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e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution
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where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = €xp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and C]]\\,] = 1.

e However, the pseudospectral method requires a [linear
convolution.
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e The unnormalized

backwards discrete Fourier transform ot

{Fkik:O,...,N}iS

N—-1
=Y \F  j=0,...,N—1.
k=0

e The corresponding

1
F]{:N

forward transform is

N—-1 .
G k=0,...,N—1
j=0

e The orthogonality of this transform pair follows from

N-1
> =4
=0

(N if ¢ = sN for s € Z,
1 — (N
N — 0 otherwise.
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JigiCy = Gy E :CNFP E :CNGQ
J=0 7=0 p=0 q=0
N—-1N-1 N—-1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 7=0
N—1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [iaplicit zero padding prevents mode m — 1 from beating with
itself and wrapping around to contaminate mode N = 0 mod V.
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Implicit Padding

elet N=2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf Fj = 0 for k > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fe =Y G Fr,
k=0

m—1
(20
f2£+1—z G R =N B 0=0,1, . m L.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy, m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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e Odd and even terms ot the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mlby = Z C2 kjf]

m—

1
—k(20+1
Com™ fotr + Z . )f2£+1
0

1

3,‘]?

kagfzﬁgﬂlfz:%kgfzeﬂ k=0,....m—1.
(=0

(=0

e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.
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e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.
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Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U <— U*V;

for k=0tom—1do
flk] < G, fIE];
glk] < C8lk];

end

v« £t 1(f);

f+ £t 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);




Implicit Padding in 1D
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Convolutions in Higher Dimensions
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.
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Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn, ... .N, —— multiply ——» Fny N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COI]VO]VGN1

—1
Nd 1 ‘FNd

..... —
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Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (K = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m — 1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

e A Hermaitian convolution arises since the input vectors are real:

fer = fi

16



Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as
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where
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Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as

m—1
U4y — Z Cﬁﬂ]jwk,ra
k=0
where
R Up+ Re(; ' U_y, it k=0,
STV GE (U + G Uny) if1<k<m-—1.

e We exploit the Hermitian symmetry wy, = W, —k, to reduce
the problem to three complex-to-real Fourier transforms of the
first c+1 components of wy, - (one for each r = —1,0, 1), where
c = |m/2] zeros.

17
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Shared-Memory Parallelization

e To facilitate an in-place implementation, in our original paper
ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

e As a result, even in 1D, implicit dealiasing of pseudospectral

convolutions is now significantly faster than explicit zero
padding |Roberts & Bowman 2016].
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Hermitian Convolution for m = 2c¢
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Hermitian Convolution for m = 2¢ + 1
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1D Implicit Hermitian Convolution
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Processors.
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Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose

algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.
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Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.
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e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.
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Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.
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Communication Costs: Direct Transpose

e Suppose an N X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—-1

SV
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Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.
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Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

e Outer: Over each team of a processes, transpose the a X a matrix

of N/a x M /a blocks.
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Communication Costs

e Let 74 be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTY

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|-7'd

NM
NM-(P—l)(Tg—H’d ),

P2

whereas a block transpose requires

P P\ NM
TB(a)—Tg<a+——2>+Td<2P—a— ) .

a a ) P?

o Let L = 7y/7,; be the effective communication block length.
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Direct vs. Block Transposes

e Since
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whereas a block transpose should be used when NM < P?L.
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Direct vs. Block Transposes

e Since

P NM
I —Ip=1P+1—a—— L — :
a P?

we see that a direct transpose is preferred when NM > P?L.
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

rya 1 2) (- S0,

o For NM < P2?L, we see that T’z is convex, with a minimum at

a=+P.
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Optimal Number of Threads

e The minimum value of Tg is

TR(VP) = zfd(\/ﬁ ~ 1) (L + NM)

P3/2

NM
~ zfd\/ﬁ(L+ P3/2>, P> 1.

e The global minimum of 15 over both a and P occurs at

P~ (2NM/L)*3.
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Optimal Number of Threads

e The minimum value of T is

e The global minimum of T’z over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)'/?.
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Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~1 of the conventional storage.
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e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtform.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FF'T computation feasible.
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e Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise. For example, see the
protodns project at

http://github.com/dealias/dns
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