FFTW++: A Hybrid OpenMP/MPI Implementation of FFTs and Implicitly Dealiased Convolutions

John C. Bowman
University of Alberta

Malcolm Roberts
Advanced Micro Devices

Feb 14, 2020

www.math.ualberta.ca/~bowman/talks
Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the *discrete cyclic convolution*

\[\sum_{p=0}^{N-1} F_p G_{k-p}, \]

where the vectors \(F \) and \(G \) have period \(N \).

- Define the *\(N \)th primitive root of unity*:

\[\zeta_N = \exp \left(\frac{2\pi i}{N} \right). \]

- The fast Fourier transform method exploits the properties that \(\zeta_N^r = \zeta_{N/r} \) and \(\zeta_N^N = 1 \).

- However, the pseudospectral method requires a *linear convolution*.
• The unnormalized \textit{backwards discrete Fourier transform} of
 \{F_k : k = 0, \ldots, N\} is

\[f_j = \sum_{k=0}^{N-1} \zeta_N^{jk} F_k \quad j = 0, \ldots, N - 1. \]

• The corresponding \textit{forward transform} is

\[F_k = \frac{1}{N} \sum_{j=0}^{N-1} \zeta_N^{-kj} f_j \quad k = 0, \ldots, N - 1. \]

• The orthogonality of this transform pair follows from

\[\sum_{j=0}^{N-1} \zeta_N^{\ell j} = \begin{cases} N & \text{if } \ell = sN \text{ for } s \in \mathbb{Z}, \\ \frac{1}{1 - \zeta_N^\ell} & \text{otherwise.} \end{cases} \]
Convolution Theorem

\[\sum_{j=0}^{N-1} f_j g_j \zeta_N^{-jk} = \sum_{j=0}^{N-1} \zeta_N^{-jk} \left(\sum_{p=0}^{N-1} \zeta_N^{jp} F_p \right) \left(\sum_{q=0}^{N-1} \zeta_N^{jq} G_q \right) \]

\[= \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_p G_q \sum_{j=0}^{N-1} \zeta_N^{(-k+p+q)j} \]

\[= N \sum_{s=0}^{N-1} \sum_{p=0}^{N-1} F_p G_{k-p+sN}. \]

- The terms indexed by \(s \neq 0 \) are aliases; we need to remove them!
- If only the first \(m \) entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length \(m \) to length \(N \geq 2m - 1 \).
- *Explicit zero padding* prevents mode \(m - 1 \) from beating with itself and wrapping around to contaminate mode \(N = 0 \mod N \).
Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N = 2^m$:

$$\{F_k\}_{k=0}^{m-1}, \{G_k\}_{k=0}^{m-1}$$
• Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N = 2^m$:

\[
\begin{align*}
\{F_k\}_{k=0}^{m-1} & \quad \{G_k\}_{k=0}^{m-1} \\
\{0\}_{k=0}^{m-1} & \quad \{0\}_{k=0}^{m-1}
\end{align*}
\]
Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N = 2^m$:
Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to \(N = 2^m \):

\[
\{ F_k \}_{k=0}^{2^{m-1}} \quad \{ G_k \}_{k=0}^{2^{m-1}}
\]

\[
\{ f_j \}_{j=0}^{2^{m-1}} \quad \{ g_j \}_{j=0}^{2^{m-1}}
\]

\[
\{ f_j g_j \}_{j=0}^{2^{m-1}}
\]
Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to \(N = 2^m \):
Since FFT sizes with small prime factors in practice yield the most efficient implementations, the padding is normally extended to $N = 2^m$:
Implicit Padding

- Let $N = 2m$. For $j = 0, \ldots, 2m - 1$ we want to compute

$$f_j = \sum_{k=0}^{2m-1} \zeta_{2m}^{j k} F_k.$$

- If $F_k = 0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$f_{2 \ell} = \sum_{k=0}^{m-1} \zeta_{2m}^{2 \ell k} F_k = \sum_{k=0}^{m-1} \zeta_m^{\ell k} F_k, \quad \ell = 0, 1, \ldots m - 1.$$

$$f_{2 \ell + 1} = \sum_{k=0}^{m-1} \zeta_{2m}^{(2 \ell + 1) k} F_k = \sum_{k=0}^{m-1} \zeta_m^{\ell k} \zeta_{2m}^{k} F_k,$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2m \log_2 m = N \log_2 m$.
• Odd and even terms of the convolution can then be computed separately, multiplied term-by-term, and transformed again to Fourier space:

\[
2mF_k = \sum_{j=0}^{2m-1} \zeta_{2m}^{-kj} f_j \\
= \sum_{\ell=0}^{m-1} \zeta_{2m}^{-k2\ell} f_{2\ell} + \sum_{\ell=0}^{m-1} \zeta_{2m}^{-k(2\ell+1)} f_{2\ell+1} \\
= \sum_{\ell=0}^{m-1} \zeta_{m}^{-k\ell} f_{2\ell} + \zeta_{2m}^{-k} \sum_{\ell=0}^{m-1} \zeta_{m}^{-k\ell} f_{2\ell+1} \quad k = 0, \ldots, m-1.
\]

• No bit reversal is required at the highest level.

• A 1D implicitly padded convolution is implemented in our \texttt{FFTW++} library.

• This in-place convolution was written to use six out-of-place transforms, thereby avoiding bit reversal at all levels.
• The computational complexity is $6Km \log_2 m$.

• The numerical error is similar to explicit padding and the memory usage is identical.

$\{F_k\}_{k=0}^{m-1}$ $\{G_k\}_{k=0}^{m-1}$
• The computational complexity is $6Km \log_2 m$.

• The numerical error is similar to explicit padding and the memory usage is identical.

\[
\begin{align*}
\{F_k\}_{k=0}^{m-1} & \quad \{G_k\}_{k=0}^{m-1} \\
\{f_{2\ell}\}_{\ell=0}^{m-1} & \quad \{f_{2\ell+1}\}_{\ell=0}^{m-1} \\
\{g_{2\ell}\}_{\ell=0}^{m-1} & \quad \{g_{2\ell+1}\}_{\ell=0}^{m-1}
\end{align*}
\]
• The computational complexity is $6Kn \log_2 m$.

• The numerical error is similar to explicit padding and the memory usage is identical.

\[
\begin{align*}
\{F_k\}_{k=0}^{m-1} & \quad \{G_k\}_{k=0}^{m-1} \\
\{f_{2\ell}\}_{\ell=0}^{m-1} & \quad \{f_{2\ell+1}\}_{\ell=0}^{m-1} \\
\{g_{2\ell}\}_{\ell=0}^{m-1} & \quad \{g_{2\ell+1}\}_{\ell=0}^{m-1} \\
\{f_{2\ell}g_{2\ell}\}_{\ell=0}^{m-1} & \quad \{f_{2\ell+1}g_{2\ell+1}\}_{\ell=0}^{m-1}
\end{align*}
\]
• The computational complexity is $6Km \log_2 m$.

• The numerical error is similar to explicit padding and the memory usage is identical.

\[\{F_k\}_{k=0}^{m-1} \quad \{G_k\}_{k=0}^{m-1} \]
\[\{f_{2\ell}\}_{\ell=0}^{m-1} \quad \{f_{2\ell+1}\}_{\ell=0}^{m-1} \]
\[\{g_{2\ell}\}_{\ell=0}^{m-1} \quad \{g_{2\ell+1}\}_{\ell=0}^{m-1} \]
\[\{f_{2\ell}g_{2\ell}\}_{\ell=0}^{m-1} \quad \{f_{2\ell+1}g_{2\ell+1}\}_{\ell=0}^{m-1} \]
\[\{(F \ast G)_k\}_{k=0}^{m-1} \]
Input: vector f, vector g
Output: vector f

$u \leftarrow \text{ffft}^{-1}(f)$;
$v \leftarrow \text{ffft}^{-1}(g)$;
$u \leftarrow u \ast v$;

for $k = 0$ to $m - 1$ do
| $f[k] \leftarrow \zeta_{2m}^k f[k]$;
| $g[k] \leftarrow \zeta_{2m}^k g[k]$;
end

$v \leftarrow \text{ffft}^{-1}(f)$;
$f \leftarrow \text{ffft}^{-1}(g)$;
$v \leftarrow v \ast f$;
$f \leftarrow \text{ffft}(u)$;
$u \leftarrow \text{ffft}(v)$;

for $k = 0$ to $m - 1$ do
| $f[k] \leftarrow f[k] + \zeta_{2m}^{-k} u[k]$;
end

return $f/(2m)$;
Implicit Padding in 1D

\[\text{time}/(m \log_2 m) \text{ (ns)} \]

- explicit $T=1$
- implicit $T=1$
- explicit $T=4$
- implicit $T=4$
Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.
Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.

![Diagram](image.png)
Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.
Convolutions in Higher Dimensions

• An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.
Convolutions in Higher Dimensions

• An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.
Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs, and 4 times the memory of a cyclic convolution.
Recursive Convolution

- Naive way to compute a multiple-dimensional convolution:

\[\mathcal{F}_{N_1, \ldots, N_d} \xrightarrow{\text{multiply}} \mathcal{F}_{N_1, \ldots, N_d} \]

- The technique of recursive convolution allows one to avoid computing and storing the entire Fourier image of the data:

\[\mathcal{F}_{N_d} \xrightarrow{N_d \times \text{convolve}_{N_1, \ldots, N_{d-1}}} \mathcal{F}_{N_d}^{-1} \]
Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

• Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

• Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

• Extra work memory need not be contiguous with the data.

\[
\text{FFT}^{-1} \{F \ast G\} \quad n_x \text{ even} \\
\text{FFT}^{-1} \{F \ast G\} \quad n_x \text{ odd}
\]
Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.
Implicit Padding in 2D

\[
\text{time/}(m^2 \log_2 m^2) \ (\text{ns})
\]

- explicit $T=1$
- implicit $T=1$
- explicit $T=4$
- implicit $T=4$
Implicit Padding in 3D

\[\text{time}/(m^3 \log_2 m^3) \ (\text{ns}) \]

- explicit $T=1$
- implicit $T=1$
- explicit $T=4$
- implicit $T=4$
Centered (Pseudospectral) Convolutions

- For a centered convolution, the Fourier origin \((k = 0)\) is centered in the domain:

\[
\sum_{p=k-m+1}^{m-1} f_p g_{k-p}
\]

- Need to pad to \(N \geq 3m - 2\) to remove aliases.

- The ratio \((2m - 1)/(3m - 2)\) of the number of physical to total modes is asymptotic to \(2/3\) for large \(m\).

- A Hermitian convolution arises since the input vectors are real:

\[
f_{-k} = \overline{f_k}.
\]
1D Implicit Hermitian Convolution

![Graph showing the comparison between explicit and implicit methods for different values of T.]
Distributed-Memory Parallelization

- The pseudospectral method uses a matrix transpose to localize the computation of the multi-dimensional FFTs onto individual processors.

- Parallel generalized slab/pencil decompositions have recently been developed for distributed-memory architectures.

- We have compared several distributed matrix transpose algorithms, both blocking and nonblocking, under pure MPI and hybrid MPI/OpenMP architectures.

- Local transposition is not required within a single MPI node.

- We have developed an adaptive algorithm, dynamically tuned to choose the optimal block size.
8×8 Block Transpose over 8 processors
8 × 8 Block Transpose over 8 processors
8 × 8 Block Transpose over 8 processors
8 × 8 Block Transpose over 8 processors
8×8 Block Transpose over 8 processors
8 × 8 Block Transpose over 8 processors
8 × 8 Block Transpose over 8 processors
Advantages of Hybrid MPI/OpenMP

• Use hybrid OpenMP/MPI with the optimal number of threads:
 – yields larger communication block size;
 – local transposition is not required within a single MPI node;
 – allows smaller problems to be distributed over a large number of processors;
 – for 3D FFTs, allows for more slab-like than pencil-like models, reducing the size of or even eliminating the need for a second transpose;
 – sometimes more efficient (by a factor of 2) than pure MPI.

• The use of nonblocking MPI communications allows us to overlap computation with communication: this can yield up to an additional 32% performance gain for implicitly dealiased convolutions, for which a natural parallelism exists between communication and computation.
Pure MPI 2D Convolutions

\[\text{time/} (m^2 \log_2 m^2) \text{ (ns)} \]

- implicit P=24
- implicit P=192
- explicit P=24
- explicit P=192
Pure MPI 3D Convolutions

![Graph showing time/($m^3 \log_2 m^3$) (ns) vs. m for different P values](image-url)
Hybrid MPI 3D Adaptive Transpose Timing
Hybrid MPI 3D Adaptive Transpose Speedup
Communication Costs: Direct Transpose

• Suppose an $N \times N$ matrix is distributed over P processes with $P \mid N$.

• Direct transposition involves $P - 1$ communications per process, each of size N^2/P^2, for a total per-process data transfer of

$$\frac{P - 1}{P^2}N^2.$$
Block Transpose

• Let $P = ab$. Subdivide $N \times M$ matrix into $a \times a$ blocks each of size $N/a \times M/a$.

• Inner: Over each team of b processes, transpose the a individual $N/a \times M/a$ matrices, grouping all a communications with the same source and destination together.

• Outer: Over each team of a processes, transpose the $a \times a$ matrix of $N/a \times M/a$ blocks.
Communication Costs

• Let τ_ℓ be the typical latency of a message and τ_d be the time required to send each matrix element, so that the time to send a message consisting of n matrix elements is

$$\tau_\ell + n\tau_d$$

• The time required to perform a direct transpose is

$$T_D = \tau_\ell(P - 1) + \tau_d\frac{P - 1}{P^2}NM = (P - 1)\left(\tau_\ell + \tau_d\frac{NM}{P^2}\right),$$

whereas a block transpose requires

$$T_B(a) = \tau_\ell\left(a + \frac{P}{a} - 2\right) + \tau_d\left(2P - a - \frac{P}{a}\right)\frac{NM}{P^2}.$$

• Let $L = \tau_\ell/\tau_d$ be the effective communication block length.
Direct vs. Block Transposes

• Since

\[T_D - T_B = \tau_d \left(P + 1 - a - \frac{P}{a} \right) \left(L - \frac{NM}{P^2} \right), \]

we see that a direct transpose is preferred when \(NM \geq P^2L \), whereas a block transpose should be used when \(NM < P^2L \).

• To find the optimal value of \(a \) for a block transpose consider

\[T'_B(a) = \tau_d \left(1 - \frac{P}{a^2} \right) \left(L - \frac{NM}{P^2} \right). \]

• For \(NM < P^2L \), we see that \(T_B \) is convex, with a minimum at \(a = \sqrt{P} \).
Optimal Number of Threads

• The minimum value of T_B is

$$T_B(\sqrt{P}) = 2\tau_d \left(\sqrt{P} - 1 \right) \left(L + \frac{NM}{P^{3/2}} \right)$$

$$\sim 2 \tau_d \sqrt{P} \left(L + \frac{NM}{P^{3/2}} \right), \quad P \gg 1.$$

• The global minimum of T_B over both a and P occurs at

$$P \approx \left(\frac{2NM}{L} \right)^{2/3}.$$

• If the matrix dimensions satisfy $NM > L$, as is typically the case, this minimum occurs above the transition value $(NM/L)^{1/2}$.
Conclusions

- For centered convolutions in d dimensions implicit padding asymptotically uses $(2/3)^{d-1}$ of the conventional storage.

- The factor of 2 speedup is largely due to increased data locality.

- Highly optimized and parallelized implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library and released under the Lesser GNU Public License: http://fftwpp.sourceforge.net/

- Hybrid MPI/OpenMP is often more efficient than pure MPI for distributed matrix transposes.

- The hybrid paradigm provides an optimal setting for nonlocal computationally intensive operations found in applications like the fast Fourier transform.

- The advent of implicit dealiasing of convolutions makes overlapping transposition with FFT computation feasible.
Writing of a high-performance dealiased pseudospectral code is now a relatively straightforward exercise. For example, see the protodns project at

http://github.com/dealias/dns
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>