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Notation
dy

dt
= f (t,y), y(0) = y0,

•General s-stage Runge–Kutta scheme (scalar case):

yi+1 = y0 + τ
i∑

j=0

aijf (cjτ, yj), i = 0, . . . , s− 1.

0 is the initial time; τ is the time step;

ys is the approximation to y(τ );

aij are the Runge–Kutta weights;

cj are the step fractions for stage j.
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Butcher Tableau (s = 3):

c0 = 0, ci+1 =

i∑
j=0

aij.

0 a00

c1 a10 a11

c2 a20 a21 a22

4



Motivation

•Consider the following equation for y : R→ R and L > 0

dy

dt
= −Ly,

with the initial condition y(0) = y0 6= 0.

•We know that the exact solution to this equation is given by

y(t) = y0e
−Lt.

•Apply Euler’s method with time step τ :

yn+1 = (1− τL)yn.

•For τL ≥ 2, yn does not converge to the steady state: if L is
too large, the time step is forced to be unreasonably small.
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•This phenomenon of linear stiffness manifests itself in more
general systems of ODEs, when y(t) ∈ Rn,

dy

dt
+ Ly = f (y).

•When the eigenvalues of L are large compared to the eigenvalues
of f ′, a similar problem will occur.
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Exponential Integrators

•We remedy the problem of stiffness by applying a scheme that
is exact on the time scale of the linear part of the problem. We
call all such schemes exponential integrators.

•Consider

dy

dt
+ Ly = f (y).

•Goal: Solve on the linear time scale exactly; avoid the linear
time-step restriction τL� 1.

•Rewrite the above equation as

d(eLty)

dt
= eLtf (y).
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Time-domain approach

•There are two ways to proceed from here. The first involves
integrating and applying a quadrature rule:

y(τ ) = e−τLy(0) +

∫ τ

0

e−(τ−s)Lf (y(0 + s))ds.

•The idea is to apply a quadrature rule that approximates f but
treats the exponential term exactly. This approach gives rise to
the discretization

yi+1 = e−τLy0 + τ
i∑

j=0

aij(−τL)f (yj),

where i = 0, ..., s− 1.

•The weights aij are constructed from linear combinations of e−τL

and truncations of its Taylor series.

•The weights are determined by a set of stiff order conditions.
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Exponential Euler Algorithm (E-Euler)

yi+1 = e−τLyi +
1− e−τL

L
f (yi),

•Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie–Euler.

•As τ → 0 the Euler method is recovered:

yi+1 = yi + τf (yi).

• If E-Euler has a fixed point, it must satisfy y =
f (y)

L
; this is

then a fixed point of the ODE.

• In contrast, the popular Integrating Factor method (I-Euler).

yi+1 = e−τL(yi + τfi)

can at best have an incorrect fixed point: y =
τf (y)

eLτ − 1
.
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Comparison of Euler Integrators

dy

dt
+ y = cos y, y(0) = 1.
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History

•Certaine [1960]: Exponential Adams-Moulton

•Nørsett [1969]: Exponential Adams-Bashforth

•Verwer [1977] and van der Houwen [1977]: Exponential linear
multistep method

•Friedli [1978]: Exponential Runge–Kutta

•Hochbruck et al. [1998]: Exponential integrators up to order 4

•Beylkin et al. [1998]: Exact Linear Part (ELP)

•Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff
order 2

•Lu [2003]: Efficient Matrix Exponential

•Hochbruck & Ostermann [2005a]: Explicit Exponential Runge–
Kutta; stiff order conditions.
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Bogacki–Shampine (3,2) Pair (RK3-BS)

•Embedded 4-stage pair [Bogacki & Shampine 1989]:
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Embedded (3,2) Exponential Pair (ERK3-HO)

[Bowman et al. 2006]

•Let x = −Lτ and ϕ2(x) = x−2(ex − 1− x):

a00 =
1

2
ϕ

(
1

2
x

)
,

a10 =
3

4
ϕ

(
3

4
x

)
− a11, a11 =

9

8
ϕ2

(
3

4
x

)
+

3

8
ϕ2

(
1

2
x

)
,

a20 =ϕ(x)− a21 − a22, a21 =
1

3
ϕ(x),a22 =

4

3
ϕ2(x)− 2

9
ϕ(x),

a30 =ϕ(x)− 17

12
ϕ2(x), a31 =

1

2
ϕ2(x), a32 =

2

3
ϕ2(x), a33 =

1

4
ϕ2(x).

•y3 has stiff order 3 [Hochbruck and Ostermann 2005].

•y4 provides a second-order estimate for adjusting the time step.

•L→ 0: reduces to [3,2] Bogacki–Shampine Runge–Kutta pair.
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Exponential domain approach

•We now present a different way to view exponential integrators.

•To illustrate the main idea, we first consider the scalar variant,
where y : R→ R:

dy

dt
+ Ly = f (y), y(0) = y0.

• It is convenient to let g(t) = f (y(t)), introduce the integrating
factor

I(t) = eLt,

and define Y (t) = I(t)y(t), so that

dY

dt
= Ig.

•Discretization should be performed in the (I, Y ) space instead
of the (t, y) space!
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•We perform the change of variable dt I = L−1dI :

dY

dI
=

1

L
g(t(I)),

where t(I) = 1
L log I .

• If g is analytic, we can expand it in a Taylor series

g(t) =

∞∑
k=0

g(k)(0)
tk

k!
.

•This allows us to integrate dY/dI over I to obtain the exact
solution

Y = Y0 +
1

L

∞∑
k=0

g(k)(0)
1

k!

∫ I

1

(log I)k dI.
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•On inspecting the classical Runge–Kutta discretization of the
transformed equation dY/dI = g/L, it is possible to obtain
corresponding finite difference approximations of the derivatives
g(k)(0) in terms of the Runge-Kutta sampled function values.

• If we inductively define

ϕ0(x) = ex

ϕk+1(x) =
ϕk(x)− 1

k!

x
for k ≥ 0,

with ϕk(0) = 1
k!, the exact solution becomes

y = I−1y0 +

∞∑
k=0

g(k)(0)ϕk+1(−Lτ )τ k+1,

where τ is a single time step.

•Care must be exercised when evaluating ϕ near 0; see the C++
routines at www.math.ualberta.ca/~bowman/phi.h.
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General third-order RK scheme

yi+1 = y0 + τ

i∑
j=0

aijf (cjt, y(cjt)), i = 0, . . . , s− 1,

•Let g(t) = f (t, y(t)) = a + bt + ct2 +O(t3).

•Given two distinct step fractions c1 and c2, use the classical
order conditions to compute the weights aij:

0 a00

c1 a10 a11

c2 a20 a21 a22

•A key ingredient is the Vandermonde matrix:

V =

 1 1 1
0 c1 c2

0 c2
1 c2

2

,
which is used to compute the last row of the tableau:
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 a20

a21

a22

 = V −1

 1
1/2
1/3

 =



2− 3c1

6c1c2
− 1

2c1
+ 1

2− 3c1

6c1(c1 − c2)
+

1

2c1

2− 3c1

6c2(c2 − c1)

,

as well as finite-difference weights for approximating derivatives
of g, such as

τg′(0) ≈ − 1

c1
g0 +

1

c1
g1

τ 2g′′(0) ≈ 2

c1c2
g0 +

2

c1(c1 − c2)
g1 +

2

c2(c2 − c1)
g3,

where gi = g(ciτ ) = a + bciτ + cc2
i τ

2.

•We use these results to rewrite the final stage of RK3:

y3 = y0 + τg(0) + τ 2g′(0)/2 + τ 3g′′(0)/6.
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General third-order ERK scheme

•Letting x = −Lτ , we obtain the ERK3 integrator:

y1 = y0ϕ0(c1x) + c1τg0ϕ1(c1x),

y2 = y0ϕ0(c2x) + c2τg0ϕ1(c2x) + 2a11τ (g1 − g0)ϕ2(c2x),

y3 = y0ϕ0(x) + τg0ϕ1(x) +
1

c1
τ (g1 − g0)ϕ2(x)+

(2− 3c1)τ

(
1

c1c2
g0 +

1

c1(c1 − c2)
g1 +

1

c2(c2 − c1)
g2

)
ϕ3(x).
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ERK-BS(3,2) integrator with 4 stages

•Let x = −Lτ .

a00 =
1

2
ϕ1

(
1

2
x

)
,

a10 =
3

4
ϕ1

(
3

4
x

)
− 3

2
ϕ2

(
3

4
x

)
, a11 =

3

2
ϕ2

(
3

4
x

)
,

a20 = ϕ1(x)− 2ϕ2(x) +
4

3
ϕ3(x), a21 = 2ϕ2(x)− 4ϕ3(x), a22 =

8

3
ϕ3(x),

a30 = ϕ1(x)− 17

12
ϕ2(x), a31 =

1

2
ϕ2(x), a32 =

2

3
ϕ2(x),

a33 =
1

4
ϕ2(x).
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Third-order integration test:
dy

dt
+ 4y = y2 sin y y(0) = 1, t = 1.5
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ERK4 integrator with 4 stages

•Let x = −Lτ .

a00 =
1

2
ϕ1

(
1

2
x

)
,

a10 =
1

2
ϕ1

(
1

2
x

)
− ϕ2

(
1

2
x

)
, a11 = ϕ2

(
1

2
x

)
,

a20 = ϕ1(x)− 2ϕ2(x), a21 = 0, a22 = 2ϕ2(x),

a30 = ϕ1(x)− 3ϕ2(x) + 4ϕ3(x), a31 = a32 = 2ϕ2(x)− 4ϕ3(x),

a33 = −ϕ2(x) + 4ϕ3(x),
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Fourth-order integration test:
dy

dt
+ 6y = −y2 y(0) = 1, t = 1

10−4

10−3

10−2

10−1

100

lo
ca
l
er
ro
r/
τ
4

10−3 10−2 10−1

τ

RK4HO5
ERK4HO5
ERK4

23



Conclusions

•Exponential integrators are explicit schemes for ODEs with a
stiff linearity.

•A general method is proposed for deriving exponential
integrators for stiff ordinary differential equations.

• In the scalar case, this technique can be used to develop
exponential versions of classical RK integrators, including
embedded methods.

•When the nonlinear source is constant, the time-stepping
algorithm is precisely the analytical solution to the
corresponding first-order linear ODE.

•Unlike integrating factor methods, exponential integrators have
the correct fixed point behaviour.

•A generalization to the vector case is in progress. . . .
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