The 3D Asymptote Generalization of the MetaPost Bezier Interpolation Algorithms

John Bowman
University of Alberta

July 16, 2007

http://www.math.ualberta.ca/~bowman
History

• TeX and METAFONT (Knuth, 1979)
• MetaPost (Hobby, 1989): 2D Bezier Control Point Selection
• Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D & 3D
Cartesian Coordinates

draw((0,0)--(100,100));

• units are PostScript big points (1 bp = 1/72 inch)
• -- means join the points with a linear segment to create a path
• cyclic path:
 draw((0,0)--(100,0)--(100,100)--(0,100)--cycle);
Scaling to a Given Size

- **PostScript** units are often inconvenient.

- Instead, scale user coordinates to a specified final size:

  ```latex
  size(101,101);
  draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
  ```

- One can also specify the size in **cm**:

  ```latex
  size(0,3cm);
  draw(unitsquare);
  ```
Adding and aligning \LaTeX labels is easy:

\begin{verbatim}
size(0,3cm);
draw(unitsquare);
label("A",(0,0),SW);
label("B",(1,0),SE);
label("C",(1,1),NE);
label("D",(0,1),NW);
\end{verbatim}
2D Bezier Splines

- Using .. instead of -- specifies a **Bezier cubic spline**:

\[
\text{draw}(z_0 \ .. \ \text{controls} \ c_0 \ \text{and} \ c_1 \ .. \ z_1, \text{blue});
\]

\[
(1 - t)^3 z_0 + 3t(1 - t)^2 c_0 + 3t^2(1 - t)c_1 + t^3 z_1, \quad t \in [0, 1].
\]
Smooth Paths

- Asymptote can choose control points for you, using the algorithms of Hobby [1986] and Knuth [1986]:

```asy
pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};

draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,
    grey+linewidth(5));
dot(z,linewidth(7));
```

![Diagram of smooth paths with control points chosen by Asymptote using Hobby and Knuth's algorithms. The diagram shows a smooth curve connecting the points with control points marked along the path.]
Hobby’s 2D Direction Algorithm

- A tridiagonal system of linear equations is solved to determine any unspecified directions θ_k and ϕ_k through each knot z_k:

$$\frac{\theta_{k-1} - 2\phi_k}{\ell_k} = \frac{\phi_{k+1} - 2\theta_k}{\ell_{k+1}}.$$

- The resulting shape may be adjusted by modifying optional tension parameters and curl boundary conditions.
Hobby’s 2D Control Point Algorithm

- Having prescribed outgoing and incoming path directions $e^{i\theta_0}$ at node z_0 and $e^{i\theta_1}$ at node z_1 relative to the vector $z_1 - z_0$, the control points are determined as:

$$u = z_0 + e^{i\theta}(z_1 - z_0)f(\theta, -\phi),$$
$$v = z_1 - e^{i\phi}(z_1 - z_0)f(-\phi, \theta),$$

where the relative distance function $f(\theta, \phi)$ is given by Hobby [1986].
Beziers Curves in 3D

- Apply an affine transformation

\[x'_i = A_{ij}x_j + C_i \]

to a Bezier curve:

\[x(t) = \sum_{k=0}^{3} B_k(t)P_k, \quad t \in [0, 1]. \]

\[x'_i = A_{ij}x_j + C_i. \]

- The resulting curve is also a Bezier curve:

\[x'_i(t) = \sum_{k=0}^{3} B_k(t)A_{ij}(P'_k)_j + C_i \]

\[= \sum_{k=0}^{3} B_k(t)P'_k, \]

where \(P'_k \) is the transformed \(k^{th} \) control point, noting \(\sum_{k=0}^{3} B_k(t) = 1 \).
3D Generalization of Hobby’s algorithm

• Must reduce to 2D algorithm in planar case.

• Determine directions by applying Hobby’s algorithm in the plane containing z_{k-1}, z_k, z_{k+1}.

• The only ambiguity that can arise is the overall sign of the angles, which relates to viewing each 2D plane from opposing normal directions.

• A reference vector based on the mean unit normal of successive segments can be used to resolve such ambiguities.
3D Control Point Algorithm

- Hobby’s control point algorithm can be generalized to 3D by expressing it in terms of the absolute directions ω_0 and ω_1:

$$u = z_0 + \omega_0 |z_1 - z_0| f(\theta, -\phi),$$

$$v = z_1 - \omega_1 |z_1 - z_0| f(-\phi, \theta),$$

interpreting θ and ϕ as the angle between the corresponding path direction vector and $z_1 - z_0$.

- In this case there is an unambiguous reference vector for determining the relative sign of the angles ϕ and θ.
3D saddle example

- A unit circle in the X–Y plane may be filled and drawn with:
 $$(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..'cycle$$

and then distorted into a saddle:
$$(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..'cycle$$
3D graphs and surfaces
Affine Transforms

- Affine transformations can be applied to pairs, triples, paths, pens, and even whole pictures:

```plaintext
transform t=rotate(90);
write(t*(1,0));  // Writes (0,1).

fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);
```
There are packages for Feynman diagrams, data structures,
algebraic knot theory:

\[\Phi \Phi(x_1, x_2, x_3, x_4, x_5) = \rho_{4b}(x_1 + x_4, x_2, x_3, x_5) + \rho_{4b}(x_1, x_2, x_3, x_4) + \rho_{4a}(x_1, x_2 + x_3, x_4, x_5) - \rho_{4b}(x_1, x_2, x_3, x_4 + x_5) - \rho_{4a}(x_1 + x_2, x_3, x_4, x_5) - \rho_{4a}(x_1, x_2, x_4, x_5). \]
Slide Presentations

- Asymptote has a package for preparing slides.
- It even supports embedded hi-resolution PDF movies.

```plaintext
title("Slide Presentations");
item("Asymptote has a package for preparing slides.");
item("It even supports embedded hi-resolution PDF movies.");
...```
Automatic Sizing

- Figures can be specified in user coordinates, then automatically scaled to the final size.
Deferred Drawing

- We can’t draw a graphical object until we know the scaling factors for the user coordinates.

- Instead, store a function that when given the scaling information, draws the scaled object.

```java
void draw(picture pic=currentpicture, path g, pen p=currentpen) {
 pic.add(new void(frame f, transform t) {
 draw(f, t*g, p);
 });
 pic.addPoint(min(g), min(p));
 pic.addPoint(max(g), max(p));
}
```
Coordinates

- Store bounding box information as a sum of user and true-size coordinates:

  \[
  \begin{align*}
  \text{pic.addPoint}(\min(g),\min(p)); \\
  \text{pic.addPoint}(\max(g),\max(p));
  \end{align*}
  \]

- Filling ignores the pen width:

  \[
  \begin{align*}
  \text{pic.addPoint}(\min(g),(0,0)); \\
  \text{pic.addPoint}(\max(g),(0,0));
  \end{align*}
  \]

- Communicate with \LaTeX{} to determine label sizes:

  \[
  E = mc^2
  \]
Sizing

• When scaling the final figure to a given size $S$, we first need to determine a scaling factor $a > 0$ and a shift $b$ so that all of the coordinates when transformed will lie in the interval $[0, S]$. That is, if $u$ and $t$ are the user and truesize components:

$$0 \leq au + t + b \leq S.$$  

• We are maximizing the variable $a$ subject to a number of inequalities. This is a linear programming problem that can be solved by the simplex method.
Sizing

• Every addition of a coordinate \((t, u)\) adds two restrictions

\[
au + t + b \geq 0,
\]

\[
au + t + b \leq S,
\]

and each drawing component adds two coordinates.

• A figure could easily produce thousands of restrictions, making the simplex method impractical.

• Most of these restrictions are redundant, however. For instance, with concentric circles, only the largest circle needs to be accounted for.
Redundant Restrictions

• In general, if \( u \leq u' \) and \( t \leq t' \) then

\[
au + t + b \leq au' + t' + b
\]

for all choices of \( a > 0 \) and \( b \), so

\[
0 \leq au + t + b \leq au' + t' + b \leq S.
\]

• This defines a partial ordering on coordinates. When sizing a picture, the program first computes which coordinates are maximal (or minimal) and only sends effective restraints to the simplex algorithm.

• In practice, the linear programming problem will have less than a dozen restraints.

• All picture sizing is implemented in Asymptote code.
Infinite Lines

• Deferred drawing allows us to draw infinite lines.

drawline(P, Q);

\[ P, Q, P + Q, 2P \]
References


Asymptote: The Vector Graphics Language

http://asymptote.sf.net

(freely available under the GNU public license)