u - \frac{1}{2} \, u^2} \, du \,, \\ F_-(\varepsilon) &= \int_0^\infty u^{\frac{\rho}{\kappa}-1} \, \mathrm{e}^{+\sqrt{\frac{2\kappa}{\sigma^2}} \, (\theta-\varepsilon) \, u - \frac{1}{2} \, u^2} \, du \,. \end{split}$$

 \blacktriangleright H_{+} and H_{1} admit the solution

$$H_{+}(\varepsilon) = A F_{+}(\varepsilon) \, \mathbb{1}_{\varepsilon < \varepsilon^{*}} + (\varepsilon - c) \, \mathbb{1}_{\varepsilon \ge \varepsilon^{*}} ,$$

$$H_{-}(\varepsilon) = A F_{-}(\varepsilon) \, \mathbb{1}_{\varepsilon > \varepsilon^{*}} - (\varepsilon + c) \, \mathbb{1}_{\varepsilon \le \varepsilon^{*}} ,$$

G admits the solution

$$G(\varepsilon) = (A F_{+}(\varepsilon) + B F_{-}(\varepsilon)) \mathbb{1}_{\varepsilon \in (\varepsilon_{*+}, \varepsilon_{*-})}$$

$$+ (H_{+}(\varepsilon) - \varepsilon - c) \mathbb{1}_{\varepsilon \leq \varepsilon_{*+}} + (H_{-}(\varepsilon) + \varepsilon - c) \mathbb{1}_{\varepsilon \geq \varepsilon_{*-}}.$$

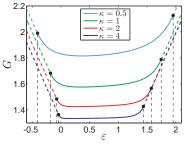
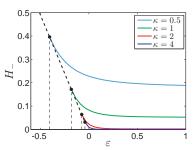
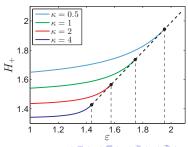


Figure: The optimal entry trigger level and corresponding value function for the double entry-exit problem.





- ▶ Both of the previous approaches hardwire the portfolio... what about dynamically changing the positions?
- ► A model with **short-term alpha** in log prices

$$dY_t^k = Y_t^k \left(\delta_k \alpha_t dt + \sum_{i=1}^n \sigma_{ki} dW_t^i \right),$$

where
$$\alpha_t = a_0 + \sum_{i=1}^n a_i \log Y_t^i$$
.

- Interestingly, this model can be shown to be a cointegration model of log-prices
- We pose the trading problem as a portfolio optimization one and seek to maximize the performance criteria

$$H^{\pi}(t, x, \mathbf{y}) = \mathbb{E}_{t, x, \mathbf{y}} \left[-\exp\left(-\gamma X_T^{\pi}\right) \right],$$

► The value function, after using the feedback control, solves the non-linear PDE

$$\partial_t H + \alpha \, \delta' \mathcal{D}_y H + \frac{1}{2} \mathcal{D}_{yy}^{\Omega} H - \frac{\mathcal{L}' H \, \Omega^{-1} \mathcal{L} H}{2 \, \partial_{xx} H} = 0.$$

Value function admits the ansatz

$$H(t, x, \mathbf{y}) = -\exp\left\{-\gamma\left(x + h\left(t, a_0 + \sum_{i=1}^{n} a_i \log y^i\right)\right)\right\}$$

and

$$\partial_t h - \frac{1}{2} \text{Tr}(\mathbf{A} \Omega) \, \partial_{\alpha} h + \frac{1}{2} (\mathbf{a}' \Omega \mathbf{a}) \, \partial_{\alpha \alpha} h + \frac{\delta' \Omega \delta}{2 \gamma} \, \alpha^2 = 0 \,,$$

with the feedback control

$$oldsymbol{\pi}^* = rac{1}{\gamma} \left(oldsymbol{\Omega}^{-1} oldsymbol{\delta}
ight) lpha - oldsymbol{a} \, \partial_lpha oldsymbol{h} \, .$$

▶ The function h can be solved exactly and leads to

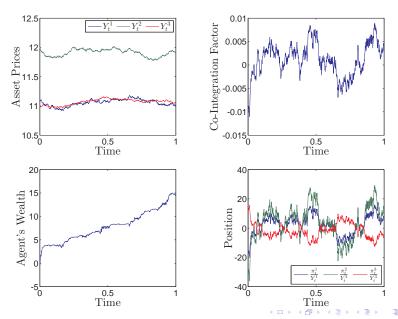
$$\textit{h}(\textit{t},\alpha) = \mathbb{E}^*_{\textit{t},\alpha} \left[\frac{\delta' \Omega \delta}{2\gamma} \int_{\textit{t}}^{\textit{T}} \alpha_{\textit{s}}^2 \, \textit{ds} \right] \,,$$

the measure \mathbb{P}^* is the one which renders Y_t \mathbb{P}^* -martingales

Can also show that the relationship

$$\begin{aligned} \sup_{\boldsymbol{\pi} \in \mathcal{A}} \mathbb{E}_{t, \mathbf{x}, \mathbf{y}} \left[-\exp\left(-\gamma X_T^{\boldsymbol{\pi}}\right) \right] \\ &= -\exp\left(-\gamma x - \frac{1}{2} \, \boldsymbol{\delta}' \, \boldsymbol{\Omega} \, \boldsymbol{\delta} \, \, \mathbb{E}_{t, \mathbf{x}, \mathbf{y}}^* \left[\int_t^T \alpha_s^2 \, ds \right] \right) \end{aligned}$$

holds.



24 / 25

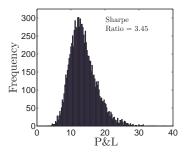


Figure: Histogram of the P&L of the optimal pairs trading strategy. Sharpe Ratio $\,$

25 / 25

(c) S. Jaimungal, 2016 Algo Trading July, 2016