The 3D Asymptote Generalization of the
MetaPost Bezier Interpolation Algorithms

John Bowman

University of Alberta

July 16, 2007

http://www.math.ualberta.ca/~bowman

History

o TEX and METAFONT (Knuth, 1979)
e MetaPost (Hobby, 1989): 2D Bezier Control Point Selection
e Asymptote (Hammerlindl, Bowman, Prince, 2004): 2D & 3D

Cartesian Coordinates
draw ((0,0)--(100,100)) ;

e units are PostScript big points (1 bp = 1/72 inch)

e —— means join the points with a linear segment to create a path

e cyclic path:
draw((0,0)--(100,0)--(100,100)--(0,100)--cycle) ;

Scaling to a Given Size

e PostScript units are often inconvenient.

e Instead, scale user coordinates to a specified final size:

size(101,101);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

e One can also specify the size in cm:

size(0,3cm);
draw(unitsquare) ;

Labels
e Adding and aligning IXTEX labels is easy:

size(0,3cm) ;
draw(unitsquare) ;
label ("A", (0,0),SW);
label ("B", (1,0),SE);
label ("C", (1,1) ,NE);
label ("D", (0,1) ,NW);

D

2D Bezier Splines

e Using .. instead of —- specifies a Bezier cubic spline:

draw(z0 .. controls cO and cl1 .. zl1,blue);

(1 —1)°20 +3t(1 — t)*co + 3t%(1 — t)ey + 2, t e 0,1].

Smooth Paths

e Asymptote can choose control points for you, using the algorithms of
Hobby [1986] and Knuth [1986]:

pair[] z={(0,0), (0,1), (2,1), (2,00, (1,0)};
draw(z[0]..z[1]..z[2]..z[3]..z[4]. .cycle,

grey+linewidth(5)) ;
dot (z,linewidth(7));

/
/
/
A
/
[
|
|
o
~ 7
\ -——— / . - —0o — e 4
~ - ~ o
o ~~

Hobby’s 2D Direction Algorithm

e A tridiagonal system of linear equations is solved to determine any
unspecified directions ;. and ¢;. through each knot z;:

Or—1 — 20k _ Pr1 — 20y,

a Uit

fk+1

e The resulting shape may be adjusted by moditying optional tension
parameters and curl boundary conditions.

Hobby’s 2D Control Point Algorithm

e Having prescribed outgoing and incoming path directions e’ at
node zp and €' at node z; relative to the vector z; — 2y, the control
points are determined as:

Uu=2zy+ 6219(21 — ZO)f(97 _gb)?
V=21 — €Z¢(Zl - ZO)f(_¢a 9)7

where the relative distance function f(6, ¢) is given by Hobby [1986].

Bezier Curves in 3D

e Apply an affine transformation

/
Xr; = Az’jxj + Cz
to a Bezier curve:

3

z(t) =) Bit)P, tel0,1].
k=0

CC; — AijCL’j + O@

e The resulting curve is also a Bezier curve:

3

zi(t) =) Bi(t)Aij(Py); + Ci

- Z By(t) Py,

k=0

where P/ is the transformed k™ control point, noting 3%_, By(t) = 1.

10

3D Generalization of Hobby’s algorithm

e Must reduce to 2D algorithm in planar case.

e Determine directions by applying Hobby’s algorithm in the plane
contalning zr_1, 2k, 2ki1-

e The only ambiguity that can arise is the overall sign of the angles,
which relates to viewing each 2D plane from opposing normal
directions.

e A reference vector based on the mean unit normal of successive
segments can be used to resolve such ambiguities.

11

3D Control Point Algorithm

e Hobby’s control point algorithm can be generalized to 3D by
expressing it in terms of the absolute directions wy and wy:

U = 29+ wo \2’1 — Zo’ f(ea —@7

v =2z —wi |z — 20| f(—¢,0),

interpreting 8 and ¢ as the angle between the corresponding path
direction vector and z; — 2.

e In this case there is an unambiguous reference vector for determining
the relative sign of the angles ¢ and 6.

12

3D saddle example

e A unit circle in the X-Y plane may be filled and drawn with:
(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle

!

and then distorted into a saddle:
(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle

13

3D graphs and surfaces

14

Affine Transforms

e Affine transformations can be applied to pairs, triples, paths, pens,
and even whole pictures:

transform t=rotate(90);
write(tx(1,0)); // Writes (0,1).

fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);

P 9

15

Packages

e There are packages for Feynman diagrams,

data structures,

16

algebraic knot theory:

s
(e

OD(x1, 22, 73, T4, T5) = pap(x1 + T4, T2, 23, T5) + pap(T1, T2, T3, T4)
+ paa(T1, T2 + 23, T4, T5) — pap(T1, T, T3, T4 + T5)
— p4a<$1 +$27$37I47$5) _ p4a($17$27$47$5)'

17

100

200

sediment depth (cm)

w
S
(en)

400

Scientific Graphs

50

50

50 20 40
%

50 20 40 20 40 10

(09)

1888 1910

1763

1726

18

Slide Presentations

e Asymptote has a package for preparing slides.

e [t even supports embedded hi-resolution PDF movies.

title("Slide Presentations");
item("Asymptote has a package for preparing slides.");
item("It even supports embedded hi-resolution PDF movies.");

19

Automatic Sizing

e Figures can be specified in user coordinates, then automatically scaled
to the final size.

<

Yy
m (2a,0) < (@,0) \(2a,0) (a, 0) (2a,0)

size(0,50);

size(0,100);

size(0,200);

20

Deterred Drawing

e We can’'t draw a graphical object until we know the scaling factors
for the user coordinates.

e Instead, store a function that when given the scaling information,
draws the scaled object.

void draw(picture pic=currentpicture, path g, pen p=currentpen) {
pic.add(new void(frame f, transform t) {
draw(f,t*g,p);
)
pic.addPoint (min(g) ,min(p));
pic.addPoint (max(g) ,max(p));

}

21

Coordinates

e Store bounding box information as a sum of user and true-size
coordinates:

pic.addPoint (min(g) ,min(p));
pic.addPoint (max(g) ,max(p));

e Filling ignores the pen width:

pic.addPoint (min(g), (0,0));
pic.addPoint (max(g), (0,0));

e Communicate with IXTEX to determine label sizes:

2

E = mc

22

Sizing
e When scaling the final figure to a given size S, we first need to
determine a scaling factor a > 0 and a shift b so that all of the

coordinates when transformed will lie in the interval [0,.S]. That is,
if u and ¢ are the user and truesize components:

0<au+t+b<>5S.

e We are maximizing the variable a subject to a number of inequalities.
This is a linear programming problem that can be solved by the
simplex method.

23

Sizing
e Every addition of a coordinate (¢, u) adds two restrictions

au—+1t+b2>0,

au+t+ b < S,

and each drawing component adds two coordinates.

e A figure could easily produce thousands of restrictions, making the
simplex method impractical.

e Most of these restrictions are redundent, however. For instance, with
concentric circles, only the largest circle needs to be accounted for.

24

Redundant Restrictions
e In general, if u < o’ and t < ¢’ then

auv+t+b<au +t+b

for all choices of @ > 0 and b, so

O0<au+t+b<au+t+b<8S.

e This defines a partial ordering on coordinates. When sizing a
picture, the program first computes which coordinates are maximal (or
minimal) and only sends effective restraints to the simplex algorithm.

e In practice, the linear programming problem will have less than a
dozen restraints.

e All picture sizing is implemented in Asymptote code.

25

Infinite Lines

e Deferred drawing allows us to draw infinite lines.

drawline (P, Q);

26

References

[Hobby 1986] J. D. Hobby, Discrete Comput. Geom., 1:123, 1986.

[Knuth 1986] D. E. Knuth, The METAFONTbook, Addison-Wesley,
Reading, Massachusetts, 1986.

Asymptote: The Vector Graphics Language

sumploie

http://asymptote.sf.net

(freely available under the GNU public license)

27

