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Turbulence

Big wharls have little whirls that feed on their
velocity, and little wharls have littler whirls and so on
to viscosity. . . [Richardson 1922]

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C3k513,
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Turbulence

Big wharls have little whirls that feed on their
velocity, and little whirls have littler whirls and so on
to viscosity. . . [Richardson 1922

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C3k513,

e Here k is the Fourier wavenumber and E(k) is normalized so
that [ E(k)dk is the total energy.

e Kolmogorov suggested that C' might be a universal constant.
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2D Incompressible Turbulence

e In 2D, where w4 maps a plane normal to 2 to R?, the vorticity
vector w = V Xwu is always perpendicular to w.
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2D Incompressible Turbulence

e In 2D, where w maps a plane normal to 2 to R?, the vorticity
vector w = V Xwu is always perpendicular to w.

e Navier—Stokes equation for the scalar vorticity w = 2.V Xu:

%—C: +u-Vw =vVw + f.

e The incompressibility condition V-u = 0 can be exploited to
find v in terms of w:

Vwxz=Vxz2w=Vx(Vxu)=V(V-u) - Vu=-Vu.

o Thus u = 2X VV %w. In Fourier space:

dwk
— = S — vk*wk + fr,
g k K+ Sk
zXq-k €
where S = Z qg WqW_k—q = Z %w_pw_q.

q p.q



Here €rpg = 2P X q Op1psq 1s antisymmetric under permutation
of any two indices.

dwk

€
R =D Dt

e When v = f = 0:

1 1 ’
enstrophy Z = 5; \wk\Q and energy B = §Z ‘CZ;‘ are

conserved:

€
kg 1 antisymmetricin = k < p,
q

l e

B % antisymmetric in -~ k <> q.



Fjortoft Dual Cascade Scenario

E, L
Z1 Z3
E2 Zg

Ey = F, + Fjs, Ty = 71 + Zs, 7; = ki F;.
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Fjortoft Dual Cascade Scenario

E, L
Z1 Z3
E2 ZQ

Ey = F, + Fjs, Ty = 71 + Zs, 7; = ki F;.

e When /61 — /f, kQ — Qk’, and kg — 4k:

4 1 1 4
bW~ -FEy, Zi=~=-Z by~ -FEy, Z3=~—-Z>.
1 5 29 1 5 29 3 5 29 3 5 2
e Fjgrtoft [1953]: energy cascades to large scales and enstrophy

cascades to small scales.
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2D Turbulence: Mathematical Formulation

e Consider the Navier—Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density p = 1:

9,
8—?—Vv2u+u-Vu+VP:F
Vu =0,
/udaz— /Fdw—
0

with 2 = [0, 27] x [0, 277] and periodic boundary conditions on 0f).



2D Turbulence: Mathematical Formulation

e Consider the Navier—Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density p = 1:

%—?—VVQquu Vu+VP=F,
V.u =0,
/udaz— /Fdw—

0
—Uo

with 2 = [0, 27] x [0, 277] and periodic boundary conditions on 9.

e Introduce the Hilbert space
H(Q) =l {u c (C*(Q)NLYN))* | Veu =0, / udx = O} .
Q

with inner product (u,v) = [, u( v(x,t)dz and L* norm
ul = (u,u)"?.



e For u € H(Q)), the Navier-Stokes equations can be expressed:

le—?; —vwWu+uVu+VP=F.
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e For u € H(()), the Navier-Stokes equations can be expressed:

Cji_? —vwWu+uVu+VP=F.

o Introduce A = —P(V?), f = P(F), and the bilinear map

B(u,u) =P (u-Vu+ VP),
where P is the Helmholtz-Leray projection operator from
(L?(2))? to H(Q):
P(v) = v — VV *V.v, Yo € (L*(Q))*%
e The dynamical system can then be compactly written:

C;—?quAuth(u,u) = f.



Stokes Operator A

e The operator A = P(—V?) is positive semi-definite and self-
acjoint, with a compact inverse.
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Stokes Operator A

e The operator A = P(—V?) is positive semi-definite and self-
acdjoint, with a compact inverse.

e On the periodic domain §2 = |0, 27| x [0, 27|, the eigenvalues of
A are

AN=kk, kecZx7Z\0}.
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Stokes Operator A

e The operator A = P(—V?) is positive semi-definite and self-
adjoint, with a compact inverse.

e On the periodic domain §2 = |0, 27| x |0, 27|, the eigenvalues of
A are

A=k-k, ke Z x 7Z\{0}.
e The eigenvalues of A can be arranged as
O<)\0<)\1<)\2<"', A =1

and its eigenvectors w;, ¢ € Ny, form an orthonormal basis for the
Hilbert space H, upon which we can define any quotient power

of A:

A%w; = Nw;, a€eR, 75N

10



Subspace of Finite Enstrophy

e We define the subspace of H consisting of solutions with finite
enstrophy:

( )

V=3queH]|» \uw)<oo;.

7=0
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Subspace of Finite Enstrophy

e We define the subspace of H consisting of solutions with finite
enstrophy:

( )

V=<queH| ZAj(u,wj)2<oo>.

7=0

\ /

e Another suitable norm for elements uw € V is

R AN
— AV = / i I . )2
lul| = A"l ( o > A(uw))

i=1 j=0

1/2
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Properties of the Bilinear Map

e We will make use of the antisymmetry

(B(u,v),w) = —(B(u,w),v).
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Properties of the Bilinear Map

e We will make use of the antisymmetry

(B(u,v),w) = —(B(u,w),v).

e In 2D, we also have orthogonality:

(B(u,u), Au) =0

and the strong form of enstrophy invariance:

(B(Av,v),u) = (B(u,v), Av).

e In 2D the above properties imply the symmetry

(B(Au,u),u) + (B(v, Av),u) + (B(v,v), Av) = 0.

12



Dynamical Behaviour

e Our starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:
du

E%—VAu%—B(u,u):f, u € H.
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Dynamical Behaviour

e Our starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:

d
d—?+uAu+B(u,u):f, u e H.
e Take the inner product with w (respectively Aw):
)+ vlfu(t)] P = (£, u(t)
_ 1% —
2dt ’ ’
1d

sl [u@)]]P + v|Aut)]” = (f, Aul(t)).
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Dynamical Behaviour

e Our starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:

d
d—rl;%—uAu%—B(u,u):f, u € H.
e Take the inner product with w (respectively Au):
SO + Alu)] = (f, u(0)
YTk v||u = (f,u(t)),
1d
S @)+ v Au(b)]” = (f, Au(t).

e The Cauchy-Schwarz and Poincaré inequalities yield

(Fru(t) < [fllu@®)]  and Ju(t)] < [Ju?)]]

e Since the existence and uniqueness for solutions to the 2D

Navier—Stokes equation has been proven, a global attractor can
be defined [Ladyzhenskaya 1975], [Foias & Temam 1979).

13



Dynamical Behaviour: Constant Forcing

o If the force f is constant with respect to time, a Gronwall
imequality can be exploited:

() < e u(0)? + (1— e (m) |

vV
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o [f the force f is constant with respect to time, a Gronwall
imequality can be exploited:

() < e u(0)? + (1— e (m) |

vV

£l

e Defining a nondimensional Grashof number G = =, the above
%
inequality can be simplified to

w(t)]? < e Hu(0)] + (1 — e )G
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imequality can be exploited:

(@) < e uO)f + (1 - e (ﬂ) |
r

e Defining a nondimensional Grashof number G = =, the above
%
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Dynamical Behaviour: Constant Forcing

o [f the force f is constant with respect to time, a Gronwall
imequality can be exploited:

() < e u) + - e (L)

v

£l

e Defining a nondimensional Grashof number G = =, the above
%
inequality can be simplified to

u(t)]? < e u(0))? + (1 — e )G
e Similarly,
[u@)]]* < e |u(0)|]* + (1 — e " )*G*.
e Being on the attractor thus requires

u| <vG and  ||ul|| < vG.
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Attractor Set A

e Let S be the solution operator:
S(t)wg = u(t), uy = u(0),

where u(t) is the unique solution of the Navier—Stokes equations.
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where u(t) is the unique solution of the Navier—Stokes equations.

e The closed ball B of radius vG in the space V' is a bounded
absorbing set in H.



Attractor Set A
e Let S be the solution operator:
S(t)ug = u(t), wy = u(0),
where u(t) is the unique solution of the Navier—Stokes equations.

e The closed ball B of radius vG in the space V' is a bounded
absorbing set in H.

e That is, for any bounded set B’ there exists a time t; such that

to = to(B'), and SE)B B, Vi>t.



Attractor Set A

e Let S be the solution operator:
S(t)ug = u(t), wy = u(0),
where u(t) is the unique solution of the Navier—Stokes equations.

e The closed ball B of radius vG in the space V' is a bounded
absorbing set in H.

e That is, for any bounded set B’ there exists a time ¢y such that

to = to(B'), and SE)B B, Vi>t.
e We can then construct the global attractor:
A=()5(t)B,
t>0

so A is the largest bounded, invariant set such that S(t)A = A
for all t > 0.

15



Z—F Plane Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

ul* < |lul? = E<Z
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Z—F Plane Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

ul’ <|lul? = E<Z
e An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u € A,
f]

full < Ll
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Z—F Plane Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

ul’ <|lulf = E<Z
e An upper bound is given by

Theorem 2 (Dascaliuc, Foias, and Jolly [2005])
For all u € A,
f]

full < Ll

e That is,

7 < vGVE.

16



Z—F Plane Bounds: Constant Forcing

27 A
V2G2
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Extended Norm: Random Forcing

e For a random variable o, with probability density function P,
define the ensemble average

o fo()
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Extended Norm: Random Forcing

e For a random variable «;, with probability density function P,

define the ensemble average

o o)

e The extended inner product is

e e o (]
with norm
o= ([ (rP)a )/

18



Dynamical Behaviour: Random Forcing

e Energy balance:

1d, _ -
Sl (A ¢ (Bluw)w) = (Fu) = o

where € is the rate of energy injection.
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Dynamical Behaviour: Random Forcing

e Energy balance:

1d
2dt

where € is the rate of energy injection.

—|u|’ + v(Au, w) + (B(u,u),u) = (f,u) = ¢,

e From the energy conservation identity (B(w,w),u) = 0,

1 | ‘ H HQ—
wl” + rvllu €.
2dt
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Dynamical Behaviour: Random Forcing

e Energy balance:

1d
2dt

where € is the rate of energy injection.

—|u|’ + v(Au, w) + (B(u,u),u) = (f,u) = ¢,

e From the energy conservation identity (B(w,w),u) = 0,

1d

%m\? + vl|ul)® =
e The Poincaré inequality ||u|| > |u| leads to

1d

NP < e~ vluf

1 — —2ut
which implies that |u(t)]* < e”**|u(0)|* + ( - )e.
%
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Dynamical Behaviour: Random Forcing

e Energy balance:

1d
2dt

where € is the rate of energy injection.

—|u|’ + v(Au, w) + (B(u,u),u) = (f,u) = ¢,

e From the energy conservation identity (B(w,w),u) = 0,

1d

§E|u|2 +v||u|]? = e
e The Poincaré inequality ||u|| > |ul| leads to

1d

Sl < e vl

1 — —2ut
which implies that |u(t)]* < e”**|u(0)|* + ( - )e.

vV

e So for every u € A, we expect |u(t)]* < ¢/v.

19



e From |u(t)| < \/€/v we then obtain a lower bound for | f:

e € ) _Ifll

Tlul o fu] T
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e From |u(t)| < \/€/v we then obtain a lower bound for | f:

e © ) _Ifll

T lul o fu] T

e [t is convenient to use this lower bound for | f| to define a lower
bound for the Grashof number G = |f|/v?, which we use as
the normalization G for random forcing:
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e From |u(t)| < \/€/v we then obtain a lower bound for | f:

e € Fw _Ifllul o

Tlul el T

e [t is convenient to use this lower bound for | f| to define a lower
bound for the Grashof number G = |f|/v?, which we use as
the normalization G for random forcing:

e We recently proved the following theorem (submitted to JDE):

Theorem 3 (Emami & Bowman [2017]) For all u € A
with energy tnjection rate €,

€
Jull < /< .
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e From |u(t)| < \/€/v we then obtain a lower bound for | f:

e € Fw _Ifllul o

Tlul el T

e [t is convenient to use this lower bound for | f| to define a lower
bound for the Grashof number G = |f|/v?, which we use as
the normalization G for random forcing:

e We recently proved the following theorem (submitted to JDE):

Theorem 4 (Emami & Bowman [2017]) For all u € A
with energy tnjection rate €,

€
Jull < /< .

e 'This leads to the same form as for a constant force: 27 < vGVE.

20



Z—F Plane Bounds: Random Forcing
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DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.
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DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

eIt uses our FFTW++ library to implicitly dealias the

advective convolution, while exploiting Hermitian symmetry
Bowman & Roberts 2011], [Roberts & Bowman 2017].

e Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e [t uses the formulation proposed by Basdevant [1983] to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).
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DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

eIt uses our FFTW++ library to implicitly dealias the

advective convolution, while exploiting Hermitian symmetry
Bowman & Roberts 2011], [Roberts & Bowman 2017].

e Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e [t uses the formulation proposed by Basdevant [1983] to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).

e We also include simplified 2D (146 lines) and 3D (287 lines)

versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/
protodns.

22
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Dynamic Moment Averaging

e Advantageous to precompute time-integrated moments like

M, (t) = /O o (T)[" dr.
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Dynamic Moment Averaging

e Advantageous to precompute time-integrated moments like

M, (t) = /O o (T)|" dr.

e This can be accomplished done by evolving

dM,
dt

along with the vorticity wyg itself, using the same temporal
discretization.

— ‘wk‘nv
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Dynamic Moment Averaging

e Advantageous to precompute time-integrated moments like

M, (t) = /0 w(T)|" dr.

e This can be accomplished done by evolving

dM,
dt

along with the vorticity wyg itself, using the same temporal
discretization.

— ‘wk‘nv

e These evolved quantities M, can be used to extract accurate
statistical averages during the post-processing phase, once the
saturation time t; has been determined by the user:

/ 2 wr|" (7) dT = M,,(t2) — M, (t1).

]

23



Enstrophy Balance

% + vk*wr, = Sk + fr,

e Multiply by wjp and integrate over wavenumber angle =-
enstrophy spectrum Z (k) evolves as:

%z(%) ©wk2Z(k) = 2T (k) + G(k),

where T'(k) and G(k) are the corresponding angular averages of

Re (Skwy) and Re (frwy,).

24



Nonlinear Enstrophy Transfer Function

%Z(k) +20k*Z(k) = 2T (k) + G(k).

o et
(k) =2 / " T(p) dp

represent the nonlinear transfer of enstrophy into [k, 00).



Nonlinear Enstrophy Transfer Function

%Z(k) +20k*Z(k) = 2T(k) + G(k).

o [et
(k) =2 / " T(p) dp

represent the nonlinear transfer of enstrophy into [k, 00).

e Integrate from k to oo:

“ / p)dp = TI(k) — e4(k),

where ez(k) = 2V/ p*Z(p)dp — / G(p)dp is the
total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.

25



e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.
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e A positive (negative) value for II(k) represents a flow of

enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:
d @)

0=—
dt J,

Z(p)dp =2 /OOO T'(p) dp,

so that

10 =2 [Ty =2 [ T)dp
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e A positive (negative) value for II(k) represents a flow of

enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:
d @)

0=—
dt J,

Z(p)dp =2 /OOO T'(p) dp,

so that

10 =2 [Ty =2 [ T)dp

e Note that I1(0) = I1(c0) = 0.
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e A positive (negative) value for II(k) represents a flow of

enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:
d @)

0=—
dt J,

Z(p)dp =2 /OOO T'(p) dp,

so that

10 =2 [ 1) =2 [ T)dp

e Note that I1(0) = II(co0) = 0.

e In a steady state, I1(k) = ez (k).
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:
d @)

0=—
dt J,

Z(p)dp =2 /OOO T'(p) dp,

so that

00 k
b =2 [ T dp =2 [ T()dp
0
e Note that I1(0) = II(co0) = 0.
e [n a steady state, [1(k) = ez (k).

e This provides an excellent numerical diagnostic for determining
the saturation time ¢;.



Vorticity Field with Hypoviscosity
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Energy Spectrum with Hypoviscosity
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Bounds in the

Z—FE plane for random forcing.
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Energy Transfer with Hypoviscosity

Cumulative enstropy transfer

= =

10t

k

102
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Vorticity Field without Hypoviscosity
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Energy Spectrum without Hypoviscosity
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Bounds in the Z—FE plane for random forcing.
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Energy Transfer without Hypoviscosity
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opecial Case: White-Noise Forcing

e The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

kk

Jr(t) = Fy (1 — ﬁ) Lr(t), k-fr=0,

where Fj, is a real number and &(%) is a unit central real Gaussian
random 2D vector that satisfies

(Ek(D)Ew(t)) = orwlo(t —1).



opecial Case: White-Noise Forcing

e The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

kk

fr(t) = Fy (1 — ﬁ) Lr(t), k-fr=0,

where Fj, is a real number and &g(%) is a unit central real Gaussian
random 2D vector that satisfies

(Ek(D)Ew(t)) = orwlo(t — ).

e This implies

(Fe(t) fr(t) = Fporw o(t —t').
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opecial Case: White-Noise Forcing

e To prescribe the forcing amplitude F, in terms of e:

Theorem 5 (Novikov [1964]) If f(x,t) is a Gaussian
process, and u 1S a functional of f, then

te.tn(h) = [ [t s, ) (5o ) aot i
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opecial Case: White-Noise Forcing

e To prescribe the forcing amplitude Fj, in terms of e:

Theorem 6 (Novikov [1964]) If f(x,t) is a Gaussian
process, and u 1S a functional of f, then

ou(x,t)

o) = [ [t s, ) (5o ) ao i

e For white-noise forcing:

e = Re u = Re fult 5_ﬂk(t) dt’
Re X2 (a0 = RS [ (o) s (s o
I ERLLATY .
;Fk(l k2).<1 kz)H(O)
— Y R
k

on noting that H(0) = 1/2.
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White-Noise Forcing: Implementation

e At the end of each time-step, we implement the contribution of
white noise forcing with the discretization

Whkn+l = Wkn T\ 2Tk g,

where £ is a unit complex Gaussian random number with (£) =

and (|¢[)° = 1.

0

37



White-Noise Forcing: Implementation

e At the end of each time-step, we implement the contribution of
white noise forcing with the discretization

Wk ntl = Wkp T \/ 2111 &,

where £ is a unit complex Gaussian random number with (£) =

and (|¢])* = 1.

e This yields the mean enstrophy injection

<‘wk,n—|—1‘2 - ‘Wk,n‘2>
2T

0
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3D Basdevant Formulation: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

ot i ox; - _8azi+y8x§

+ F;.
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3D Basdevant Formulation: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

+ = +V8:U2-+E'
J

ot 6513]' B (933@

e Naive implementation: 3 backward FEFTs to compute the
velocity components from their spectral representations,
6 forward FF'Ts of the independent components of D;;.
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3D Basdevant Formulation: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

8u7; n 8DZ] _ Gp n V82uz-
ot  Ox;  Ox; 8:1:?

+ F;.

e Naive implementation: 3 backward FFTs to compute the
velocity components from their spectral representations,
6 forward FF'Ts of the independent components of D;;.

e Basdevant [1983]: avoid one FF'T by subtracting the divergence
of the symmetric matrix S;; = d;; tr D/3 from both sides:

ou; 8(Dw — S ) 6(}?5@]' + SZ]) aQUZ'
— _ F.
ot i 0x; 0x; " e i

J
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3D Basdevant Formulation: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

(9u7; n 8DZ] _ Gp n V82uz-
ot  Ox;  Ox; 8:1:?

+ F;.

e Naive implementation: 3 backward FFTs to compute the
velocity components from their spectral representations,
6 forward FF'Ts of the independent components of D;;.

e Basdevant [1983]: avoid one FF'T by subtracting the divergence
of the symmetric matrix S;; = d;; tr D/3 from both sides:

ou; + 5’(Dw — S ) _ _6(}?5@' + SZ]) + VGQUZ'

F.
Ot 0x; 0x; (9:1:? T

e To compute the velocity components u;, 3 backward FFT's are
required. Since the symmetric matrix D;; — S;; is traceless, it
has just 5 independent components.
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e Hence, a total of only 8 FF'T's are required per integration stage.
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e Hence, a total of only 8 FF'T's are required per integration stage.

e The effective pressure po;; + S;; is solved as usual from the
inverse Laplacian of the force minus the nonlinearity:.
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2D Basdevant Formulation: 4 FF'T's

e The vorticity w = V Xu evolves according to

%_C; + (uV)w = (w-V)u + W+ VXF,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.
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2D Basdevant Formulation: 4 FF'T's

e The vorticity w = V Xwu evolves according to

%_C; + (uV)w = (w-V)u + VW + VXF,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.

e For C*? velocity fields, the curl of the nonlinearity can be written
in terms of Dj; = D;; — Sj:

0 0 ~ 0 0 ~ O? o2 9 0
o Dyj = - D Dyy — D
83;’1833] DQ] 85132 axj 17 (ax% ax%) 12 —I_ @le 8332( 29 11)7

on recalling that S is diagonal and S7; = S99.
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2D Basdevant Formulation: 4 FF'T's

e The vorticity w = V Xwu evolves according to

%_C; + (uV)w = (w-V)u + VW + VXF,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.

e For C? velocity fields, the curl of the nonlinearity can be written
in terms of Dj; = D;; — Sj:

0 0 ~ 0 0 ~ O? o2 9 0
o Dyj = - D Dyy — D
8;};’183:‘] DQ] 85132 aajj 17 (ax% ax%) 12 —I_ 63:‘1 8332( 29 11)7

on recalling that S is diagonal and S1; = S9s.

e The scalar vorticity w thus evolves as

dw [P O 2, , OF, OF
E+(a_x%_a_xg)(m“?Haxlaxz(u?_“)Nw+a_:m_a—xz'
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e To compute up and wug in physical space, we need 2 backward
FFTs.
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e To compute uy and wug in physical space, we need 2 backward
FFTs.

e The quantities ujus and u3—u? can then be calculated and then

transformed to Fourier space with 2 additional forward FFTs.
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e To compute u; and w9 in physical space, we need 2 backward
FETs.

e The quantities ujus and u3 —u? can then be calculated and then

transformed to Fourier space with 2 additional forward FFTs.

e The advective term in 2D can thus be calculated with just 4
FETs.
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3D Incompressible MHD: 17 FF'T's
ou; a(D@] — S ) 8(]95@']' + SZ]) 82ui

ot i 0x o ox; * V@az?’
9B, G, OB,

_|_ T )
ot or; 0

where Dz‘j — U;Uj — BZ'B]', Sz'j — 5@' tr D/S, and

Gz’j = Biu]' — UZB]

e The traceless matrix D;; — 5;; has 8 independent components.
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3D Incompressible MHD: 17 FF'T's
ou; 8(DZ] — S ) 8(]95@']' + SZ]) 82ui

ot i 0x T ox; T V@x?’
9B, G, OB,

_|_ T )
ot or; 0

where Dij — U;Uy — BZ'B]', Sz'j — 5@' tr D/B, and

Gz'j — Biu]' — UZB]
e The traceless matrix D;; — 5;; has 8 independent components.

e The antisymmetric matrix G; has only 3.
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3D Incompressible MHD: 17 FF'T's
ou; 8(DZ] — S ) 8(]95@']' + SZ]) 82ui

ot i 0x T ox; T V@x?’
9B, G, OB,

_|_ T )
ot or; 0

where Dij — U;Uy — BZ'B]', Sz'j — 5@' tr D/B, and

Gz'j = Biu]' — ’LLZB]
e The traceless matrix D;; — 5;; has 8 independent components.
e The antisymmetric matrix G;; has only 3.

e An additional 6 FFT -calls are required to compute the
components of u and B in x space.
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3D Incompressible MHD: 17 FF'T's
ou; 8(DZ] — S ) 8(]95@']' + SZ]) 82ui

ot i 0x T ox; T V@x?’
9B, G, OB,

_|_ T )
ot or; 0

where Dij — U;Uy — BZ'B]', Sz'j — 5@' tr D/B, and

Gz'j = Biu]' — ’LLZB]

e The traceless matrix D;; — 5;; has 8 independent components.

e The antisymmetric matrix G;; has only 3.

e An additional 6 FFT calls are required to compute the
components of u and B in x space.

e The MHD nonlinearity can thus be computed with 17 FF'T' calls.
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Discrete Cyclic Convolution
e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-1
FyGr—p,
0

p:

where the vectors F' and G have period N.
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Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N—-1

> F,Groy,
-

where the vectors F' and G have period N.

e The backward 1D discrete Fourier transform of a complex vector

{F;,:k=0,...,N — 1} is defined as

N—-1
f]:ZCg\fF/ﬁ j:Ow"aN_la
k=0

21 /N

where (y = € denotes the Nth primitive root of unity.

43



Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N—-1
> R
p=0

where the vectors F' and G have period N.

e The backward 1D discrete Fourier transform of a complex vector

{F;,:k=0,...,N — 1} is defined as

N—-1
f]:ZC}?\;{F/ﬁ ija*“aN_la
k=0

21 /N

where (y = € denotes the Nth primitive root of unity.

e The fast Fourier transform (FFT) method exploits the
properties that (i = (n/, and (y =1
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Convolution Theorem

N—-1 N-1 N-1 N—-1
—Jjk __ —Jjk Jp 74
139N = E :QN E :CNFP E :CNGCI
7=0 j=0 p=0 q=0
N—-1N-1 N-1
_ (—k+p+q)J
— Fqu CN
p=0 ¢q=0 7=0
N-1
=N E E Fka—p—i—sN
s  p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!
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Convolution Theorem

N—-1 N—-1 N-1 N-1
—Jjk __ —Jjk Jp J4q
Ji9iCN" = Gy E :CNFP E :CNGQ
7=0 j=0 p=0 q=0
N—-1N-1 N-1
_ (—k+p+q)J
— Fqu CN
p=0 ¢=0 =0
N-1
=N E E Fka—p—i—sN
s  p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m

to length N > 2m — 1.
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Convolution Theorem

N—-1 N—-1 N-1 N-1
—Jjk __ —Jjk Jp J4q
Ji9iCN" = E :CN E :CNFP E :CNGQ
7=0 j=0 p=0 q=0
N—-1N-1 N-1
_ (—k+p+q)J
— Fqu CN
p=0 ¢=0 =0
N-1
=N E E Fka—p—i—sN
s  p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e [f only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e Faplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.
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Implicit Dealiasing

eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

fi= Y Gubr
k=0
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Implicit Dealiasing

olet N=2m. For y =0,...,2m — 1 we want to compute

2m—1

fi= Y Gub
k=0

olf F; = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

Jar = ZCM ZCU{Fk?

Jorr1 = ZCQ%H Fk:ZCffcngk, ¢(=0,1,...m—1.
k=0
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Implicit Dealiasing

olet N=2m. For y =0,...,2m — 1 we want to compute
2m—1
k
k=0

olf Fj. = 0 for k > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

Jar = ZCM ZCU{Fk,

f%‘H ZC22€+1 Fk:ZCﬁgngka 520,1,...m—1.
k=0

e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy



http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy

L T

{fa} s { foes1}0" {g20}7%" {92041 }7"



http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}%\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}%\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"

{(F* Gy
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Conclusions

e The upper bound in the Z—F plane obtained for constant forcing
also works for the white-noise forcing.
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e Adding hypoviscosity to the Navier—Stokes equation has a
dramatic effect on the turbulent dynamics: it restricts the global
attractor to the region characterized by the forcing annulus.
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e With these tools, it should now be possible to study the relation
between white-noise and constant forcings by examining their
effects on the global attractor.
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Conclusions

e The upper bound in the Z—F plane obtained for constant forcing
also works for the white-noise forcing.

e Adding hypoviscosity to the Navier—Stokes equation has a
dramatic effect on the turbulent dynamics: it restricts the global
attractor to the region characterized by the forcing annulus.

e With these tools, it should now be possible to study the relation
between white-noise and constant forcings by examining their
effects on the global attractor.

e This may lead to an explicit relation for the energy and
enstrophy injection rates for constant forcing.

e Analytical bounds for random forcing provide a means to
evaluate various heuristic turbulent subgrid (and supergrid!)
models by characterizing the behaviour of the global attractor
under these models.
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