Exponential Integrators

John C. Bowman and Benjamin Pineau
 Department of Mathematical and Statistical Sciences University of Alberta

December 8, 2018

www.math.ualberta.ca/~bowman/talks

Outline

- Notation and preliminaries
- Motivation
- Exponential Integrators
- Time-domain approach
- Exponential domain approach scalar case
- Scalar case examples and comparisons
- Exponential domain approach for systems of ODEs
- Examples and comparisons
- Conclusions

Notation

$$
\frac{d \boldsymbol{y}}{d t}=\boldsymbol{f}(t, \boldsymbol{y}), \quad \boldsymbol{y}(0)=\boldsymbol{y}_{0},
$$

- General s-stage Runge-Kutta scheme (scalar case):

$$
y_{i+1}=y_{0}+\tau \sum_{j=0}^{i} a_{i j} f\left(c_{j} \tau, y_{j}\right), \quad i=0, \ldots, s-1
$$

0 is the initial time; τ is the time step;
y_{s} is the approximation to $y(\tau)$;
$a_{i j}$ are the Runge-Kutta weights;
c_{j} are the step fractions for stage j.

Butcher Tableau $(s=3)$:

$$
\begin{aligned}
& c_{0}=0, \\
& \quad c_{i+1}=\sum_{j=0}^{i} a_{i j} . \\
& 0
\end{aligned} \begin{array}{lll}
a_{00} & \\
\hline c_{1} & a_{10} & a_{11} \\
\hline c_{2} & a_{20} & a_{21}
\end{array} a_{22} .
$$

Motivation

- Consider the following equation for $y: \mathbb{R} \rightarrow \mathbb{R}$ and $L>0$

$$
\frac{d y}{d t}=-L y
$$

with the initial condition $y(0)=y_{0} \neq 0$.

- We know that the exact solution to this equation is given by

$$
y(t)=y_{0} e^{-L t}
$$

- Apply Euler's method with time step τ :

$$
y_{n+1}=(1-\tau L) y_{n} .
$$

- For $\tau L \geq 2, y_{n}$ does not converge to the steady state: if L is too large, the time step is forced to be unreasonably small.
- This phenomenon of linear stiffness manifests itself in more general systems of ODEs, when $\boldsymbol{y}(t) \in \mathbb{R}^{n}$,

$$
\frac{d \boldsymbol{y}}{d t}+\mathbf{L} \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{y})
$$

- When the eigenvalues of \mathbf{L} are large compared to the eigenvalues of \boldsymbol{f}^{\prime}, a similar problem will occur.

Exponential Integrators

- We remedy the problem of stiffness by applying a scheme that is exact on the time scale of the linear part of the problem. We call all such schemes exponential integrators.
- Consider

$$
\frac{d \boldsymbol{y}}{d t}+\mathbf{L} \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{y})
$$

- Goal: Solve on the linear time scale exactly; avoid the linear time-step restriction $\tau L \ll 1$.
- Rewrite the above equation as

$$
\frac{d\left(e^{\mathbf{L} t} \boldsymbol{y}\right)}{d t}=e^{\mathbf{L} t} \boldsymbol{f}(\boldsymbol{y})
$$

Time-domain approach

- There are two ways to proceed from here. The first involves integrating and applying a quadrature rule:

$$
\boldsymbol{y}(\tau)=e^{-\tau \mathbf{L}} \boldsymbol{y}(0)+\int_{0}^{\tau} e^{-(\tau-s) \mathbf{L}} \boldsymbol{f}(\boldsymbol{y}(0+s)) d s
$$

- The idea is to apply a quadrature rule that approximates \boldsymbol{f} but treats the exponential term exactly. This approach gives rise to the discretization

$$
\boldsymbol{y}_{i+1}=e^{-\tau \mathbf{L}} \boldsymbol{y}_{0}+\tau \sum_{j=0}^{i} \mathbf{a}_{i j}(-\tau \mathbf{L}) \boldsymbol{f}\left(\boldsymbol{y}_{j}\right)
$$

where $i=0, \ldots, s-1$.

- The weights $\mathbf{a}_{i j}$ are constructed from linear combinations of $e^{-\tau \mathbf{L}}$ and truncations of its Taylor series.
- The weights are determined by a set of stiff order conditions.

Exponential Euler Algorithm (E-Euler)

$$
y_{i+1}=e^{-\tau L} y_{i}+\frac{1-e^{-\tau L}}{L} f\left(y_{i}\right),
$$

- Also called Exponentially Fitted Euler, ETD Euler, filtered Euler, Lie-Euler.
- As $\tau \rightarrow 0$ the Euler method is recovered:

$$
y_{i+1}=y_{i}+\tau f\left(y_{i}\right) .
$$

- If E-Euler has a fixed point, it must satisfy $y=\frac{f(y)}{L}$; this is then a fixed point of the ODE.
- In contrast, the popular Integrating Factor method (I-Euler).

$$
y_{i+1}=e^{-\tau L}\left(y_{i}+\tau f_{i}\right)
$$

can at best have an incorrect fixed point: $y=\frac{\tau f(y)}{e^{L \tau}-1}$.

Comparison of Euler Integrators

$$
\frac{d y}{d t}+y=\cos y, \quad y(0)=1 .
$$

History

- Certaine [1960]: Exponential Adams-Moulton
- Nørsett [1969]: Exponential Adams-Bashforth
- Verwer [1977] and van der Houwen [1977]: Exponential linear multistep method
- Friedli [1978]: Exponential Runge-Kutta
- Hochbruck et al. [1998]: Exponential integrators up to order 4
- Beylkin et al. [1998]: Exact Linear Part (ELP)
- Cox \& Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff order 2
- Lu [2003]: Efficient Matrix Exponential
- Hochbruck \& Ostermann [2005a]: Explicit Exponential RungeKutta; stiff order conditions.

Bogacki-Shampine (3,2) Pair (RK3-BS)

- Embedded 4-stage pair [Bogacki \& Shampine 1989]:

Embedded (3,2) Exponential Pair (ERK3-HO)

[Bowman et al. 2006]
\bullet Let $\boldsymbol{x}=-\mathbf{L} \tau$ and $\varphi_{2}(\boldsymbol{x})=\boldsymbol{x}^{-2}\left(e^{\boldsymbol{x}}-\mathbf{1}-\boldsymbol{x}\right)$:
$\boldsymbol{a}_{00}=\frac{1}{2} \varphi\left(\frac{1}{2} \boldsymbol{x}\right)$,
$\boldsymbol{a}_{10}=\frac{3}{4} \varphi\left(\frac{3}{4} \boldsymbol{x}\right)-\boldsymbol{a}_{11}, \boldsymbol{a}_{11}=\frac{9}{8} \varphi_{2}\left(\frac{3}{4} \boldsymbol{x}\right)+\frac{3}{8} \varphi_{2}\left(\frac{1}{2} \boldsymbol{x}\right)$,
$\boldsymbol{a}_{20}=\varphi(\boldsymbol{x})-\boldsymbol{a}_{21}-\boldsymbol{a}_{22}, \boldsymbol{a}_{21}=\frac{1}{3} \varphi(\boldsymbol{x}), \boldsymbol{a}_{22}=\frac{4}{3} \varphi_{2}(\boldsymbol{x})-\frac{2}{9} \varphi(\boldsymbol{x})$,
$\boldsymbol{a}_{30}=\varphi(\boldsymbol{x})-\frac{17}{12} \varphi_{2}(\boldsymbol{x}), \boldsymbol{a}_{31}=\frac{1}{2} \varphi_{2}(\boldsymbol{x}), \boldsymbol{a}_{32}=\frac{2}{3} \varphi_{2}(\boldsymbol{x}), \boldsymbol{a}_{33}=\frac{1}{4} \varphi_{2}(\boldsymbol{x})$.

- \boldsymbol{y}_{3} has stiff order 3 [Hochbruck and Ostermann 2005].
- \boldsymbol{y}_{4} provides a second-order estimate for adjusting the time step.
- $\mathbf{L} \rightarrow \mathbf{0}$: reduces to $[3,2]$ Bogacki-Shampine Runge-Kutta pair.

Exponential domain approach

- We now present a different way to view exponential integrators.
- To illustrate the main idea, we first consider the scalar variant, where $y: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\frac{d y}{d t}+L y=f(y), \quad y(0)=y_{0}
$$

- It is convenient to let $g(t)=f(y(t))$, introduce the integrating factor

$$
I(t)=e^{L t}
$$

and define $Y(t)=I(t) y(t)$, so that

$$
\frac{d Y}{d t}=I g
$$

- Discretization should be performed in the (I, Y) space instead of the (t, y) space!
- We perform the change of variable $d t I=L^{-1} d I$:

$$
\frac{d Y}{d I}=\frac{1}{L} g(t(I))
$$

where $t(I)=\frac{1}{L} \log I$.

- If g is analytic, we can expand it in a Taylor series

$$
g(t)=\sum_{k=0}^{\infty} g^{(k)}(0) \frac{t^{k}}{k!}
$$

- This allows us to integrate $d Y / d I$ over I to obtain the exact solution

$$
Y=Y_{0}+\frac{1}{L} \sum_{k=0}^{\infty} g^{(k)}(0) \frac{1}{k!} \int_{1}^{I}(\log \bar{I})^{k} d \bar{I}
$$

- On inspecting the classical Runge-Kutta discretization of the transformed equation $d Y / d I=g / L$, it is possible to obtain corresponding finite difference approximations of the derivatives $g^{(k)}(0)$ in terms of the Runge-Kutta sampled function values.
- If we inductively define

$$
\begin{aligned}
\varphi_{0}(x) & =e^{x} \\
\varphi_{k+1}(x) & =\frac{\varphi_{k}(x)-\frac{1}{k!}}{x} \quad \text { for } k \geq 0
\end{aligned}
$$

with $\varphi_{k}(0)=\frac{1}{k!}$, the exact solution becomes

$$
y=I^{-1} y_{0}+\sum_{k=0}^{\infty} g^{(k)}(0) \varphi_{k+1}(-L \tau) \tau^{k+1}
$$

where τ is a single time step.

- Care must be exercised when evaluating φ near 0 ; see the $\mathrm{C}++$ routines at www. math. ualberta.ca/~bowman/phi.h.

General third-order RK scheme

$$
y_{i+1}=y_{0}+\tau \sum_{j=0}^{i} a_{i j} f\left(c_{j} t, y\left(c_{j} t\right)\right), \quad i=0, \ldots, s-1
$$

- Let $g(t)=f(t, y(t))=a+b t+c t^{2}+\mathcal{O}\left(t^{3}\right)$.
- Given two distinct step fractions c_{1} and c_{2}, use the classical order conditions to compute the weights $a_{i j}$:

$$
\begin{array}{c|lll}
0 & a_{00} & & \\
c_{1} & a_{10} & a_{11} & \\
\hline c_{2} & a_{20} & a_{21} & a_{22}
\end{array}
$$

- A key ingredient is the Vandermonde matrix:

$$
\boldsymbol{V}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & c_{1} & c_{2} \\
0 & c_{1}^{2} & c_{2}^{2}
\end{array}\right]
$$

which is used to compute the last row of the tableau:

$$
\left[\begin{array}{l}
a_{20} \\
a_{21} \\
a_{22}
\end{array}\right]=\boldsymbol{V}^{-1}\left[\begin{array}{c}
1 \\
1 / 2 \\
1 / 3
\end{array}\right]=\left[\begin{array}{c}
\frac{2-3 c_{1}}{6 c_{1} c_{2}}-\frac{1}{2 c_{1}}+1 \\
\frac{2-3 c_{1}}{6 c_{1}\left(c_{1}-c_{2}\right)}+\frac{1}{2 c_{1}} \\
\frac{2-3 c_{1}}{6 c_{2}\left(c_{2}-c_{1}\right)}
\end{array}\right]
$$

as well as finite-difference weights for approximating derivatives of g, such as

$$
\begin{aligned}
\tau g^{\prime}(0) & \approx-\frac{1}{c_{1}} g_{0}+\frac{1}{c_{1}} g_{1} \\
\tau^{2} g^{\prime \prime}(0) & \approx \frac{2}{c_{1} c_{2}} g_{0}+\frac{2}{c_{1}\left(c_{1}-c_{2}\right)} g_{1}+\frac{2}{c_{2}\left(c_{2}-c_{1}\right)} g_{3}
\end{aligned}
$$

where $g_{i}=g\left(c_{i} \tau\right)=a+b c_{i} \tau+c c_{i}^{2} \tau^{2}$.

- We use these results to rewrite the final stage of RK3:

$$
y_{3}=y_{0}+\tau g(0)+\tau^{2} g^{\prime}(0) / 2+\tau^{3} g^{\prime \prime}(0) / 6
$$

General third-order ERK scheme

- Letting $x=-L \tau$, we obtain the ERK3 integrator:

$$
\begin{aligned}
y_{1} & =y_{0} \varphi_{0}\left(c_{1} x\right)+c_{1} \tau g_{0} \varphi_{1}\left(c_{1} x\right), \\
y_{2} & =y_{0} \varphi_{0}\left(c_{2} x\right)+c_{2} \tau g_{0} \varphi_{1}\left(c_{2} x\right)+2 a_{11} \tau\left(g_{1}-g_{0}\right) \varphi_{2}\left(c_{2} x\right), \\
y_{3} & =y_{0} \varphi_{0}(x)+\tau g_{0} \varphi_{1}(x)+\frac{1}{c_{1}} \tau\left(g_{1}-g_{0}\right) \varphi_{2}(x)+ \\
& \left(2-3 c_{1}\right) \tau\left(\frac{1}{c_{1} c_{2}} g_{0}+\frac{1}{c_{1}\left(c_{1}-c_{2}\right)} g_{1}+\frac{1}{c_{2}\left(c_{2}-c_{1}\right)} g_{2}\right) \varphi_{3}(x) .
\end{aligned}
$$

ERK-BS(3,2) integrator with 4 stages

- Let $x=-L \tau$.

$$
a_{00}=\frac{1}{2} \varphi_{1}\left(\frac{1}{2} x\right),
$$

$$
a_{10}=\frac{3}{4} \varphi_{1}\left(\frac{3}{4} x\right)-\frac{3}{2} \varphi_{2}\left(\frac{3}{4} x\right), \quad a_{11}=\frac{3}{2} \varphi_{2}\left(\frac{3}{4} x\right),
$$

$$
a_{20}=\varphi_{1}(x)-2 \varphi_{2}(x)+\frac{4}{3} \varphi_{3}(x), \quad a_{21}=2 \varphi_{2}(x)-4 \varphi_{3}(x), \quad a_{22}=\frac{8}{3} \varphi_{3}(x),
$$

$$
a_{30}=\varphi_{1}(x)-\frac{17}{12} \varphi_{2}(x)
$$

$$
a_{31}=\frac{1}{2} \varphi_{2}(x),
$$

$$
a_{32}=\frac{2}{3} \varphi_{2}(x),
$$

$$
a_{33}=\frac{1}{4} \varphi_{2}(x)
$$

Third-order integration test:

$$
\frac{d y}{d t}+4 y=y^{2} \sin y \quad y(0)=1, \quad t=1.5
$$

ERK4 integrator with 4 stages

- Let $x=-L \tau$.

$$
\begin{array}{llrl}
a_{00} & =\frac{1}{2} \varphi_{1}\left(\frac{1}{2} x\right), & & \\
a_{10} & =\frac{1}{2} \varphi_{1}\left(\frac{1}{2} x\right)-\varphi_{2}\left(\frac{1}{2} x\right), & & a_{11}=\varphi_{2}\left(\frac{1}{2} x\right), \\
a_{20} & =\varphi_{1}(x)-2 \varphi_{2}(x), & a_{21}=0, & a_{22}=2 \varphi_{2}(x), \\
a_{30} & =\varphi_{1}(x)-3 \varphi_{2}(x)+4 \varphi_{3}(x), & a_{31}=a_{32}=2 \varphi_{2}(x)-4 \varphi_{3}(x), & \\
a_{33} & =-\varphi_{2}(x)+4 \varphi_{3}(x), & &
\end{array}
$$

Fourth-order integration test:

$$
\frac{d y}{d t}+6 y=-y^{2} \quad y(0)=1, \quad t=1
$$

Conclusions

- Exponential integrators are explicit schemes for ODEs with a stiff linearity.
- A general method is proposed for deriving exponential integrators for stiff ordinary differential equations.
- In the scalar case, this technique can be used to develop exponential versions of classical RK integrators, including embedded methods.
- When the nonlinear source is constant, the time-stepping algorithm is precisely the analytical solution to the corresponding first-order linear ODE.
- Unlike integrating factor methods, exponential integrators have the correct fixed point behaviour.
- A generalization to the vector case is in progress....

References

[Beylkin et al. 1998] G. Beylkin, J. M. Keiser, \& L. Vozovoi, J. Comp. Phys., 147:362, 1998.
[Bogacki \& Shampine 1989]
P. Bogacki \& L. F. Shampine, Appl. Math. Letters, 2:1, 1989.
J. C. Bowman, C. R. Doering, B. Eckhardt, J. Davoudi, M. Roberts, \& J. Schumacher, Physica D, 218:1, 2006.
[Certaine 1960]
J. Certaine, Math. Meth. Dig. Comp., p. 129, 1960.
[Cox \& Matthews 2002]
[Friedli 1978]
S. Cox \& P. Matthews, J. Comp. Phys., 176:430, 2002.
A. Friedli, Lecture Notes in Mathematics, 631:214, 1978.
[Hochbruck \& Ostermann 2005a] M. Hochbruck \& A. Ostermann, SIAM J. Numer. Anal., 43:1069, 2005.
[Hochbruck \& Ostermann 2005b] M. Hochbruck \& A. Ostermann, Appl. Numer. Math., 53:323, 2005.
[Hochbruck et al. 1998] M. Hochbruck, C. Lubich, \& H. Selfhofer, SIAM J. Sci. Comput., 19:1552, 1998.
[Lu 2003]
[Nørsett 1969]
[van der Houwen 1977]
[Verwer 1977]
Y. Y. Lu, J. Comput. Appl. Math., 161:203, 2003.
S. Nørsett, Lecture Notes in Mathematics, 109:214, 1969.
P. J. van der Houwen, Construction of integration formulas for initial value problems, NorthHolland Publishing Co., Amsterdam, 1977, North-Holland Series in Applied Mathematics and Mechanics, Vol. 19.
J. Verwer, Numer. Math., 27:143, 1977.

