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2D Turbulence
2D Navier–Stokes vorticity equation:

∂ωk

∂t
+ νkωk =

∫

dp

∫

dq
ǫkpq

q2
ω∗

pω
∗

q ,

whereνk
.
= νk2 and

ǫkpq
.
= (ẑ·p×q) δ(k + p + q)

is antisymmetric under permutation of any two indices.

EnergyE0 and enstrophyZ0 on the fine grid:

E0
.
=

1

2

∫

dk
|ωk|

2

k2
, Z0

.
=

1

2

∫

dk |ωk|
2 .

First considerνk = 0. Conservation ofE0 andZ0 follow from:

1

k2

ǫkpq

q2
antisymmetric in k ↔ q,

ǫkpq

q2
antisymmetric in k ↔ p.



Spectral Reduction
Introduce a coarse-grained grid indexed byK.

Define new variables

ΩK = 〈ωk〉K
.
=

1

∆K

∫

∆K

ωk dk,

where∆K is the area of binK.

Evolution ofΩK :

∂ΩK

∂t
+ 〈νkωk〉K =

∑

P ,Q

∆P ∆Q

〈
ǫkpq

q2
ω∗

pω
∗

q

〉

KP Q

,

where〈f〉KP Q =
1

∆K∆P ∆Q

∫

∆K

dk

∫

∆P

dp

∫

∆Q

dq f.

Approximateωp andωq by bin-averaged valuesΩP andΩQ:

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈
ǫkpq

q2

〉

KP Q

Ω∗

P Ω∗

Q.
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Wavenumber Bin Geometry (3 x 8 bins)



On the coarse grid, define the energyE and enstrophyZ

E
.
=

1

2

∑

K

|ΩK |2

K2
∆K , Z

.
=

1

2

∑

K

|ΩK |2 ∆K .

Enstrophy is still conserved since
〈
ǫkpq

q2

〉

KP Q

antisymmetric in K ↔ P .

But energy conservation has been lost!

1

K2

〈
ǫkpq

q2

〉

KP Q

NOT antisymmetric in K ↔ Q.

Reinstate both desired symmetries with the modified coefficient
〈
ǫkpq

〉

KP Q

Q2
.

Energy and enstrophy are now simultaneously conserved.



Properties
We call the forced-dissipative version of this approximation
Spectral Reduction (SR):

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈
ǫkpq

〉

KP Q

Q2
Ω∗

P Ω∗

Q.

SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

It has the same general structure and symmetries as the original
equation and in this sense may be considered a
renormalization.

SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.



Moments
Q. How accurate is Spectral Reduction?

A. For large bins, theinstantaneous dynamics of SR is
inaccurate.

However: the equations for thetime-averaged (or
ensemble-averaged) moments predicted by SRclosely
approximate those of the exact bin-averaged statistics.
Eg., time average the exact bin-averaged enstrophy equation:

∂

∂t

〈

|ωk|
2
〉

K
+2 Re

〈

νk|ωk|
2
〉

K
= 2 Re

∑

P ,Q

∆P ∆Q

〈
ǫkpq

q2
ω∗

kω
∗

pω
∗

q

〉

KP Q

,

where thebar means time averageand〈·〉K means bin average.

Time-averaged quantities such as|ωk|
2 andω∗

kω
∗

pω
∗

q are
generallysmooth functions ofk, p, q on the four-dimensional
surface defined by the triad conditionk + p + q = 0.



Mean Value Theorem for integrals:for someξ ∈ K,

|ΩK |2 =
∣
∣ωξ

∣
∣2 ≈ |ωk|

2 ∀k ∈ K.

To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbersK, P , Q:

∂

∂t
|ΩK |2+2 Re 〈νk〉K |ΩK |2 = 2 Re

∑

P ,Q

∆P ∆Q

〈
ǫkpq

q2

〉

KP Q

Ω∗

KΩ∗

P Ω∗

Q.

To the extent that the wavenumber magnitudeq varies slowly
over a bin:

∂

∂t
|ΩK |2+2 Re 〈νk〉K |ΩK |2 = 2 Re

∑

P ,Q

∆P ∆Q

〈
ǫkpq

〉

KP Q

Q2
Ω∗

KΩ∗

P Ω∗

Q.

But this is precisely the time-average of the SR equation!



Convergence
The previous argument suggests that Spectral Reductioncan
indeed provide an accurate statistical description of turbulence,
even when each bin contains many statistically independent
modes.

As the wavenumber partition is refined, one expects the
solutions of the time-averaged SR equations to converge to the
exact statistical solution.

An object-orientedC++ program(Triad) has been developed
to implement and test Spectral Reduction.



Convergence of Partition



Structure Functions



Noncanonical Hamiltonian Formulation
Underlyingnoncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

ω̇k =

∫

dq Jkq

δH

δωq
,

where

H
.
=

1

2

∫

dk
|ωk|

2

k2
,

Jkq
.
=

∫

dp ǫkpqω
∗

p.

Leads to inviscid Navier–Stokes equation:

∂ωk

∂t
+ νkωk =

∫

dp

∫

dq
ǫkpq

q2
ω∗

pω
∗

q .



Liouville Theorem
Navier–Stokes:

Jkq
.
=

∫

dp ǫkpqω
∗

p

⇒

∫

dk
δω̇k

δωk

=

∫

dk

∫

dq
δJkq

δωk
︸ ︷︷ ︸

δH

δωq
+ Jkq

δ2H

δωkδωq
= 0.

ǫk(−k)q = 0

Spectral Reduction:

JKQ
.
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∆P
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P

⇒
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K

∂Ω̇K
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︸ ︷︷ ︸

∂H

∂ΩQ

+ JKQ
∂2H

∂ΩK∂ΩQ
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〈
ǫkpq

〉

K(−K)Q
= 0



Statistical Equipartition
If the dynamics aremixing, the Liouville Theorem and the
coarse-grained invariants

E
.
=

1

2

∑

K

|ΩK |2

K2
∆K , Z

.
=

1

2

∑

K

|ΩK |2 ∆K ,

lead to statistical equipartition of(α/K2 + β) |ΩK |2 ∆K .

This is the correct equipartition only foruniform bins.
However, for nonuniform bins, a rescaling of time by∆K :

1

∆K

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈
ǫkpq

〉

KP Q

Q2
Ω∗

P Ω∗

Q.

yields the correct inviscid equipartition:
〈

|Ωk|
2
〉

=
1

α
K2 + β

.



Relaxation to equipartition



Stiffness Problem
The rescaling of time does not change the steady-state moment
equations.

It does affect the statistical trajectory of the system and the
resulting statistical solution.

However, the resulting system becomes numerically verystiff.

Unsolved Problem:given an efficient numerical method for
evolving the system of equations

dy

dt
= S(y),

find an efficient numerical method to evolve
dy

dt
= ΛS(y),

whereΛ is a constant real diagonal matrix.



KLB Theory of 2D Turbulence

EnergyE = 1
2

∑

k

|ωk|
2

k2
andenstrophyZ = 1

2

∑

k

|ωk|
2 are

conserved.

. . .
k2 k3k1

Z1 Z3

Z2

E1 E3

. . .

E2E2 = E1 + E3, Z2 = Z1 + Z3.

[Fjørtoft 1953]: energy cascades to large scales and enstrophy
cascades to small scales.

[Kraichnan 1967], [Leith 1968], and [Batchelor 1969] (KLB):
k−5/3 inverse energycascade onlargescales,
k−3 direct enstrophycascade onsmallscales.



2D Enstrophy Cascade
KLB Theory: Enstrophy transfer rate is independent ofk.

Enstrophy transfer rate is proportional to
[Ellison 1962, Kraichnan 1971]

ΠZ(k)
.
=

[
∫ k

0
p2E(p) dp

]1/2

k3E(k)
︸ ︷︷ ︸

f

.

Let f(k)
.
= k3E(k). Differentiate with respect tok:

−2Π2 f
′

f4
=

1

k
.



Let k1 be the smallest wavenumber in the inertial range.

Integration betweenk1 andk [Bowman 1996]⇒

E(k) ∼ k−3

[

log

(
k

k1

)

+ χ1

]
−1/3

, (k ≥ k1),

whereχ1
.
= 2Π2

Zk
−9
1 E−3(k1)/3.

Sinceχ1 > 0, there is no divergence atk = k1, in contrast to
Kraichnan’s result:

E(k) ∼ k−3

[

log

(
k

k1

)]
−1/3

(k ≫ k1).
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Vorticity Field



Structure functions:
[Falkovich & Lebedev 1994], [Paretet al. 1999]

Sn(r)
.
= |v(r) − v(0)|n ∼ rn

[

log
(r1
r

)

+ χ′n

]n/3
.
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Coherent Structures
Weiss criterion[Weiss 1991, Pedersen 1995] for coherent
structures:

Q =
1

4

(
strain
︷︸︸︷

σ2 −

rotation
︷︸︸︷

ω2
)

= ψ2
xy − ψxxψyy

Q < 0 (elliptic) ⇒ rotation (coherent structures)

Q > 0 (hyperbolic)⇒ strain (deformation)



Weiss Field



Conclusions
Spectral Reductionaffords a dramatic reduction in the number
of degrees of freedom that must be explicitly evolved in
turbulence simulations.

One can evolve a turbulent system forthousands of eddy
turnover timesto obtain energy spectrasmooth enough to
compare with theory.

Spectral Reduction has been successfully applied to
numerically verify the logarithmically corrected 2D enstrophy
law to very high accuracy.

The high-order structure functions computed by the
pseudospectral method and Spectral Reduction are in excellent
agreement at small scales, even in the presence coherent
structures.

Spectral Reduction lends numerical support to the theoretical
and experimental claim that there areno intermittency
corrections in strongly forced 2D enstrophy cascades.
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