
The 3D Asymptote Generalization of the
MetaPost Bezier Interpolation Algorithms

John Bowman

University of Alberta

July 16, 2007

http://www.math.ualberta.ca/∼bowman

1

History

•TEX and METAFONT (Knuth, 1979)

•MetaPost (Hobby, 1989): 2D Bezier Control Point Selection

•Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D & 3D

2

Cartesian Coordinates
draw((0,0)--(100,100));

• units are PostScript big points (1 bp = 1/72 inch)

• -- means join the points with a linear segment to create a path

• cyclic path:

draw((0,0)--(100,0)--(100,100)--(0,100)--cycle);

3

Scaling to a Given Size

• PostScript units are often inconvenient.

• Instead, scale user coordinates to a specified final size:

size(101,101);

draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

•One can also specify the size in cm:

size(0,3cm);

draw(unitsquare);

4

Labels
•Adding and aligning LATEX labels is easy:

size(0,3cm);

draw(unitsquare);

label("A",(0,0),SW);

label("B",(1,0),SE);

label("C",(1,1),NE);

label("D",(0,1),NW);

A B

CD

5

2D Bezier Splines

•Using .. instead of -- specifies a Bezier cubic spline:

draw(z0 .. controls c0 and c1 .. z1,blue);

z0

c0 c1

z1

(1 − t)3z0 + 3t(1 − t)2c0 + 3t2(1 − t)c1 + t3z1, t ∈ [0, 1].

6

Smooth Paths
•Asymptote can choose control points for you, using the algorithms of

Hobby [1986] and Knuth [1986]:

pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};

draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,

grey+linewidth(5));

dot(z,linewidth(7));

7

Hobby’s 2D Direction Algorithm

•A tridiagonal system of linear equations is solved to determine any
unspecified directions θk and φk through each knot zk:

θk−1 − 2φk

`k
=

φk+1 − 2θk

`k+1
.

ℓk

ℓk+1

θk

φk

zk−1

zk

zk+1

•The resulting shape may be adjusted by modifying optional tension
parameters and curl boundary conditions.

8

Hobby’s 2D Control Point Algorithm

•Having prescribed outgoing and incoming path directions eiθ0 at
node z0 and eiθ1 at node z1 relative to the vector z1 − z0, the control
points are determined as:

u= z0 + eiθ(z1 − z0)f (θ,−φ),

v = z1 − eiφ(z1 − z0)f (−φ, θ),

where the relative distance function f (θ, φ) is given by Hobby [1986].

θ

φ

z0

z1

9

Bezier Curves in 3D
•Apply an affine transformation

x′i = Aijxj + Ci

to a Bezier curve:

x(t) =
3∑

k=0

Bk(t)Pk, t ∈ [0, 1].

x′i = Aijxj + Ci.

•The resulting curve is also a Bezier curve:

x′i(t)=
3∑

k=0

Bk(t)Aij(Pk)j + Ci

=
3∑

k=0

Bk(t)P
′
k,

where P ′
k is the transformed kth control point, noting

∑3
k=0 Bk(t) = 1.

10

3D Generalization of Hobby’s algorithm

•Must reduce to 2D algorithm in planar case.

•Determine directions by applying Hobby’s algorithm in the plane
containing zk−1, zk, zk+1.

•The only ambiguity that can arise is the overall sign of the angles,
which relates to viewing each 2D plane from opposing normal
directions.

•A reference vector based on the mean unit normal of successive
segments can be used to resolve such ambiguities.

11

3D Control Point Algorithm

•Hobby’s control point algorithm can be generalized to 3D by
expressing it in terms of the absolute directions ω0 and ω1:

u = z0 + ω0 |z1 − z0| f (θ,−φ),

v = z1 − ω1 |z1 − z0| f (−φ, θ),

θ

φ

z0

z1

interpreting θ and φ as the angle between the corresponding path
direction vector and z1 − z0.

• In this case there is an unambiguous reference vector for determining
the relative sign of the angles φ and θ.

12

3D saddle example

•A unit circle in the X–Y plane may be filled and drawn with:
(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle

and then distorted into a saddle:
(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle

13

3D graphs and surfaces

−
1

0

1
x

−

1

0

1

y

1

2

3

z

14

Affine Transforms
•Affine transformations can be applied to pairs, triples, paths, pens,

and even whole pictures:

transform t=rotate(90);

write(t*(1,0)); // Writes (0,1).

fill(P,blue);

fill(shift(2,0)*reflect((0,0),(0,1))*P, red);

fill(shift(4,0)*rotate(30)*P, yellow);

fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);

15

Packages

•There are packages for Feynman diagrams,

k′

k

q

p′

p

e−

e+

µ+

µ−

data structures,

5

4 0

2

6 7

3

1

16

algebraic knot theory:

0 1

234

5

ΦΦ(x1, x2, x3, x4, x5) = ρ4b(x1 + x4, x2, x3, x5) + ρ4b(x1, x2, x3, x4)

+ρ4a(x1, x2 + x3, x4, x5) − ρ4b(x1, x2, x3, x4 + x5)

− ρ4a(x1 + x2, x3, x4, x5) − ρ4a(x1, x2, x4, x5).

17

Scientific Graphs

50

A
ch

na
nt
he

s
m
in
ut
is
si
m
a
K
ue

tz
in
g

0

100

200

300

400

se
d
im

en
t

d
ep

th
(c

m
)

50

A
no

m
oe

on
ei
s
vi
tr
ea

(G
ru

no
w
)
R
os
s

50

A
st
er
io
ne

lla
fo
rm

os
a
H
as
sa
ll

20 40

Ta
be

lla
ri
a
flo

cc
ul
os
a
(R

ot
h)

K
ue

tz
in
g

50

Fr
ag

ila
ri
a
cf
. t

en
er
a

20 40

C
ha

et
oc

er
os

m
ue

lle
ri
/e
lm

or
ei

cy
st
s

20 40

A
ul
ac
os
ei
ra

sp
p.

10

Fr
ag

ila
ri
a
ca
pu

ci
na

va
r.

va
uc

he
ri
ae

(K
ue

tz
in
g)

8

Fr
ag

ila
ri
a
cr
ot
on

en
si
s
K
it
to
n

A B C

2000
1998

1996
1994

1992
1990

1988
1986

1984 1982
1980
1978
1972
1970
1965

1961
1950

1942
1940

1920
1915

1910
1888

1763

1726

%

18

Slide Presentations
•Asymptote has a package for preparing slides.

• It even supports embedded hi-resolution PDF movies.

title("Slide Presentations");

item("Asymptote has a package for preparing slides.");

item("It even supports embedded hi-resolution PDF movies.");
. . .

19

Automatic Sizing

•Figures can be specified in user coordinates, then automatically scaled
to the final size.

x

y
(a, 0) (2a, 0)

size(0,50);

x

y

(a, 0) (2a, 0)

size(0,100);

x

y

(a, 0) (2a, 0)

size(0,200);

20

Deferred Drawing

•We can’t draw a graphical object until we know the scaling factors
for the user coordinates.

• Instead, store a function that when given the scaling information,
draws the scaled object.

void draw(picture pic=currentpicture, path g, pen p=currentpen) {
pic.add(new void(frame f, transform t) {

draw(f,t*g,p);

});
pic.addPoint(min(g),min(p));

pic.addPoint(max(g),max(p));

}

21

Coordinates
• Store bounding box information as a sum of user and true-size

coordinates:

pic.addPoint(min(g),min(p));

pic.addPoint(max(g),max(p));

•Filling ignores the pen width:

pic.addPoint(min(g),(0,0));

pic.addPoint(max(g),(0,0));

•Communicate with LATEX to determine label sizes:

E = mc2

22

Sizing

•When scaling the final figure to a given size S, we first need to
determine a scaling factor a > 0 and a shift b so that all of the
coordinates when transformed will lie in the interval [0, S]. That is,
if u and t are the user and truesize components:

0 ≤ au + t + b ≤ S.

•We are maximizing the variable a subject to a number of inequalities.
This is a linear programming problem that can be solved by the
simplex method.

23

Sizing

•Every addition of a coordinate (t, u) adds two restrictions

au + t + b ≥ 0,

au + t + b ≤ S,

and each drawing component adds two coordinates.

•A figure could easily produce thousands of restrictions, making the
simplex method impractical.

•Most of these restrictions are redundent, however. For instance, with
concentric circles, only the largest circle needs to be accounted for.

24

Redundant Restrictions

• In general, if u ≤ u′ and t ≤ t′ then

au + t + b ≤ au′ + t′ + b

for all choices of a > 0 and b, so

0 ≤ au + t + b ≤ au′ + t′ + b ≤ S.

•This defines a partial ordering on coordinates. When sizing a
picture, the program first computes which coordinates are maximal (or
minimal) and only sends effective restraints to the simplex algorithm.

• In practice, the linear programming problem will have less than a
dozen restraints.

•All picture sizing is implemented in Asymptote code.

25

Infinite Lines
•Deferred drawing allows us to draw infinite lines.

drawline(P, Q);

P
Q

P + Q

P

2P

26

References

[Hobby 1986] J. D. Hobby, Discrete Comput. Geom., 1:123, 1986.

[Knuth 1986] D. E. Knuth, The METAFONTbook, Addison-Wesley,
Reading, Massachusetts, 1986.

Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)

27

