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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = z2-V X u:
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e In Fourier space:
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e When v = fk — 07
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Spectral Reduction

e Introduce a coarse-grained grid indexed by K':

Wavenumber Bin Geometry (8 x 3 bins)



e Define new variables
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where A g 1s the area of bin K.

e Evolution of Q2
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e Approximate wp and wq by bin-averaged values {2p and {2g:
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e Define the coarse-grained enstrophy Z and energy E:

Z ‘QK‘ Ak, 7= %Z]QK]QAK.
K

e Enstrophy is still conserved by the nonlinearity since

€
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e But energy conservation has been lost!
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e Reinstate both desired symmetries with the modified coefficient
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Properties

e We call the forced-dissipative version of this approximation
spectral reduction (SR):
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e SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

e [t has the same general structure and symmetries as the original
equation and in this sense may be considered a renormalization.

e SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.



Moments

e (). How accurate is spectral reduction?

e A. For large bins, the instantaneous dynamics of SR is
Inaccurate.

e However: the equations for the time-averaged (or ensemble-
averaged) moments predicted by SR closely approximate those
of the exact bin-averaged statistics.

e [.g.. time average the exact bin-averaged enstrophy equation:
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where the bar means time average and (-) - means bin average.
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o Time-averaged quantities such as |wg|” and wjwiw? are
generally smooth tunctions of k, p, g on the four- dlmensmnal
surface defined by the triad condition k +p + q = 0.




e Mean Value Theorem for integrals: for some & € K.

Qk|*= |we] ~ |wu|  Vk € K.

e To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K. P, Q:
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e To the extent that the wavenumber magnitude ¢ varies slowly
over a bin:
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e But this is precisely the time-average of the SR equation!



Convergence

e The previous argument suggests that spectral reduction can
indeed provide an accurate statistical description of turbulence,
even when each bin contains many statistically independent
modes.

e As the wavenumber partition is refined, one expects the
solutions of the time-averaged SR equations to converge to the
exact statistical solution.

e However, since spectral reduction smooths over the dg+piq.0
factor appearing in the nonlinear coeflicient €gpq, the resulting
equation is no longer a convolution. Thus, pseudospectral
collocation is not directly applicable.
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Noncanonical Hamiltonian Formulation

e Underlying noncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

. 0H
Wk = /dq qu(s

where

Jk;qi /dpekpqw;.

e Leads to inviscid Navier—Stokes equation:

0
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Liouville Theorem

e Navier-Stokes:

J kq / dp € kpqu

N /dk% /dk/dq OJkg O,
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e Spectral Reduction:
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Statistical Equipartition

e For mizing dynamics, the Liouville Theorem and the coarse-
grained invariants

Z !QK!

o1 )
7= 5; Qk|* Ak,

lead to statistical equipartition of (/K2 + ) |Qk|” Ak.
e This is the correct equipartition only for uniform bins.

e However, for nonuniform bins, a rescaling of time by A,
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yields the correct inviscid equipartition: <\Q K\2> = (& +0) -
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e Unfortunately, the rescaled spectral reduction equations are
hopelessly stiff [Bowman et al. 2001].
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Relaxation of rescaled spectral reduction to equipartition.



Spectral Reduction on a Lattice

e Reluctantly, we accept the fact that each bin must contain the
same number of modes.

e Imposing uniform bins has an important advantage: it affords
a pseudospectral implementation of spectral reduction!

e Consider spectral reduction on a coarse-grained lattice, with
r X r modes per rectangular bin.
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e The bin-averaging operations become:
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e Uniform discrete spectral reduction:
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o Let £(t) be a unit Gaussian stochastic white-noise process and

choose Fg = 2¢, n to inject on average €z units of
2
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K

enstrophy Novikov [1964].
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Discrete Fast Fourier Transform

e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform (FFT) method exploits the
properties that (y = (yy, and (y =1
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FEFET of a Piecewise Constant Function

e Suppose N = rM and f,xi¢y = Frxfor £ =0,1,...r —1 and
K=01,...,M—1.

ekor J =0,...,M —1and s = 0,...,r — 1 the backwards
Fourier transform of the coarse-grained data Fk is given by

M—-1r-—1
JsM+g = CSMH)(TKM)FK = SysFy,

where

r—1

. JU sl

Srs =y ¢
(=0

M—-1
Fr= Z I Py
K=0

e The coarse-grained forwards Fourier transform is given by:
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1D Coarse-Grained Convolution

e The coarse-grained convolution (f * g) . of f and g can then be
computed as

e
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e Similarly, the bin-averaged Fourier transform of Fx weighted
by £ is given by
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o Let Wi =S""0 184" Ty
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Pseudospectral reduction

oln terms of FV = K .Q, F' = KQg, F? = Qg, G’ =
f(xf(_QQK’7 Gl = KyK_QQK, and G? = K_QQKZ
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e Computational complexity is O(Nlog N), with a coefficient
7/5 = 1.4 times greater that for pseudospectral collocation. 2



31 x 31 bins

Tk
a + Bk?
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Inviscid equipartition of a 31 x 31 pseudospectrally reduced
simulation with radix r = 3.
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Direct cascade.
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Inverse cascade.
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Conclusions

e Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence
simulations.

e One can evolve a turbulent system for thousands of eddy
turnover times to obtain energy spectra smooth enough to
compare with theory:.

e Recognizing that spectral reduction yields correct inviscid
equipartition spectra only with uniform binning and restricting
our attention to this case only, an eflicient FEFT-based
implementation, which we call pseudospectral reduction, is
proposed.

e Even with uniform binning, the resulting energy spectrum is
much closer to the predictions of the full dynamics than, say,
the spectrum obtained by simply using a smaller spatial domain
(larger mode spacing).
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e We have recently generalized our eflicient FFTW++
‘Bowman & Roberts 2011| library to support implicitly
dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net

e Spectral reduction could be used to develop a reliable dynamic
subgrid model: Malcolm Roberts” Ph.D. thesis (expected 2011)
explores ways to couple a pseudospectrally reduced subgrid
model to a large-eddy simulation.
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http://fftwpp.sourceforge.net
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Vorticity Surface Plot
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Asymptote: 2D & 3D Vector Graphics Language

tote

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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Asymptote Lifts TEX to 3D

+00 ,
e dr =

http://asymptote.sf.net
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