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2D Turbulence
2D Navier—Stokes vorticity equation:

—+kak—/dp/dq€kpq

wherev, = vk? and

€kpg = (2:pXq)d(k+p+q)
IS antisymmetric under permutation of any two indices.
EnergyEy and enstrophy/, on the fine grid:
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First considet,, = 0. Conservation oty andZ, follow from:
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antisymmetricin k< gq,

antisymmetricin k< p.



Spectral Reduction
Introduce a coarse-grained grid indexediy
Define new variables

O = (W) = —

=
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whereA i 1S the area of birk.

w, dk,

Evolution of Q g-:

where(f}KPQ — AKAPAQ /Ade/APdp/Aquf.

Approximatew, andw, by bin-averaged valu€3p and(2g:
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On the coarse grid, define the eneiflgyand enstrophy

1 ’QK\Q ! 2

Enstrophy is still conserved since

<€k’2’q> antisymmetricin K < P.
q KPQ

But energy conservation has been lost!

K2 q2

Reinstate both desired symmetries with the modified coefftci

1 : .
<€kpq> NOT antisymmetricin K < Q.
KPQ

<€kPQ>KPQ
Q*

Energy and enstrophy are now simultaneously conserved.




Properties

We call the forced-dissipative version of this approxirmati
Spectral Reduction (SR):

SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

It has the same general structure and symmetries as thaairig
equation and in this sense may be considered a
renormalization.

SR obeys a Liouville Theorem; in the inviscid limit, it yield
statistical-mechanical (equipartition) solutions.



Moments
e Q. How accurate is Spectral Reduction?

e A. Forlarge bins, thénstantaneous dynamics of SR Is
Inaccurate.

e However: the equations for théne-averaged (Or
ensemble-averaged) moments predicted by BRely
approximate those of the exact bin-averaged statistics.

Fg., time average the exact bin-averaged enstrophy equation

3 () 2l - 2me 3= e (BT,
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where thebar means time avera@ad(:) ,- means bin average.

e Time-averaged quantities such|ag |’ andw;wiws are
generallysmooth functions ofk, p, g on the four-dimensional
surface defined by the triad conditiéw p + g = 0.



e Mean Value Theorem for integralr some¢ € K,

’QK‘QZ ‘wf‘Q%]wk\Q Vk € K.

@ To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumi€rsP, Q.

0 2 2 €k TOT O
E‘QK‘ +2 Re (vg) ¢ |2k | :2ReZAPAQ<%> O Q0.

PQ T KPQ
To the extent that the wavenumber magnitydaries slowly
over a bin:
s, 9 5 <€kPQ>KP %
o7 |k +2Re (i) g | =2Re Y ApAq o 20 050,

P.Q
e But this is precisely the time-average of the SR equation!



Convergence

@ The previous argument suggests that Spectral Reducdion
Indeed provide an accurate statistical description ofulerice,
even when each bin contains many statistically independent
modes.

e As the wavenumber partition is refined, one expects the
solutions of the time-averaged SR equations to convergesto t
exact statistical solution.

e An object-oriented’* " program(Triad) has been developed
to implement and test Spectral Reduction.
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Structure Functions
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Noncanonical Hamiltonian For mulation

e Underlyingnoncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

. OH
Wi, = /dq qu5

" l/dk wi |’
2 k2
qu — /dpékpqw;.

e |eads to inviscid Navier—Stokes equation'

—+ukwk—/dp/

where

Wt
PQ°



Liouville Theorem
e Navier-Stokes:

Jk /dpékpqw
St 0Jkq OH 6°H
dk — dk [ d + Ji = 0.
= / OWE / / q 5wk 5wq q5wk5wq

€k(—k)g =V

e Spectral Reduction:
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P

0Ok OJkg OH 0*H
> Y= X g
0 £ Mk 00q 00 K000

<€kPQ>K(—K)Q =



Statistical Equipartition

e |f the dynamics arenizing, the Liouville Theorem and the
coarse-grained invariants

Z ’QK\ Ax. 7 %Z Oxl? Ak,
K

lead to statistical equipartition 66/ K2 + 8) Qi |* Ak.

e This is the correct equipartition only fomiform bins.
However, for nonuniform bins, a rescaling of time Ay :

yields the correct inviscid equipartition:

<’Qk\2> = &iﬁ.

K2
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Relaxation to equipartition



Stiffness Problem

The rescaling of time does not change the steady-state ntom
equations.

It does affect the statistical trajectory of the system dued t
resulting statistical solution.

However, the resulting system becomes numerically géfly

Unsolved Problemgiven an efficient numerical method for
evolving the system of equations

dy
< _ g
find an efficient numerical method to evolve
dy
—~ = AS

whereA Is a constant real diagonal matrix.



KLB Theory of 2D Turbulence

w

2
® EnergyE =3 » /:2‘ andenstrophyZ = 1 ) wy|” are
k k

conserved.

Er b
- ]ﬁ ] kz — kS —
1 43
E9 = E1 + L3, EQTZQ Zo = 21+ Z3.

e [Fjartoft 1953]. energy cascades to large scales and qaistro
cascades to small scales.

e [Kraichnan 1967], [Leith 1968], and [Batchelor 1969] (KLB)
k—5/3 inverse energgascade ofargescales,
k.~ direct enstrophgascade osmallscales.



2D Enstrophy Cascade
e KLB Theory: Enstrophy transfer rate is independent of

e Enstrophy transfer rate is proportional to
[Ellison 1962, Kraichnan 1971]

- 11/2
Mz (k) = / p*E(p)dp| K E(k).
0 N——
] ] f
Let f(k) = k*E(k). Differentiate with respect té:

_QﬁQL/ _1

ik



® Letk; be the smallest wavenumber in the inertial range.
e |[ntegration betweeh; andk [Bowman 1996}~

wherey; = 2112k, P B3 (k1) /3.

® Sincey; > 0, there is no divergence &t= ki, In contrast to
Kraichnan’s result:

E(k) ~ k3 [log (%)] o (k> k).
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logarithmic slope of E(k)
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y=[k3 E(k)]3
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Vorticity Field




Structure functions;
e [Falkovich & Lebedev 1994], [Paret al. 1999]

Su(r) = To(r) = 0O ~ " [1og (1) + x|
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Coherent Structures

e \\eiss criterior{Weiss 1991, Pedersen 1995] for coherent
structures:

strain rotation
1 2 2
Q=3( " -« )

— %2;y — ¢xm¢yy
e () < 0 (elliptic) = rotation (coherent structures)
® () > 0 (hyperbolic)= strain (deformation)



Weiss Field




Conclusions

Spectral Reductioaffords a dramatic reduction in the number
of degrees of freedom that must be explicitly evolved Iin
turbulence simulations.

One can evolve a turbulent system foousands of eddy
turnover timedo obtain energy spectsanooth enough to
compare with theory.

Spectral Reduction has been successfully applied to
numerically verify the logarithmically corrected 2D ermgihy
law to very high accuracy.

The high-order structure functions computed by the
pseudospectral method and Spectral Reduction are in ertell
agreement at small scales, even in the presence coherent
structures.

Spectral Reduction lends numerical support to the thexaleti
and experimental claim that there are intermittency
corrections in strongly forced 2D enstrophy cascades.
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