Implicitly Dealiased Convolutions on
Shared-Memory and Distributed-Memory
Parallel Processors

John C. Bowman Malcolm Roberts
University of Alberta Université de Strasbourg

Jun 29, 2016

www.math.ualberta.ca/~bowman/talks

Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.

Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%)

Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and C]]\\,] = 1.

Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N-1
> Ko,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = €xp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and C]]\\,] = 1.

e However, the pseudospectral method requires a [linear
convolution.

e The unnormalized backwards discrete Fourier transform of
{Fk:k’:O,...,N} 1S

N—-1
i=> \F j=0,...,N—1.
k=0

e The unnormalized backwards discrete Fourier transform of
{Fk:k:O,...,N} 1S

N-1
i=> \F j=0,...,N—1.
k=0
e The corresponding forward transform is

N—-1
. 12 _kj
Fk:NOCNJf] k:O7...7N_1.
]:

e The unnormalized

backwards discrete Fourier transform ot

{Fkik:O,...,N}iS

N—-1
=Y \F j=0,...,N—1.
k=0

e The corresponding

1
F]{:N

forward transform is

N—-1 .
G k=0,...,N—1
j=0

e The orthogonality of this transform pair follows from

N-1
> =4
=0

(N if ¢ = sN for s € Z,
1 — (N
N — 0 otherwise.

\ 1_CZ<f

Convolution Theorem

N-1 N-1 N-1 N-1
—Jjk __ —Jjk Jp Jq
Ji9iCy" = Gy E :CNFP E :CNGQ
7=0 7=0 p=0 q=0
N—1N-1 N-1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 J=0
N-1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

Convolution Theorem

N—1 N—1 N—1 N—1
Y L —Jjk Jp Jq
JigiCy = Gy E :CNFP E :CNGQ
J=0 7=0 p=0 q=0
N—-1N-1 N—-1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 7=0
N—1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e [f only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

Convolution Theorem

N—1 N—1 N—1 N—1
Y L —Jjk Jp Jq
JigiCy = Gy E :CNFP E :CNGQ
J=0 7=0 p=0 q=0
N—-1N-1 N—-1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 7=0
N—1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [iaplicit zero padding prevents mode m — 1 from beating with
itself and wrapping around to contaminate mode N = 0 mod V.

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Febics {Gr}y

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Febics {Gr}y

¢ '

{F}isy {0} {Gr}=y {0}

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{kabo1 {Gki‘?ol
{Foliso {0}y {Gielisy {0}y
FFT—1'2 1 FFT—1'2 1
{fi}iZe 1951520

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

1 kfbol {Gki‘?ol
{F)i {0} {Gi 1% {0}
FFT_lv2 : FFT_lv2 :
{fj]ZO_ {g]}]go_
{fig;i}:ils -

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{kabo1 {Gki‘?ol
{F)i {0} {Gi 1% {0}
FFT_lv2 : FFT_lv2 :
{fj]ZO_ {g]}]go_
{fig;i}:ils -
FFT

{F+ G}y

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{kaol {Gki‘?ol
{Foliso {0}y {Gielisy {0}y
FFT—1'2 1 FFT—1'2 1
{fj]ZO_ {gj}jgo_
{fi9:3325" -
FFT
{F G}

¢

Fxd

Implicit Padding
eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

Implicit Padding

elet N=2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf F; = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fe = G Fr,
k=0

m—1
(20
f2£+1—z G R =N B 0=0,1, . m L.
k=0

Implicit Padding

elet N=2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf Fj = 0 for k > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fe =Y G Fr,
k=0

m—1
(20
f2£+1—z G R =N B 0=0,1, . m L.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy, m.

e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

m_

1 m—1
— koY —k(20+1
= C2m2 Joo + E :C2m< >f2£+1
0

/€:

m—1

=Y G o+ G ZC o k=0,...,m—1

(=0

e Odd and even terms ot the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

1 m—1
=GR for + Z Com P for

(=0

m—1

=Y G o+ G ZC o k=0,...,m—1

(=0

e No bit reversal is required at the highest level.

e Odd and even terms ot the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

= MfszrCz ZC ‘forrr k=0,...,m—1.

e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e Odd and even terms ot the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mlby = Z C2 kjf]

m—

1
—k(20+1
Com™ fotr + Z .)f2£+1
0

1

3,‘]?

kagfzﬁgﬂlfz:%kgfzeﬂ k=0,....m—1.
(=0

(=0

e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.

e The computational complexity is 6 K'm log, m.

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fu}icy {Gr}i5

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fu}icy {Gr}i5

T T

{f2e} 0" { foer1}00" {920} 7" {92041} 05"

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{fae} ' {forr1 755" {920} 7' {g2er1}750'

.

{ foegae} ot { fars192041} 05"

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{ f20920} 7" { fars192041} 05"

L

{(F* Gty

Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U <— U*V;

for k=0tom—1do
flk] < G, fIE];
glk] < C8lk];

end

v« £t 1(f);

f+ £t 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);

Implicit Padding in 1D

8—:I:Ll| LLLLLLLL 1 IIIIII| 1 IIIIII| 1 I?}\
" AR
— & —explicit T=1 A -
T+ —e— implicit T=1 /’
- ---@-- explicit T=4 |E .
6 —+ —o - implicit T=4 :

2 - % S

R .?%ﬁ%&ﬁiﬁ........

107 10° 104 10°
m

109

10

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F = F G |- G
Y Y
/ g

I

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F | F G |= G
Y Y
/ g
fg
v
F x G

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F | F G |- G
Y Y
/ g
fg
v
F x G—F x (|

Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn,N, —— multiply ——» Fny N,

12

Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn,N, —— multiply ——» Fny N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COI]VO]VGN1

—1
Nd 1 ‘FNd

..... —

12

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

FFT,'{F}

Ng even

FFT,'{F}
n, odd

FFT;Y{G}

N, even

FFT;'{G}
n, odd

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

time/(m? log, m?) (ns)

Implicit Padding in 2D

15—||||||= T T TTITT]
— & —explicit T=1

—a— implicit T=1

—o- - implicit T=4 [~

s

--+@-- explicit T=4 y o A \X

[.
Va
e

=
5 : —
.5-...g"..
IIII?I‘E—\I.EA/IIIIIII | 1 111
102 103
m

14

time/(m? log, m3) (ns)

Implicit Padding in 3D

BT = e
&

/7
/

~ & — explicit T=1
+a— implicit T=1
~+-@-- explicit T=4 -

{—e - implicit T=4

15

Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (k =
centered in the domain:

0) is

16

Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (k =
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

0) is

16

Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (K = 0) is
centered in the domain:

e Need to pad to NV > 3m — 2 to remove aliases.

e The ratio (2m — 1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

16

Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (K = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m — 1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

e A Hermaitian convolution arises since the input vectors are real:

fer = fi

16

Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as

m—1
U4y — Z Cﬁi{wk,ra
k=0
where
S Up+ Re(;'U_y, it k=0,
STV GE (U + G Ung) if1<k<m-—1.

17

Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as

m—1
U4y — Z Cﬁﬂ]jwk,ra
k=0
where
R Up+ Re(; ' U_y, it k=0,
STV GE (U + G Uny) if1<k<m-—1.

e We exploit the Hermitian symmetry wy, = W, —k, to reduce
the problem to three complex-to-real Fourier transforms of the
first c+1 components of wy, - (one for each r = —1,0, 1), where
c = |m/2] zeros.

17

Shared-Memory Parallelization

e To facilitate an in-place implementation, in our original paper
ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for » = 1 in reverse order in the upper halt
of the input vector.

18

Shared-Memory Parallelization

e To facilitate an in-place implementation, in our original paper
ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

18

Shared-Memory Parallelization

e To facilitate an in-place implementation, in our original paper
ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

18

Shared-Memory Parallelization

e To facilitate an in-place implementation, in our original paper
ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

e As a result, even in 1D, implicit dealiasing of pseudospectral

convolutions is now significantly faster than explicit zero
padding |Roberts & Bowman 2016].

18

Hermitian Convolution for m = 2c¢

19

Hermitian Convolution for m = 2¢ + 1

20

1D Implicit Hermitian Convolution
—-III=II=I | IIIIIII| | IIIIIII| | IIIIIII| LI
7 - —
i — & —explicit T=1]
—a— implicit T=1
g 6| T ---@-- explicit T=4 §_
i@/ T —o - implicit T=4 < -
T 5 ‘
&0
9
S 40
Z
=
= 3
2 :
Tyl I fig " /9
LI [N [w
102 103 104 10° 106

m

21

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

22

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

22

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

22

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

22

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose

algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.

22

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

23

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

23

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

23

SIS
RNNARS

NS

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS900I]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

23

S &
H NENSE

H ENNRW
M

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS900I]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

23

Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.

24

Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.

24

time/(m?log, m?) (ns)

Pure MPI 2D Convolutions

'61 T || T T T T T TTT T T T T TTT T T
'-._ -
B E e
£ |
o \ :
v — & —implicit P=24
\\ - \ m —s— implicit P=192
Vo \ -0+ explicit P=24
=\ \ a —o- - explicit P=192
\ . 5
\ e
\ *
\
‘ \
- _
1Y \ .
N N x A= = L
- -
I\ /t -
B) h g/\< x A "5\ 7]
- —e
— e
11 || 1 1 1 11111 o R S . 1 EJL <E_.|.zl:ﬁ'

time/(m3 log, m?3) (ns)

Pure MPI 3D Convolutions

T T T T T KL T 1
4 B P EEEER R R c@:]
3% |
— & —implicit P=24
- | —sa— implicit P=192
--.@-- explicit P=24
—oe - explicit P=192
2 |
- .
1 b= - ~ —— T - —e]
ol -
T T L |B—
102 103
m

26

MPI 3D Implicit Parallel Eficiency

1%

0.9

0.8
_A_643
P
9 —=— 1283
g 0.7 Q- 2563
—e - 5123
S
—o— 10243

=
>

0.5

24 48 96 192
Number of cores

MPI 3D Explicit Parallel Efficiency

0.9

=
00

=
ﬂ

Efficiency

=
>

0.5

0.4

24 48 96 192
Number of cores

28

Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

29

Communication Costs: Direct Transpose

e Suppose an N X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—-1

SV

29

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

30

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

30

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

e Outer: Over each team of a processes, transpose the a X a matrix

of N/a x M /a blocks.

30

Communication Costs

e Let 7/ be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Tg—l—an

31

Communication Costs

e Let 7/ be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Tg—l—an

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|-7'd

NM
NM-(P—l)(Tg—H’d),

PZ

whereas a block transpose requires

P P\ NM
TB(CL>—Tg<CL—|———2>—|—Td<2P—a—) .

a a) P?

31

Communication Costs

e Let 74 be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Ty + NTY

e The time required to perform a direct transpose is

P—1
P2

TD:Tg(P— 1>—|-7'd

NM
NM-(P—l)(Tg—H’d),

P2

whereas a block transpose requires

P P\ NM
TB(a)—Tg<a+——2>+Td<2P—a—) .

a a) P?

o Let L = 7y/7,; be the effective communication block length.

31

Direct vs. Block Transposes

e Since

P NM
I —Ip=1P+1—a—— L — :
a P?

we see that a direct transpose is preferred when NM > P?L.
whereas a block transpose should be used when NM < P?L.

32

Direct vs. Block Transposes

e Since

P NM
I —Ip=1P+1—a—— L — :
a P?

we see that a direct transpose is preferred when NM > P?L.
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

rya 1 2) (- S0,

32

Direct vs. Block Transposes

e Since

P NM
I —Ip=1P+1—a—— L — :
a P?

we see that a direct transpose is preferred when NM > P?L.
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

rya 1 2) (- S0,

o For NM < P2?L, we see that T’z is convex, with a minimum at

a=+P.

32

Optimal Number of Threads

e The minimum value of T is

Tp(VP) = QTd(\/ﬁ ~ 1) (L + NM)

P3/2
NM
~ zfd\/ﬁ(L+) P> 1.

P3/2

33

Optimal Number of Threads

e The minimum value of Tg is

TR(VP) = zfd(\/ﬁ ~ 1) (L + NM)

P3/2

NM
~ zfd\/ﬁ(L+ P3/2>, P> 1.

e The global minimum of 15 over both a and P occurs at

P~ (2NM/L)*3.

33

Optimal Number of Threads

e The minimum value of T is

e The global minimum of T’z over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)'/?.

33

Communication Cost

—_
-)
(=)

—_
-]
(@4

—_
-]
=~

Transpose Communication Costs

10*

P

102

10

103

107

$0°

Zero Latency

Direct
Block
Threads

34

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~1 of the conventional storage.

35

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The tactor of 2 speedup is largely due to increased data locality:.

35

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.02) on
top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

35

http://fftwpp.sourceforge.net/

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.02) on
top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

35

http://fftwpp.sourceforge.net/

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.02) on

top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtorm.

35

http://fftwpp.sourceforge.net/
http://fftwpp.sourceforge.net/

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.02) on
top of the FFTW library and released under the Lesser GNU

Public License: http://fftwpp.sourceforge.net/

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transtform.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FF'T computation feasible.

35

http://fftwpp.sourceforge.net/
http://fftwpp.sourceforge.net/

e Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise. For example, see the
protodns project at

http://github.com/dealias/dns

36

http://github.com/dealias/dns

References

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SITAM J. Sci. Comput., 33:386, 2011.
[Bowman & Roberts 2016] J. C. Bowman & M. Roberts, to be submitted to Parallel computing, 2016.
[Orszag 1971] S. A. Orszag, Journal of the Atmospheric Sciences, 28:1074, 1971.
[Patterson Jr. & Orszag 1971] G. S. Patterson Jr. & S. A. Orszag, Physics of Fluids, 14:2538, 1971.
[Roberts & Bowman 2016] M. Roberts & J. C. Bowman, submitted to STAM J. Sci. Comput., 2016.

