The Multispectral Method:
Progress and Prospects

Malcolm Roberts, John C. Bowman, and Bruno Eckhardt

University of Alberta

2009-09-09



Shell Models of Turbulence: Modes

e Shell models are systems of ODEs which mimic the Fourier-
transtormed Navier—Stokes equation.



Shell Models of Turbulence: Modes

e Shell models are systems of ODEs which mimic the Fourier-
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e Collections of modes {uy, : & € [A", "1} are represented by
a single quantity u,,:
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Shell Models of Turbulence: Interaction

e The convolution is replaced with a quadratic function of u:
du
dtn =k, Z CpqUpUg — V/c2un
P,

e The DN model [Desnyansky & Novikov 1974| has nearest-
neighbour interactions and conserves energy E = 1>~ |

du,
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e The GOY |Gledzer 1973, Yamada & Ohkitani 1987] model adds
next-nearest-neighbour interactions and conserves the helicity
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Shell Models: Kolmogorov Scaling

e Simulations reproduce a k~*? Kolmogorov inertial range:
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e Shell models are simpler and easier to simulate than the Navier—
Stokes equations |Bowman et al. 2006].



Shell Models: Intermittency

e They also reproduce statistical properties of Navier—Stokes
turbulence: the moments (|u,|”) ~ k, Sp
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scale very much like experimental structure exponents for 3D
turbulence (dashed lines) [Herweijer & van de Water 1995].
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e Navier—Stokes simulations at high Reynolds number require
more modes than current computers can handle.

e We use shell models as testbeds for developing numerical
techniques.

e Instead of evolving w,, directly, we study a generalization of
spectral reduction [Bowman et al. 1999):
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e This reduces the number of active modes by half:
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Fixed Point

e Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.
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Fixed Point

e Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.
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e Further reduction is straightforward:
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e Binning modifies the viscous term and the interaction
coefficients:

(o, B,7) — (a,b) = (%_%) > (6%26).
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Decimation: Interpolation

e Approximating the (unresolved) quantity ug, 1 by /Un11,1Un 1
yields

Unp+1,1
O ~ :

e We use ratios of time-averaged moments to avoid instabilities:
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e A cubic spline can be used for smoother interpolation.
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Decimation: Interpolation

e Under interpolation, the evolution equation is of the form
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e Under interpolation, the evolution equation is of the form
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e Interaction coefficients are modified by binning:
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e Under interpolation, the evolution equation is of the form
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e Interaction coefficients are modified by binning:

. 87
(&7577> — (CL, b) — (O-n—l%a _O-n—lo-nX) — (0-7%—10’7 O-n—lb)

and the nonlinear source is divided by (1 + \an\2).

e The energy Fq = %Zn (1 -+ ‘Jg‘) \un,1\2 is conserved if o, 1S
independent of time.
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Decimation: Interpolation
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Decimation: Interpolation Instability

e Using interpolation to determine the value of o produces an
instability:
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e Energy transfer to mode n is suppressed by positive feedback
mechanism!



Decimation: Interpolation Instability

e Using interpolation to determine the value of o produces an

instability:

On—-1

o/
m/

Un
Un—1

1/2

decreases

|u,,| decreases

dug,

dt

NL

X 0,_1 decreases

e Energy transfer to mode n is suppressed by positive feedback

mechanism!

e We therefore abandon a posterior: interpolatation of the
unresolved modes and revert to using o,, = 1.
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The Multispectral Method

e We would like to perform simulations in which only the high-
frequency modes are decimated.

22



The Multispectral Method

e We would like to perform simulations in which only the high-
frequency modes are decimated.

e The method of spectral reduction, with o, = 1, allows us to
decimate uniformly.

22



The Multispectral Method

e We would like to perform simulations in which only the high-
frequency modes are decimated.

e The method of spectral reduction, with o, = 1, allows us to
decimate uniformly.

e We can combine full-resolution and decimated simulations to
achieve our goal.

Undecimated grid

Decimated grid

22



The Multispectral Method

e We would like to perform simulations in which only the high-
frequency modes are decimated.

e The method of spectral reduction, with o, = 1, allows us to
decimate uniformly:.

e We can combine full-resolution and decimated simulations to
achieve our goal.

Undecimated grid

Decimated grid

e The grids are advanced using separate integrators and
synchronized via projection and prolongation.

Undecimated grid
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Decimated grid Y
o
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The Multispectral Method

T TTTTT0

] llllllll

T TTTTT

] llllllll

T TTTTT

] llllllll

T TTTI

11 1111

10t

102
k

103

104

i1}

One grid
Two grids

23



Decimating the Navier—Stokes equations

e Interpolation has not been shown to work, so we use piecewise-
constant spectral reduction (o = 1).
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Decimating the Navier—Stokes equations

e Interpolation has not been shown to work, so we use piecewise-
constant spectral reduction (o = 1).

e Spectral reduction means representing a function using a
restricted basis for L?.

e The grids must be chosen so that there exist projection and
prolongation operators between the grids that locally conserve
energy and other quadratic invariants.
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Conclusions and Future Work

e Decimating via an interpolated energy spectrum is unstable.

e Decimating using the average over a bin produces an acceptable
spectrum.

e The multispectral method allows us to combine DNS with
decimated simulations.

e The multispectral method has been tested on shell models of
turbulence.

e Piecewise-constant spectral reduction (with o, = 1) has already
been applied to 2D NS simulations, but it requires a uniform
orid.

e The ultimate goal is to implement the multispectral method for
Navier—Stokes turbulence.
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