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Abstract

This paper specializes a number of earlier contributions to the theory of valuation of finan-
cial products in presence of credit risk, repurchase agreements and funding costs. Earlier works,
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tions (BSDEs) or semi-linear Partial Differential Equations (PDEs), which in practice translate
to ad-hoc numerical methods that are time-consuming and which render the full valuation and
risk analysis difficult. We specialize here the valuation framework to benchmark derivatives
and we show that, under a number of simplifying assumptions, the valuation paradigm can be
recast as a Black-Scholes model with dividends. In turn, this allows for a detailed valuation
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1 Introduction

The goal of this work is to show that alternative approaches to valuation in the presence of credit risk,
re-purchase agreements and funding costs lead, under a few simplifying assumptions, to the same
explicit formula, namely, the Black-Scholes pricing formula for vulnerable options on dividend-paying
assets. This allows us to provide a closed-form solution for the benchmark product, the vulnerable
call option. Section 2 investigates the replication of a defaultable bond using CDS contracts written
on the same name as the bond, with special emphasis on the assumptions required for the default
time. In Section 3, the replication approach is used to derive the PDE satisfied by the pre-default
pricing function. We show that this PDE is equivalent to that obtained in [2] using the martingale
measure approach. The solution to this PDE is then expressed as the Black and Scholes price when
the underlying stock pays dividends, but with appropriately chosen parameters reflecting funding
costs. In Section 4, the adjusted cash flow approach of [10] is used to obtain the price of the same
option via an expected value of adjusted discounted cash flows, and show that it leads to exactly
the same formula in terms of the Black-Scholes formula with dividends as in the replication/PDE
approach of Section 3. The appeal of the Black-Scholes formula with dividends is its tractability,
enabling the sensitivity analysis of the price in terms of funding and repo rates and credit spread,
as outlined in Section 5.

2 Replication of a defaultable bond using CDS contracts

In this preliminary section, we discuss the issue of valuation of a defaultable bond in the simple model
with funding account and traded CDSs. Special emphasis is put on the mathematical assumptions
underpinning commonly used replication arguments, assumptions that are frequently neglected in
the existing literature.

2.1 Dynamics of the defaultable bond price

Assume that we want to replicate a zero-recovery defaultable bond in a financial market with an
unsecured funding account with rate ft dubbed the treasury rate and a market CDS, which is traded
at null price, on the company that issued the bond. The premium leg the CDS is assumed to pay a
constant, continuous in time market spread rCDS and the protection leg pays one at the default of
the bond and nothing otherwise. Recall that the market spread is computed by equating the value
of the protection leg with the value of the premium leg. As we shall show in Section 2.2, the present
postulates regarding the market spread may only hold under specific assumptions on the probability
distribution of the default time under the real-world probability.

The price process B of the zero-recovery defaultable bond maturing at T is given in terms of the
point process J , which jumps to one when default occurs and stays zero otherwise. Specifically, we
have

Bt = 1{Jt=0}B̃t = 1{τ>t}B̃t

where the yet unspecified process B̃ represents the pre-default price of the bond.

We will now provide intuitive replication arguments leading to the dynamics of the bond price;
a more formal derivation is postponed to the next subsection. We assume here that there has been
no default yet, but it may happen with a positive probability between the dates t and t + dt for
an arbitrarily small time increment dt. To show how to replicate a long position in the defaultable
bond, let us consider the transactions an investor enters into at time t < τ ∧ T :

1. borrow B̃t from the treasury and use it to buy one defaultable bond;

2. buy a number B̃t of CDS contracts on the same name.
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We have established a long position in the defaultable bond, and everything else forms the reverse
of the replicating portfolio. Hence, formally, the replicating portfolio consists of the short position
in the CDS and the long position in the treasury.

We now look at investor’s portfolio at time t+ dt:

3. if there is a default (Jt+dt = 1) each of the B̃t CDS contracts pays 1;

4. if there is no default (Jt+dt = 0), he sells the bond for B̃t+dt;

5. either way, he pays the premium leg rCDSdt for each of the B̃t CDS contracts and pays back
the loan to treasury, which amounts to B̃t(1 + ft dt).

The overall gain over the time interval (t, t+ dt) is

B̃t1{Jt+dt=1} + B̃t+dt1{Jt+dt=0} − B̃trCDSdt− B̃t(1 + ft dt).

Equating this to zero to ensure replication and using the fact that the first indicator above is just
dJt and that we assumed Jt = 0 (no default at time t), we obtain the dynamics for B

dBt −Bt(rCDS + ft) dt+Bt dJt = 0, (2.1)

and thus, since BT = 1{τ>T}, we have for all t ∈ [0, T ]

Bt = 1{τ>t}e
−

∫ T
t

(rCDS+fu) du (2.2)

These dynamics were derived already in [9, Eq.(2.4)] using different arguments. They are also similar
to those postulated a priori in [8]

dPB
PB

= rB(t) dt− dJt.

Note, however, that our rate is the CDS spread over the treasury rate, while in [8] it is the risk-
neutral default intensity over the risk-free rate rB = λB + r. This minor discrepancy is due to the
fact that we derived the bond dynamics via replication using the market CDS, whereas in [8] it
is assumed that the defaultable bond can be borrowed close to the “risk-free” rate using a repo.
Moreover, the spread λB equals the risk-neutral default intensity under zero recovery convention.

2.2 Assumptions underpinning replication arguments

The above computations did not require the exact knowledge of a specific distribution of a random
time modelling the default event. Nevertheless, certain conditions need in fact to be imposed on the
default time for the replication argument to be valid. To explain why additional assumptions are
needed, let us denote the CDS price process by S(κ) with κ = rCDS and let the treasury rate be a
constant f > 0.

Proposition 2.1 The above replication of the defaultable bond holds whenever the probability dis-
tribution of τ is continuous and its support includes [0, T ].

Proof. According to our assumptions, the process Bf satisfies Bft = eft and the CDS price process
jumps from zero to one at default and afterwards grows at the treasury rate

S(κ) = 1{t≥τ}e
f(t−τ). (2.3)

An essential assumption in this step is that the fair spread is constant. Since we should ensure that
the model with two assets, Bf and S(κ), is arbitrage-free, we postulate that there exists a probability
measure Q, equivalent to the real-world probability and such that St(κ) is computed using the risk-
neutral valuation under Q. Standard computations show that, for a fixed spread κ, the equality
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St(κ) = 0 may hold before default if and only if the intensity of default under Q is constant on [0, T ]
(see, for instance, Section 2.4.2 in [3] or equation (2.7)). Consequently, the probability distribution
of default time under the real-world probability is continuous with a positive density on [0, T ], so
that this interval is included in the support of distribution of τ .

In the second step, we will show that the postulate that the interval [0, T ] is included in the
support of the real-world probability distribution of τ is also required for the replication argument
to be strict. To this end, let us consider a self-financing trading strategy ϕ = (ϕ1, ϕ2) in assets
S(κ) and Bf , which is stopped at time τ ∧ T and replicates the defaultable bond, meaning that
Vτ∧T (ϕ) = Bτ∧T = 1{τ>T}. A strategy ϕ = (ϕ1, ϕ2) is self-financing if its value

Vt(ϕ) := ϕ1
tSt(κ) + ϕ2

tB
f
t (2.4)

satisfies

dVt(ϕ) = ϕ1
t

(
dSt(κ)− κ d(t ∧ τ)

)
+ ϕ2

t dB
f
t

since the CDS pays negative dividends at the constant rate rCDS = κ up to time τ . For the
pre-default value of ϕ, denoted as Ṽ (ϕ), from (2.3) and (2.4), we obtain Ṽt(ϕ) = ϕ2

tB
f
t . Therefore,

dVt(ϕ) = −κϕ1
t dt+ ϕ2

t dB
f
t = −κϕ1

t dt+ fṼt(ϕ) dt. (2.5)

It is worth noting that our computations so far do not depend on the contingent claim we aim to
replicate.

In the last step, we specialize our trading strategy to zero-recovery bond by postulating that
Vτ (ϕ) = 0,P-a.s. This entails the jump of V (ϕ) at τ satisfies

∆τV (ϕ) = Vτ (ϕ)− Vτ−(ϕ) = −Vτ−(ϕ) = −Ṽτ−(ϕ) = ϕ1
τ∆τS(κ) = ϕ1

τ ,

which in turn leads to the following condition (which formally holds a.e. with respect to the Lebesgue
measure)

ϕ1
t = −Ṽt−(ϕ), ∀t ∈ [0, T ]. (2.6)

Then the property that condition (2.6) holds a.e. is equivalent to the equality ϕ1
τ = −Ṽτ (ϕ),

provided that the distribution of τ under P is continuous and [0, T ] is included in its support. Then
the replicating strategy is independent of a particular distribution of τ satisfying these conditions.
In other words, the exact knowledge of this distribution is immaterial for the problem at hand.

Let us stress that equality (2.6) should not be postulated a priori when allowing for more general
distributions of default time. For instance, when P(τ ∈ (t1, t2)) = 0, then we should set ϕ1

t = 0 for
all t ∈ (t1, t2) (see also the analysis in [11] for the discontinuous case).

We are now in a position to derive explicitly the replicating strategy. By combining (2.5) with
(2.6), we obtain

dṼt(ϕ) = (κ+ f)Ṽt(ϕ) dt

with the terminal condition ṼT (ϕ) = 1. We recover (2.1)

Ṽt(ϕ) = e−(κ+f)(T−t) = B̃t

and so

Bt = 1{τ>t} e
−(κ+f)(T−t) = 1{τ>t} e

−(rCDS+f)(T−t).

We have thus shown that the strategy

ϕ1
t = −e−(κ+f)(T−t), ϕ2

t = (Bft )−1e−(κ+f)(T−t)

is self-financing and replicates the defaultable bond B on [0, τ ∧ T ]. �
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2.3 No-arbitrage and the martingale method

An arbitrage-free pricing model for the CDS and the defaultable bond can also be constructed using
directly the so-called martingale mathod. In this modeling approach, one may take any probability
measure Q equivalent to P as a postulated martingale measure. To identify a martingale measure
in our set-up, we require that Q should be consistent with the postulated properties of the CDS: the
spread equals κ(t, T ) > 0 and the CDS pays one unit of cash at the moment of default, provided
that the default event occurs prior to or at T . As usual, the market CDS should have the value
equal to zero at any time before the default event.

Simple computations show that, in general, the market (or fair) spread of the CDS can be
computed from the following formula when the interest rate f is constant

κ(t, T ) = −

∫
(t,T ]

e−fu dG(u)∫
(t,T ]

e−fuG(u) du
(2.7)

where G(t) := Q(τ > t). As already mentioned, it is now possible to prove that the necessary and
sufficient condition for the possibility of having a constant positive fair CDS rate κ(t, T ) = κ > 0
is that the distribution of τ under P is continuous and has the support [0, T ], exactly what was
assumed in Proposition 2.1. In essence, this is due to the fact that for any positive density function
on [0, T ] there exists a unique probability measure Q equivalent to P such that the distribution of τ
under Q is exponential with parameter λ = κ where a constant κ > 0 is given in advance, provided
that the interest rate f is constant (notwithstanding the level of f). Then κ(t, T ) = κ and λ has
a natural interpretation as the default intensity under the CDS pricing measure Q. The converse
implication is valid as well.

Since we may show that the martingale measure Q is unique onHT , whereHt := σ(1{τ≤u}, u ≤ t)
is the filtration generated by the default process, the model with two assets, the funding account
and the CDS, is complete. Hence, from the Fundamental Theorem of Asset Pricing, any contingent
claim X maturing at T can be replicated and its price, which is defined as the value of a replicating
strategy, can be also computed using the following version of the classical risk-neutral valuation
formula

Vt = Bft EQ

(
X

BfT

∣∣∣Ht) . (2.8)

For a claim with zero recovery, we obtain

Vt = Bft EQ

(
X1{τ>T}

BfT

∣∣∣Ht) ,
which reduces to

Vt = 1{τ>t}B
f
t (Gt)

−1 EQ

(
XGT

BfT

)
where

Gt = Q(τ > t) = e−λt = e−κt.

The defaultable bond corresponds to X = 1 and thus

Bt = 1{τ>t}B
f
t (Gt)

−1GT

BfT
= 1{τ>t} e

−(κ+f)(T−t).

One may observe that the only claims with zero recovery in this model are zero-recovery bonds
with differing, but constant, face values. Obviously, the valuation problem for claims with non-zero
recovery can also be solved using (2.8).
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3 Vulnerable call option pricing by replication via Black-
Scholes formula with dividends

After a detailed analysis of valuation of the zero-recovery defaultable bond, we will now address a
more advanced problem of valuation of vulnerable options on some risky asset. Once again, our goal
is to compare various approaches and to identify the underlying assumptions, which are frequently
neglected in the existing literature.

Denote by F = (Ft) where Ft := σ(Su, u ≤ t) the natural filtration generated by the price process
of a traded asset (stock). Let the maturity date T be fixed and let X be an FT -measurable integrable
random variable. Assume that the default time τ is a positive random variable on the probability
space (Ω,F ,P). The default time generates a filtration H = (Ht) where Ht := σ(1{τ≤u}, u ≤ t),
which is used to progressively enlarge F in order to obtain the full filtration G = (Gt) where Gt :=
Ft∨Ht. We work under the assumption that Ft := P(τ ≤ t | Ft) is a continuous, increasing function
and Ft < 1 for any t. Note that this assumption on the default time has already appeared in [9] in
conjunction with the hypothesis (H) and is in line with what was assumed in Proposition 2.1.

Let A be a contract (vulnerable call option) that costs P0 at time 0 and has the payoff X at
maturity time T where

X = 1{τ>T}(ST −K)+.

Here τ is interpreted as the default time of the counterparty to the contract, that is, the issuer of
the option. We wish to find the price Pt, t ∈ [0, T ], of this contract for an investor who replicates
a long position using financial instruments available in the market.

We now consider a market with the following primary assets (A1, A2, A3, A4):

i) an unsecured funding account with the interest rate f ;

ii) a stock (the underlying asset of the contract);

iii) a repo agreement on the stock with the repo rate h;

iv) a zero-recovery defaultable bond with the rate of return rC issued by the counterparty.

At time t, the price P it of the asset Ai is given by

P 1
t = Bft , P 2

t = St, P 3
t = 0, P 4

t = Bt

and the gains process since inception of Ai is denoted by Git with Gi0 = 0 for all i.

As a preliminary step, we specify the model inputs: the treasury rate f , the repo rate h and the
bond rate of return rC . Note that the rates f, h and rC are postulated to be constant (or, at least,
deterministic) and they are known. We assume also that the process S is continuous (obviously, Bf

is continuous as well). We will later assume, in addition, that the stock price volatility σ is known
as well. Hence we seek for the pricing formula in terms of the model parameters f, h, rC and σ and
the option data: T and K.

Note that, in principle, all these quantities are observed in the market, provided that the volatility
is understood as the implied volatility. By contrast, we do not need to assume that the CDS on
the counterparty is traded, although this postulate would not change our derivation of the option
pricing formula and the knowledge of the CDS spread rCDS is immaterial. In fact, we know from
the preceding section that, for a fixed level of the treasury rate f , there is one-to-one correspondence
between rC and rCDS .

Let us now determine the gains processes. Buying one repo contract amounts to selling the
shares of stock against cash, under the agreement of repurchasing them back at the higher price
that includes the interest payments corresponding to the repo rate. (Selling the repo results in the
opposite cash flows.) Any appreciation (or depreciation) in the stock price is part of the positive (or
negative) gains, while the outgoing repo interest payments are negative gains: dG3

t = dSt − hSt dt.
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Under the standing assumption that the pre-default rate of return rC on the counterparty’s bond
is deterministic, we obtain

Bt = 1{τ>t} e
−

∫ T
t
rCu du = (1− Jt)e−

∫ T
t
rCu du

where Jt := 1{τ≤t} is the point process that models the jump to default of the counterparty. The
gains have negative terms for outgoing cash flows corresponding to the drop in the bond value at
the time of default. To summarize, the gains of primary assets are given by

dG1
t = fBft dt, dG2

t = dSt, dG3
t = dSt − hSt dt, dG4

t = rCt Bt dt−Bt− dJt. (3.1)

A trading strategy ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) gives the number of units of each primary asset pur-
chased to build a portfolio. Let β ∈ [0, 1] be a constant. A trading strategy ϕ is admissible if at
any date t the investor can only use the repo market for a fraction β of the stock amount required
and the rest has to be obtained in the stock market with funding from the treasury. The wealth at
time t ∈ [0, T ] of the portfolio resulted from an admissible strategy ϕ is denoted by V ϕt and equals

V ϕt =

4∑
i=1

ϕitP
i
t

and the gains process associated with this strategy satisfies Gϕ0 = 0 and

dGϕt :=

4∑
i=1

ϕit dG
i
t. (3.2)

We then say that a strategy ϕ is self-financing if for all t ∈ [0, T ]

V ϕt = V ϕ0 +Gϕt . (3.3)

An admissible trading strategy ϕ replicates the payoff of a contract A if V ϕT = X. We define
the time t price of a contract A as the wealth V ϕt of the portfolio corresponding to the replicating
strategy

Pt := V ϕt . (3.4)

The existence of the specific primary assets in our market ensures that any claim is attainable. In
fact, the market under study is complete and no-arbitrage arguments show that the price of any
contract is unique.

Recall that the replicating portfolio is the negative of the hedging portfolio that an investor
holding the contract A would build to protect against market and counterparty risks. In other
words, the replicating strategy replicates not only the payoff of the option, but also the market risk
and the credit risk profiles of a long position in the option. At date t before default, the investor
builds a replicating portfolio for a long position in the option knowing that the assumptions on τ
imply that default may occur between t and t + dt for an arbitrarily small dt. To replicate the
contract the investor:

1. buys β∆t repos, borrows β∆tSt from treasury to buy and deliver β∆t shares, and receives
β∆tSt cash which is paid back to treasury;

2. borrows (1− β)∆tSt from treasury and buys (1− β)∆t shares;

3. buys Pt/Bt units of the counterparty bond in order to match the value of this portfolio and
the option payoff.

Of course, at this moment the option price Pt is yet unknown, but it will be found from the
matching condition (3.4) combined with the terminal payoff X. This replicating portfolio produces
the following admissible strategy

θ :=

(
− (1− β)∆tSt

Bft
, (1− β)∆t, β∆t,

Pt
Bt

)
. (3.5)
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At time t+ dt the investor:

4. receives β∆t shares from repo and sells them for β∆tSt+dt;

5. borrows from treasury β∆tSt(1 + hdt) to close the repo;

6. sells (1− β)∆t shares for (1− β)∆tSt+dt;

7. sells the counterparty’s bond for PtBt+dt/Bt;

8. pays back to the treasury (1− β)∆tSt(1 + fdt).

From these transactions the change in the wealth of the replicating position is

V θt+dt − V θt = β∆tSt+dt − β∆tSt(1 + hdt) + (1− β)∆tSt+dt +
Pt
Bt

dBt − (1− β)∆tSt(1 + fdt)

= β∆t dSt − βh∆tSt dt+ (1− β)∆t dSt +
Pt
Bt

dBt − (1− β)f∆tSt dt

= ∆t dSt −
(
(1− β)f + βh

)
∆tSt dt+ Pt(r

Cdt− dJt).

This can be derived formally by using (3.1) and computing the gains process (3.2) associated with
the portfolio θ given by (3.5)

dGθt = − (1− β)∆tSt

Bft
fBft dt+ (1− β)∆t dSt + β∆t(dSt − hSt dt) +

Pt
Bt

(rCt Bt dt−Bt− dJt)

= ∆t dSt −
(
(1− β)f + βh

)
∆tSt dt+ Pt(r

C
t dt− dJt)

where we used the equality Bt− = Bt, which holds before default. Note also that the wealth of θ at
default equals zero, which is consistent with the option payoff at default, and thus we may and do
set θt = (0, 0, 0, 0) for t > τ .

Let us now focus on pricing before default. Since dV θt = dGθt (from (3.3)) and dPt = dV θt (from
(3.4)), we have

dPt = ∆t dSt −
(
(1− β)f + βh

)
∆tSt dt+ Pt(r

C
t dt− dJt). (3.6)

To derive the pricing PDE, we assume that under the statistical probability P the stock price is
governed by

dSt = µtSt dt+ σSt dWt

and the price Pt can be expressed as

Pt = 1{τ>t}P̃t = 1{τ>t}v(t, St) = (1− Jt)v(t, St)

for some function v(t, s) of class C1,2. Then the Ito formula yields

dPt = (1− Jt) dv(t, St) + v(t, St) d(1− Jt) = (1− Jt) dv(t, St)− v(t, St) dJt

and

dPt = (1− Jt)
(
vt(t, St) +

σ2S2
t

2
vss(t, St)

)
dt+ (1− Jt)vs(t, St) dSt − v(t, St) dJt. (3.7)

By equating the dSt, dt and the jump terms in (3.6) and (3.7), we obtain the following equalities
where the variables (t, St) were suppressed

∆t = (1− Jt)vs,

(1− Jt)
(
vt +

σ2S2
t

2
vss +

(
(1− β)f + βh

)
Stvs

)
− (1− Jt)rCt v = 0, (3.8)

−Pt dJt = −v dJt.
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The pre-default pricing PDE for the function v(t, s) is now obtained from (3.8) as

vt +
(
(1− β)f + βh

)
s
∂v

∂s
+
σ2s2

2

∂v2

∂s2
− rCt v = 0 (3.9)

with terminal condition v(T, s) = (s −K)+. One recognizes (3.9) as the Black-Scholes PDE when
the underlying stock pays dividends. To see this, it suffices to take the discount rate to be the return
on the defaultable bond r := rC and the instantaneous dividend yield to be the bond spread over
the effective funding rate: q := rC−fβ where by the effective funding rate we mean the weighted
average fβ := (1− β)f + βh. We conclude that the following result is valid.

Proposition 3.1 The time t price of the vulnerable call option obtained by replication equals

Pt = 1{τ>t}

(
Ste
−q(T−t)N(dq1)−Ke−r

C(T−t)N(dq2)
)

(3.10)

with q = rC − fβ and

dq1 =
log St

K + (rC − q + σ2

2 )(T − t)
σ
√
T − t

, dq2 = dq1 − σ
√
T − t.

It is worth noting that (3.10) may also be derived from (3.6) without resorting to the pricing

PDE. From (3.6), we obtain the following equation for the pre-default price P̃

dP̃t = −fβ∆tSt dt+ ∆t dSt + rCt P̃t dt. (3.11)

Let Qβ be the probability measure equivalent to P and such that the drift of the risky asset S under
Qβ is equal to the effective funding rate fβ . Then P̃ is governed under Qβ by

dP̃t − rCt P̃t dt = ∆tσSt dW
β
t

with terminal condition P̃T = (ST −K)+ where W β is the Brownian motion under Qβ . This leads

to the following probabilistic representation for P̃t

P̃t = e−r
C(T−t) Eβ [(ST −K)+ | Ft] = e−(r

C−fβ)(T−t) Eβ [e−f
β(T−t)(ST −K)+ | Ft],

which in turn yields (3.10) through either standard computations of conditional expectation or by
simply noting that it is given by the Black-Scholes formula with the interest rate fβ and no dividends.

Remarks 3.1 i) If we model the defaultable bond as in (2.2) with r = rCt = rCDS + f where the
CDS spread rCDS (rather than the bond return rC) is taken as a model’s input, then the pricing
equation (3.10) holds with q := rCDS − β(h− f). In other words, the option pricing formula (3.10)
is still valid when the defaultable bond is replaced by the counterparty’s CDS in our trading model.

ii) PDE (3.9) is in fact equivalent to PDE (32) obtained in [2, Eg. 4.4] using the martingale approach.
To see this, it suffices to rewrite (3.9) with the dynamics of the primary assets

dBft = fBft dt,

dSt = µSt dt+ σSt dWt,

dBt = Bt−(µ3 dt− dMt) = Bt−
(
(µ3 + ξt)dt− dJt

)
,

where µ3 = f and Mt := Jt + logGt∧τ = Jt − ξt where Gt := P(τ > t|Ft). The process M is
commonly known as the compensated G-martingale of the default process J .

iii) Though the stock S was assumed to pay no dividends, the present framework can be easily
extended to the dividend-paying case. As a result, the effective funding rate fβ should be replaced
by fβ−δ. Then our PDE (3.8) would be similar to PDE (3.15) in [8] with zero-recovery, except that
when replicating a long position in a vulnerable call option there is no exposure at the investor’s
default, so there is no need to consider a defaultable bond issued by the investor. To see the
equivalence of the two PDEs, take their repo rate minus dividend rate qs − γs to be βh+ (1− β)f
(they are the same for β = 1 and no dividends, i.e., qs = 0) and their λB to be our λ. At time of
default their market value results in a drop in derivative value of ∆V̂B = −V̂ (see (3.8) in [8]).
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4 Vulnerable call option pricing by adjusted cash flows method
via Black-Scholes formula with dividends

Let us consider again the problem of pricing the same vulnerable option, but this time using the
adjusted cash flows approach originated in [10], derived rigorously in [6] and presented in a
wider context in [7]. We do not make here an attempt to justify their approach, but we start instead
with the pricing equation (11) of [7] and adapt it to the present context of a vulnerable call option,
which is an uncollateralized contract. Note that the variation margin is M , while NC and N I

are the initial margin accounts for the two counterparties, resulting in the total collateral account
C = M + NC + N I . In our case, this means that the last two lines of equation (11) in [10] are
simply zero. The cash flow at default equals zero (due to zero recovery convention for the vulnerable
option) and the contract cash flow over time period (t, t+ dt) is

Π(t, t+ dt) = (ST −K)+1{t=T},

so the pricing equation (11) in [10] reduces to

Vt = Eh
[
1{τ>T}D(t, T ; f)(ST −K)+ | Gt

]
(4.1)

where Eh is the expectation under the probability measure Qh that makes the drift of the risky asset
equal to h, so that

dSt = hSt dt+ σSt dW
h
t

where Wh is a Brownian motion under Qh. Moreover, G = (Gt) is the full filtration that includes
information on default times and the discount factor D(s, t; f) equals

D(s, t; f) := exp

(
−
∫ t

s

fu du

)
.

We assume a constant treasury rate f and we use the pre-default intensity λ under Qh of the
counterparty, which is defined in [7, (40)] by

1{τ>t}λ dt := Qh(τ ∈ dt | τ > t,Ft),

to obtain the survival probability Ght = e−λt where Ght := Qh(τ > t | Ft). Note that this is consistent
with the assumptions on τ in the replication approach of Section 3. Using (4.1) and Cor. 3.1.1 of
[1], we obtain

Vt = 1{τ>t}(G
h
t )−1 Eh[D(t, T ; f)(ST −K)+GhT | Ft].

If Ṽ denotes the F-adapted pre-default price process such that for all t ∈ [0, T ]

1{τ>t}Vt = 1{τ>t}Ṽt,

then from the above equation we immediately obtain

Ṽt = (Ght )−1 Eh[D(t, T ; f)(ST −K)+GhT | Ft].

Since Gh is deterministic, for a constant treasure rate f the pre-default price can be written as

Ṽt = e−(λ+f)(T−t) Eh[(ST −K)+ | Ft]

or, equivalently,
Ṽt = e−(λ+f−h)(T−t) Eh[e−h(T−t)(ST −K)+ | Ft].

The last expectation can be computed yielding the usual Black-Scholes formula when the drift of
the stock equals h

Eh[e−h(T−t)(ST −K)+) | Ft] = StN(d1)−Ke−h(T−t)N(d2)
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where

d1 =
log St

K + (h+ σ2

2 )(T − t)
σ
√
T − t

, d2 = d1 − σ
√
T − t.

We conclude that the pre-default price process satisfies

Ṽt = e−(λ+f−h)(T−t)
(
StN(d1)−Ke−h(T−t)N(d2)

)
and thus

Vt = 1{τ>t}

(
Ste
−(λ+f−h)(T−t)N(d1)−Ke−(λ+f)(T−t)N(d2)

)
. (4.2)

Upon setting λ+ f − h = q and λ+ f = r, we deduce that (4.2) coincides with the pricing formula
(3.10) obtained by replication for β = 1. It is also not difficult to show that λ = rCDS (in essence,
this is due to the fact that the density of Qh with respect to the martingale measure Q introduced
in Section 2.2 is F-adapted). This shows that the adjusted cash flow method and the replication
approach lead to the same price for the vulnerable call option.

5 Sensitivity analysis

In the final step, we perform the sensitivity analysis for the vulnerable call option by focussing on
the impact of the rates f and h. We leave aside the parameter rC , since in our model the investor
has the freedom to choose a particular combination of funding sources when purchasing shares, as
formally represented by the parameter β ∈ [0, 1], but the spread rC is given by the market and is
assumed to be fixed.

Example 5.1 Figure 5.1 shows the dependence of the pre-default price (4.2) of a vulnerable call
on the treasury rate f and repo rate h for β = 1 when St = 80, K = 100, σ = 0.3, T − t = 0.1,
rCDS = 0.05. The pre-default price of the vulnerable call is decreasing in the treasury rate f and
increasing in the repo rate h.

Figure 1: Option price is increasing in repo rate h and decreasing in funding rate f

To explain the dependence observed in Example 5.1 and perform a general sensitivity analysis,
we first compute “funding Greeks” when β = 1, that is, all shares are purchased at repo. We obtain
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the following expressions

∂f Ṽt = ∂rC Ṽt = −(T − t)Ṽt < 0, (5.1)

∂hṼt = e−(h−f−r
CDS)(T−t)(T − t)StN(dq1) > 0, (5.2)

which means that the pre-default call price decreases in both the treasury rate f and the bond
return rC , but increases in the repo rate associated with the risky asset. Furthermore, the relative

sensitivity to funding
∂f Ṽt

Ṽt
= −(T − t) appears to be smaller in absolute value than the relative

sensitivity to the repo rate ∂hṼt
Ṽt

> T − t, the more so the more the option is in the money. This

simple benchmark case highlights that the repo rate may have an important impact on the contract
value, often more significant than the treasury rate or the credit spread.

Let us now consider the price obtained in Section 3 where the additional parameter β ∈ [0, 1]
dictates the structure of the funding arrangements for the investor. In view of (3.10) and Remark
3.1 i), we obtain the following funding Greeks

∂f Ṽt = −β(T − t)Ṽt + (1− β)(T − t)e(β(h−f)−r
CDS)(T−t)KN(dq2), (5.3)

∂hṼt = βe(β(h−f)−r
CDS)(T−t)(T − t)StN(dq1) ≥ 0,

where the last inequality is strict when β > 0. In particular, for β = 1 we recover (5.1)-(5.2) and for
β = 0 (pure treasury funding), we get

∂f Ṽt = (T − t)e(f−r
C)(T−t)KN(dq2) > 0,

∂hṼt = 0,

where f − rC = rCDS > 0. In general, it is hard to determine the sign of the sensitivity ∂f Ṽt given
by (5.3), though it is clear that it changes from a positive value for β = 0 to a negative one for
β = 1.

To give an interpretation of funding Greeks, we observe that the contract’s payoff can be written
as X = BT (ST −K)+, so it can be seen as a hybrid contract which combines the call option on the

stock with the long position in the counterparty bond. For any 0 < β ≤ 1 the price Ṽt increases in
h, since the cost of hedging the option component (ST −K)+ is manifestly increasing with h.

The price dependence on f is harder to analyze. Indeed, from representation (3.5) of the hedging
portfolio, we see that for 0 < β < 1 the dependence on f is rather complex: the investor needs to
borrow cash from Bf (which grows at the rate f) and thus the cost of hedging increases in f , but
he simultaneously invests in the bond B (with the rate of return rC = f + rCDS where rCDS is
constant) so that the cost of hedging decreases in f . The net impact of both legs may be negative,
in the sense that the price of the option decreases when f increases. This is rather clear for β = 1,
since in that case the investor does not use Bf for his hedging purposes (take β = 1 in (3.5)) and we
see that the cost of hedging the component BT in the payoff X falls when f increases. By contrast,
when β = 0 the value of h is immaterial, and the increase of f makes the option more expensive.
Finally, when only the CDS spread rCDS increases and f, h are kept fixed, then the cost of hedging
decreases as well, since the bond B becomes cheaper.

6 Concluding remarks

The mapping of the price computation to the Black-Scholes formula with dividends can be general-
ized to any local volatility model (e.g., the displaced diffusion model), which would thus cover both
an increasing and a decreasing volatility smile. Stochastic volatility models would also be attractive
to the industry, but any additional source of randomness would need to be hedged, thus requiring the
inclusion of additional hedging instruments to our market model and solving a suitable modification
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of the pricing PDE. The local stochastic volatility models currently dominant in the industry would
obviously pose the same problem.

In summary, we have shown that two alternative pricing approaches lead to the same result in
the benchmark case of a vulnerable call option that includes funding, repo and credit risk. This
confirms that even in the presence of funding costs and repo contracts the martingale method and
the adjusted cash flow approach should be seen as alternative tools facilitating the computation of
the replication price, rather than as alternative pricing paradigms. The reason for this is that all
these approaches are in fact either explicitly or implicitly based on the concept of replication, as
explained more generally in [5]. Furthermore, we show that the option price can be expressed as a
Black-Scholes formula with dividends, thus facilitating the use of the funding Greeks in the valuation
and sensitivity analyses. In this context, we highlight the potentially important pricing impact of
the repo rate over the treasury rate and credit spread.
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