Using Partial Fourier Transforms to Study Kolmogorov’s Inertial-Range Flux

John C. Bowman and Zayd Ghoggali
Department of Mathematical and Statistical Sciences
University of Alberta

June 28, 2016

www.math.ualberta.ca/~bowman/talks
Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar power-law scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

\[E(k) = C \epsilon^{2/3} k^{-5/3}. \]
Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

• In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar power-law scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

\[E(k) = C \epsilon^{2/3} k^{-5/3}. \]

• Here \(k \) is the Fourier wavenumber and \(E(k) \) is normalized so that \(\int E(k) \, dk \) is the total energy.
Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

• In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar power-law scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

\[E(k) = C \varepsilon^{2/3} k^{-5/3}. \]

• Here \(k \) is the Fourier wavenumber and \(E(k) \) is normalized so that \(\int E(k) \, dk \) is the total energy.

• Kolmogorov suggested that \(C \) might be a universal constant.
Turbulence

Big whirls have little whirls that feed on their velocity, and little whirls have littler whirls and so on to viscosity... [Richardson 1922]

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar power-law scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

\[E(k) = C \epsilon^{2/3} k^{-5/3}. \]

- Here \(k \) is the Fourier wavenumber and \(E(k) \) is normalized so that \(\int E(k) \, dk \) is the total energy.

- Kolmogorov suggested that \(C \) might be a universal constant.

- He hypothesized that the local energy flux in the inertial range is independent of wavenumber, presumably due to an underlying self-similarity.
2D Turbulence in Fourier Space

- Navier–Stokes equation for vorticity $\omega = \hat{z} \cdot \nabla \times u$ of an incompressible ($\nabla \cdot u = 0$) fluid:

$$\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \nu \nabla^2 \omega + f.$$
2D Turbulence in Fourier Space

- Navier–Stokes equation for vorticity $\omega = \hat{z} \cdot \nabla \times \mathbf{u}$ of an incompressible ($\nabla \cdot \mathbf{u} = 0$) fluid:

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \nu \nabla^2 \omega + f.$$

- In Fourier space:

$$\frac{\partial \omega_k}{\partial t} + \nu_k \omega_k = \int d\mathbf{p} \int d\mathbf{q} \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^* + f_k,$$

where $\nu_k = \nu k^2$ and $\epsilon_{kpq} = (\hat{z} \cdot \mathbf{p} \times \mathbf{q}) \delta(k + p + q)$ is antisymmetric under permutation of any two indices.
\begin{equation*}
\frac{\partial \omega_k}{\partial t} + \nu_k \omega_k = \int dp \int dq \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^* + f_k,
\end{equation*}

- When $\nu = f_k = 0$,

enstrophy $Z = \frac{1}{2} \int |\omega_k|^2 dk$ and energy $E = \frac{1}{2} \int \frac{|\omega_k|^2}{k^2} dk$ are conserved:

\begin{align*}
\frac{\epsilon_{kpq}}{q^2} & \text{ antisymmetric in } k \leftrightarrow p, \\
\frac{1}{k^2} \frac{\epsilon_{kpq}}{q^2} & \text{ antisymmetric in } k \leftrightarrow q.
\end{align*}
Forcing at $k = 2$, friction for $k < 3$, viscosity for $k \geq k_H = 300$ (1023 \times 1023 dealiased modes)
logarithmic slope of $E(k)$

$k_H = 300$

$k_H = 0$
Cutoff viscosity ($k \geq k_H = 300$)
Enstrophy transfer rates

\[\Pi_Z, \epsilon_Z \]

Cutoff viscosity \((k \geq k_H = 300)\)
Enstrophy transfer rates

$\Pi_Z \approx \epsilon_Z$

Molecular viscosity ($k \geq k_H = 0$)
Transfer vs. Flux

- Distinguish between transfer and flux.
Transfer vs. Flux

• Distinguish between transfer and flux.

• The mean rate of enstrophy transfer to $[k, \infty)$ is given by

$$\Pi(k) = \int_k^\infty T(k) \, dk = - \int_0^k T(k) \, dk.$$
Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to \([k, \infty)\) is given by

\[
\Pi(k) = \int_k^\infty T(k) \, dk = -\int_0^k T(k) \, dk.
\]

- In a steady state, \(\Pi(k)\) will trivially be constant within a true inertial range.
Transfer vs. Flux

• Distinguish between transfer and flux.

• The mean rate of enstrophy transfer to \([k, \infty)\) is given by

\[
\Pi(k) = \int_k^\infty T(k) \, dk = -\int_0^k T(k) \, dk.
\]

• In a steady state, \(\Pi(k)\) will trivially be constant within a true inertial range.

• The statement of local wavenumber-independent inertial-range energy flux is fundamentally different than the trivial observation that the nonlocal energy transfer is independent of wavenumber in the inertial range.
Transfer vs. Flux

- Distinguish between transfer and flux.
- The mean rate of enstrophy transfer to \([k, \infty)\) is given by

\[
\Pi(k) = \int_{k}^{\infty} T(k) \, dk = -\int_{0}^{k} T(k) \, dk.
\]

- In a steady state, \(\Pi(k)\) will trivially be constant within a true inertial range.
- The statement of local wavenumber-independent inertial-range energy flux is fundamentally different than the trivial observation that the nonlocal energy transfer is independent of wavenumber in the inertial range.

- In contrast, the enstrophy flux through a wavenumber \(k\) is the amount of enstrophy transferred to small scales via triad interactions involving mode \(k\).
Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov’s famous 5/3 power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.
Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov’s famous 5/3 power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.

- To validate Kolmogorov’s uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.
Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov’s famous 5/3 power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.

- To validate Kolmogorov’s uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.

- The key tool needed is the partial fast Fourier transform, where the summation limits are restricted by a spatially-dependent constraint.
Uniform flux

- Although the independence of the local inertial-range energy flux with wavenumber is one of the key hypothesis underlying Kolmogorov’s famous 5/3 power-law form for the kinetic energy spectrum, it has never been directly tested, either experimentally or numerically.

- To validate Kolmogorov’s uniform flux hypothesis in a high-resolution pseudospectral code, detailed wavenumber constraints must be imposed on the convolution.

- The key tool needed is the partial fast Fourier transform, where the summation limits are restricted by a spatially-dependent constraint.

- To this end, we have improved on previous attempts [Ying 2009] to develop a partial FFT based on the fractional Fourier transform and Bluestein’s algorithm [Bluestein 1970].
Flux Decomposition for a Single \((k, p, q)\) Triad

\[
L_k = T_k \\
S_k = 0
\]

\[
L_k = -T_p \\
S_k = -T_q
\]

\[
L_k = 0 \\
S_k = T_k
\]

- Note that energy is conserved: \(L_k + S_k = T_k = -T_p - T_q\). Thus

\[
L_k = \text{Re} \sum_{|k|=k} M_{k,p} \omega_p \omega_{k-p} \omega_k^* - \text{Re} \sum_{|k|=k} M_{p,k-p} \omega_k \omega_{k-p} \omega_p^*.
\]
Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the *discrete cyclic convolution*

\[
\sum_{p=0}^{N-1} F_p G_{k-p},
\]

where the vectors \(F \) and \(G \) have period \(N \).
Discrete Cyclic Convolution

• The FFT provides an efficient tool for computing the *discrete cyclic convolution*

\[
\sum_{p=0}^{N-1} F_p G_{k-p},
\]

where the vectors \(F \) and \(G \) have period \(N \).

• Define the *Nth primitive root of unity*:

\[
\zeta_N = \exp \left(\frac{2\pi i}{N} \right).
\]
Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the *discrete cyclic convolution*

\[
\sum_{p=0}^{N-1} F_p G_{k-p},
\]

where the vectors F and G have period N.

- Define the *Nth primitive root of unity*:

\[
\zeta_N = \exp \left(\frac{2\pi i}{N}\right).
\]

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_N^r = \zeta_{N/r}$ and $\zeta_N^N = 1$.
Discrete Cyclic Convolution

- The FFT provides an efficient tool for computing the discrete cyclic convolution

\[\sum_{p=0}^{N-1} F_p G_{k-p}, \]

where the vectors \(F \) and \(G \) have period \(N \).

- Define the \(N \)th primitive root of unity:

\[\zeta_N = \exp \left(\frac{2\pi i}{N} \right). \]

- The fast Fourier transform (FFT) method exploits the properties that \(\zeta_N^r = \zeta_{N/r} \) and \(\zeta_N^N = 1 \).

- However, the pseudospectral method requires a linear convolution.
The unnormalized *backwards discrete Fourier transform* of \(\{F_k : k = 0, \ldots, N\} \) is

\[
f_j = \sum_{k=0}^{N-1} \zeta_N^{jk} F_k \quad j = 0, \ldots, N - 1.
\]
• The unnormalized *backwards discrete Fourier transform* of \(\{F_k : k = 0, \ldots, N\} \) is

\[
f_j = \sum_{k=0}^{N-1} \zeta_N^{jk} F_k \quad j = 0, \ldots, N - 1.
\]

• The corresponding *forward transform* is

\[
F_k = \frac{1}{N} \sum_{j=0}^{N-1} \zeta_N^{-kj} f_j \quad k = 0, \ldots, N - 1.
\]
• The unnormalized \textit{backwards discrete Fourier transform} of
\(\{F_k : k = 0, \ldots, N\} \) is

\[
f_j = \sum_{k=0}^{N-1} \zeta_N^{jk} F_k \quad j = 0, \ldots, N - 1.
\]

• The corresponding \textit{forward transform} is

\[
F_k = \frac{1}{N} \sum_{j=0}^{N-1} \zeta_N^{-kj} f_j \quad k = 0, \ldots, N - 1.
\]

• The orthogonality of this transform pair follows from

\[
\sum_{j=0}^{N-1} \zeta_N^{\ell j} = \begin{cases}
N & \text{if } \ell = sN \text{ for } s \in \mathbb{Z}, \\
\frac{1}{1 - \zeta_N^\ell} & \text{otherwise}.
\end{cases}
\]
Convolution Theorem

\[
\sum_{j=0}^{N-1} f_j g_j \zeta_N^{-jk} = \sum_{j=0}^{N-1} \zeta_N^{-jk} \left(\sum_{p=0}^{N-1} \zeta_N^{jp} F_p \right) \left(\sum_{q=0}^{N-1} \zeta_N^{jq} G_q \right)
\]

\[
= \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_p G_q \sum_{j=0}^{N-1} \zeta_N^{(-k+p+q)j}
\]

\[
= N \sum_{s} \sum_{p=0}^{N-1} F_p G_{k-p+sN}.
\]

- The terms indexed by \(s \neq 0\) are *aliases*; we need to remove them!
Convolution Theorem

\[
\sum_{j=0}^{N-1} f_j g_j \zeta_N^{-j k} = \sum_{j=0}^{N-1} \zeta_N^{-j k} \left(\sum_{p=0}^{N-1} \zeta_N^{j p} F_p \right) \left(\sum_{q=0}^{N-1} \zeta_N^{j q} G_q \right)
\]

\[
= \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_p G_q \sum_{j=0}^{N-1} \zeta_N^{(-k+p+q)j}
\]

\[
= N \sum_{s} \sum_{p=0}^{N-1} F_p G_{k-p+sN}.
\]

- The terms indexed by \(s \neq 0 \) are **aliases**; we need to remove them!

- If only the first \(m \) entries of the input vectors are nonzero, aliases can be avoided by **zero padding** input data vectors of length \(m \) to length \(N \geq 2m - 1 \).
Convergence Theorem

\[
\sum_{j=0}^{N-1} f_j g_j \zeta_N^{-jk} = \sum_{j=0}^{N-1} \zeta_N^{-jk} \left(\sum_{p=0}^{N-1} \zeta_N^{jp} F_p \right) \left(\sum_{q=0}^{N-1} \zeta_N^{jq} G_q \right)
\]

\[
= \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_p G_q \sum_{j=0}^{N-1} \zeta_N^{(-k+p+q)j} = N \sum_{s} \sum_{p=0}^{N-1} F_p G_{k-p+sN}.
\]

- The terms indexed by \(s \neq 0 \) are *aliases*; we need to remove them!
- If only the first \(m \) entries of the input vectors are nonzero, aliases can be avoided by *zero padding* input data vectors of length \(m \) to length \(N \geq 2m - 1 \).
- *Explicit zero padding* prevents mode \(m - 1 \) from beating with itself, wrapping around to contaminate mode \(N = 0 \mod N \).
Implicit Dealiasing

• Let $N = 2m$. For $j = 0, \ldots, 2m - 1$ we want to compute

$$f_j = \sum_{k=0}^{2m-1} \zeta_{2m}^{jk} F_k.$$
Implicit Dealiasing

• Let $N = 2m$. For $j = 0, \ldots, 2m - 1$ we want to compute

$$f_j = \sum_{k=0}^{2m-1} \zeta_{2m}^{jk} F_k.$$

• If $F_k = 0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$f_{2\ell} = \sum_{k=0}^{m-1} \zeta_{2m}^{2\ell k} F_k = \sum_{k=0}^{m-1} \zeta_m^{\ell k} F_k,$$

$$f_{2\ell+1} = \sum_{k=0}^{m-1} \zeta_{2m}^{(2\ell+1)k} F_k = \sum_{k=0}^{m-1} \zeta_m^{\ell k} \zeta_{2m}^k F_k, \quad \ell = 0, 1, \ldots, m - 1.$$
Implicit Dealiasing

• Let $N = 2m$. For $j = 0, \ldots, 2m - 1$ we want to compute

$$f_j = \sum_{k=0}^{2m-1} \zeta_{2m}^j k F_k.$$

• If $F_k = 0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$f_{2\ell} = \sum_{k=0}^{m-1} \zeta_{2m}^{2\ell k} F_k = \sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_k,$$

$$f_{2\ell+1} = \sum_{k=0}^{m-1} \zeta_{2m}^{(2\ell+1)k} F_k = \sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2m}^k F_k, \quad \ell = 0, 1, \ldots m - 1.$$

• This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2m \log_2 m = N \log_2 m$.
Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer **FFTW++** (v 2.02) on top of the **FFTW** library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
Fast Variably Restricted Dealiased Convolution

- We need a practical algorithm for computing many *partial* Fourier transforms at once:

\[u_j = \sum_{|k| < c(j)} \zeta_N^{k \cdot j} U_k \]

where \(\zeta_N = e^{2\pi i/N} \) is the \(N \)th primitive root of unity.
Fast Variably Restricted Dealiased Convolution

• We need a practical algorithm for computing many partial Fourier transforms at once:

\[u_j = \sum_{|k|<c(j)} \zeta_N^{k \cdot j} U_k \]

where \(\zeta_N = e^{2\pi i / N} \) is the \(N \)th primitive root of unity.

• Here \(c(j) \) is a spatially-dependent constraint on the summation limits.
Fast Variably Restricted Dealiased Convolution

• We need a practical algorithm for computing many partial Fourier transforms at once:

\[u_j = \sum_{|k|<c(j)} \zeta_N^{|k|} j U_k \]

where \(\zeta_N = e^{2\pi i / N} \) is the \(N \)th primitive root of unity.

• Here \(c(j) \) is a spatially-dependent constraint on the summation limits.

• Goal: obtain a ‘fast’ computational scaling, following Ying & Fomel [2009] but with a smaller overall coefficient.
Partial 1D Fourier Transform

• Let $\zeta^\alpha \equiv \zeta_{1/a} = e^{2\pi i \alpha}$.
Partial 1D Fourier Transform

- Let $\zeta^\alpha \doteq \zeta_{1/a} = e^{2\pi i \alpha}$.

- The unnormalized backward discrete partial Fourier transform of a complex vector $\{F_k : k = 0, \ldots, N - 1\}$ is defined as

$$f_j \doteq \sum_{k=0}^{c(j)} \zeta^{\alpha j k} F_k, \quad j = 0, \ldots, N - 1.$$
Special case of partial 1D FFT: $c(j) = j$

- Given inputs $\{F_k : k = 0, \ldots, N - 1\}$,

$$f_j = \sum_{k=0}^{j} \zeta^{\alpha j k} F_k, \quad j = 0, \ldots, N - 1.$$
Special case of partial 1D FFT: $c(j) = j$

- Given inputs $\{F_k : k = 0, \ldots, N - 1\}$,

$$f_j = \sum_{k=0}^{j} \zeta^{\alpha j k} F_k, \quad j = 0, \ldots, N - 1.$$

- Since $jk = \frac{1}{2} \left[j^2 + k^2 - (j - k)^2 \right]$, [Bluestein 1970]

$$f_j = \sum_{k=0}^{j} \zeta^{\frac{\alpha}{2} \left[j^2 + k^2 - (j - k)^2 \right]} F_k = \zeta^{\alpha j^2 / 2} \sum_{k=0}^{j} \zeta^{\alpha k^2 / 2} F_k \zeta^{-\alpha(j-k)^2/2}.$$
Special case of partial 1D FFT: \(c(j) = j \)

- Given inputs \(\{ F_k : k = 0, \ldots, N - 1 \} \),

\[
f_j = \sum_{k=0}^{j} \zeta^{\alpha j k} F_k, \quad j = 0, \ldots, N - 1.
\]

- Since \(jk = \frac{1}{2} \left[j^2 + k^2 - (j - k)^2 \right] \), [Bluestein 1970]

\[
f_j = \sum_{k=0}^{j} \zeta^{\frac{\alpha}{2} \left[j^2 + k^2 - (j - k)^2 \right]} F_k = \zeta^{\alpha j^2/2} \sum_{k=0}^{j} \zeta^{\alpha k^2/2} F_k \zeta^{-\alpha (j-k)^2/2}.
\]

- This can be written as the convolution of the two sequences \(g_j = \zeta^{\alpha j^2} \) and \(h_k = g_k F_k \):

\[
f_j = g_j \sum_{k=0}^{j} h_k \overline{g}_{j-k}.
\]
Partial FFT: Special Case $c(j) = (pj + s)/q$

- Here p, q, and s are integers, with $p \neq 0$ and

$$f_j = \sum_{k=0}^{\lfloor (pj+s)/q \rfloor} \zeta^{\alpha_j k} F_k, \quad j = 0, \ldots, M - 1.$$
Partial FFT: Special Case $c(j) = (pj + s)/q$

- Here p, q, and s are integers, with $p \neq 0$ and

$$f_j = \sum_{k=0}^{\lfloor (pj+s)/q \rfloor} \zeta^{\alpha jk} F_k, \quad j = 0, \ldots, M - 1.$$

- Let $pj + s = qn + r$, with $n = 0, \ldots, N - 1$. Then

$$f_j = \sum_{k=0}^{n} \zeta_p^{\alpha (qn+r-s)k} F_k$$

$$= \sum_{k=0}^{n} \zeta_{2p}^{\alpha q [n^2+k^2-(n-k)^2]} \zeta_p^{\alpha(r-s)k} F_k$$

$$= \zeta_{2p}^{\alpha q n^2} \sum_{k=0}^{n} \zeta_{2p}^{-\alpha q(n-k)^2} \zeta_{2p}^{\alpha q k^2} \zeta_p^{\alpha(r-s)k} F_k$$
On setting $g_k = \zeta_{2p}^{\alpha q k^2}$ and $h_k = g_k \zeta_p^{\alpha (r-s)k} F_k$, the result can be written as a convolution of two sequences $\{h_k\}$ and $\{g_k\}$:

$$f_j = g_n \sum_{k=0}^{n} h_k \overline{g}_{n-k}, \quad j = 0, \ldots, M - 1.$$
On setting $g_k = \zeta^{\alpha q k^2}$ and $h_k = g_k \zeta^{\alpha (r-s) k} F_k$, the result can be written as a convolution of two sequences $\{h_k\}$ and $\{g_k\}$:

$$f_j = g_n \sum_{k=0}^{n} h_k \overline{g}_{n-k}, \quad j = 0, \ldots, M - 1.$$

This general algorithm is only efficient when $p = 1$ or $q = 1$.
On setting $g_k = \zeta_{2p}^{\alpha q k^2}$ and $h_k = g_k \zeta_p^{\alpha (r-s) k} F_k$, the result can be written as a convolution of two sequences $\{h_k\}$ and $\{g_k\}$:

$$f_j = g_n \sum_{k=0}^{n} h_k \bar{g}_{n-k}, \quad j = 0, \ldots, M - 1.$$

This general algorithm is only efficient when $p = 1$ or $q = 1$.

A similar procedure can be used to compute partial convolutions.
• On setting \(g_k = \zeta_{2p}\alpha^q k^2 \) and \(h_k = g_k \zeta_p \alpha^{(r-s)k} F_k \), the result can be written as a convolution of two sequences \(\{h_k\} \) and \(\{g_k\} \):

\[
f_j = g_n \sum_{k=0}^{n} h_k \overline{g}_{n-k}, \quad j = 0, \ldots, M - 1.
\]

• This general algorithm is only efficient when \(p = 1 \) or \(q = 1 \).

• A similar procedure can be used to compute partial convolutions.

• The technique can be readily extended to higher dimensions.
Rectangular subdivision for $c(j) = j$
Triangular subdivision for $c(j) = j$
Rectangular subdivision for

\[c(j) = (N - 1) \sin \frac{\pi j}{N - 1} \]
Hybrid subdivision for

\[c(j) = (N - 1) \sin \frac{\pi j}{(N - 1)} \]
Computation time

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Comparison of computation time for different methods.}
\end{figure}
Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.
Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.

• Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

\[
\frac{d}{dt} \int f(\omega) \, dx = \int f'(\omega) \frac{\partial \omega}{\partial t} \, dx = \int f'(\omega) u \cdot \nabla \omega \, dx = - \int u \cdot \nabla f(\omega) \, dx = \int f(\omega) \nabla \cdot u \, dx = 0.
\]
Casimir Invariants

- Inviscid unforced two dimensional turbulence has uncountably many other Casimir invariants.

- Any continuously differentiable function of the (scalar) vorticity is conserved by the nonlinearity:

\[
\frac{d}{dt} \int f(\omega) \, d\mathbf{x} = \int f'(\omega) \frac{\partial \omega}{\partial t} \, d\mathbf{x} = - \int f'(\omega) \mathbf{u} \cdot \nabla \omega \, d\mathbf{x} \\
= - \int \mathbf{u} \cdot \nabla f(\omega) \, d\mathbf{x} = \int f(\omega) \nabla \cdot \mathbf{u} \, d\mathbf{x} = 0.
\]

- Do these invariants also play a fundamental role in the turbulent dynamics, in addition to the quadratic (energy and enstrophy) invariants? Do they exhibit cascades?
Conclusions

- One should distinguish between nonlocal transfer and flux.
Conclusions

* One should distinguish between nonlocal transfer and flux.

* To compute this decomposition efficiently, one needs a partial convolution.
Conclusions

• One should distinguish between nonlocal transfer and flux.

• To compute this decomposition efficiently, one needs a partial convolution.

• Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov’s famous power-law conjecture for turbulence.
Conclusions

• One should distinguish between nonlocal transfer and flux.

• To compute this decomposition efficiently, one needs a partial convolution.

• Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov’s famous power-law conjecture for turbulence.

• This will allow us to verify and exploit inertial-range self-similarity in 2D turbulence and study the flux locality profile.
Conclusions

• One should distinguish between nonlocal transfer and flux.

• To compute this decomposition efficiently, one needs a partial convolution.

• Partial dealiased convolutions can be used to compute detailed inertial-range flux profiles and for the first time verify a key underpinning assumption of Kolmogorov’s famous power-law conjecture for turbulence.

• This will allow us to verify and exploit inertial-range self-similarity in 2D turbulence and study the flux locality profile.

• The locality profile can be used to infer the effective eddy damping contribution from each of truncated (subgrid) modes, allowing us to build a phenomenological dynamic subgrid model that on average removes the right amount of energy from each of the scales near the subgrid wavenumber cutoff.
References

