How to Design an Efficient Pseudospectral Code

John C. Bowman
University of Alberta

June 11, 2019
www.math.ualberta.ca/~bowman/talks
Acknowledgements: Malcolm Roberts (Université de Strasbourg)

Outline

- Dealiased Pseudospectral Method
- 2D and 3D Skeleton ProtoDNS Codes on GitHub
- Key Ingredients for an Efficient Pseudospectral Solver:
- Hermitian Symmetry (velocity and vorticity fields are real)
- Implicit Dealiasing
- Basdevant Reduction
- Hybrid OpenMP/MPI Parallelization
- Adaptive Time Stepping
- Dynamic Moment Averaging
- Conservative Integration
- Implementation of White-Noise Forcing
- Conclusions

Pseudospectral Method

- Pseudospectral simulations are a widely used numerical tool for the study of fluid turbulence:
- fast $N \log N$ scaling for N modes.
- spectral accuracy: more accurate than finite-difference or finite-element methods.
- Ideal choice for studying homogenous turbulence with periodic boundary conditions.
- Generalizations such as Chebyshev collocation and penalty methods allow them to handle more complicated boundary conditions and geometries.
- However, in many cases pseudospectral methods do not parallelize well on massively parallel distributed architectures due to the communication costs of the parallel transpose.

Dealiasing

- Patterson and Orszag pioneered the pseudospectral method over 40 years ago.
- They emphasized that the convolution theorem necessitates dealiasing unwanted harmonics arising from the periodicity of the discrete Fourier transform.

DNS code

- We have released a highly optimized 2D pseudospectral code in C++: https://github.com/dealias/dns.
- It uses our FFTW++ library to implicitly dealias the advective convolution, while exploiting Hermitian symmetry [Bowman \& Roberts 2011], [Roberts \& Bowman 2018].
- Advanced computer memory management, such as implicit padding, memory alignment, and dynamic moment averaging allow DNS to attain its extreme performance.
- The formulation proposed by Basdevant [1983] is used to reduce the number of FFTs required for 2D (3D) incompressible turbulence to 4 (8).
- We also include simplified 2D (146 lines) and 3D (287 lines) versions called ProtoDNS for educational purposes: https://github.com/dealias/dns/tree/master/ protodns.

Hermitian Symmetry

- In Fourier space, the reality of the velocity and scalar vorticity fields leads to the Hermitian symmetries

$$
\begin{aligned}
& \boldsymbol{v}_{-\boldsymbol{k}}=\overline{\boldsymbol{v}_{\boldsymbol{k}}} \\
& \omega_{-\boldsymbol{k}}=\overline{\omega_{\boldsymbol{k}}}
\end{aligned}
$$

- The DC mode at the Fourier origin is not evolved (no mean flow).

Hermitian Symmetry in 2D

- Only the shaded modes need to be evolved:

- Warning: since Hermitian convolution routines require input from the entire blue rectangle, the white modes in the blue box must agree with their shaded Hermitian conjugates!

Discrete Cyclic Convolution

- The FFT is an efficient tool for computing the discrete cyclic convolution of two vectors vectors F and G with period N :

$$
\sum_{p=0}^{N-1} F_{p} G_{k-p}
$$

- But the pseudospectral method requires a linear convolution!
- The backward 1D discrete Fourier transform of a complex vector $\left\{F_{k}: k=0, \ldots, N-1\right\}$ is defined as

$$
f_{j} \doteq \sum_{k=0}^{N-1} \zeta_{N}^{j k} F_{k}, \quad j=0, \ldots, N-1
$$

where $\zeta_{N}=e^{2 \pi i / N}$ denotes the N th primitive root of unity.

- The fast Fourier transform (FFT) method exploits the properties that $\zeta_{N}^{r}=\zeta_{N / r}$ and $\zeta_{N}^{N}=1$.

Convolution Theorem

$$
\begin{aligned}
\sum_{j=0}^{N-1} f_{j} g_{j} \zeta_{N}^{-j k} & =\sum_{j=0}^{N-1} \zeta_{N}^{-j k}\left(\sum_{p=0}^{N-1} \zeta_{N}^{j p} F_{p}\right)\left(\sum_{q=0}^{N-1} \zeta_{N}^{j q} G_{q}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F_{p} G_{q} \sum_{j=0}^{N-1} \zeta_{N}^{(-k+p+q) j} \\
& =N \sum_{s} \sum_{p=0}^{N-1} F_{p} G_{k-p+s N}
\end{aligned}
$$

- The terms indexed by $s \neq 0$ are aliases; we need to remove them!
- If only the first m entries of the input vectors are nonzero, aliases can be avoided by zero padding input data vectors of length m to length $N \geq 2 m-1$.

Explicit Dealiasing

- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$:

Explicit Dealiasing

- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$:

$\left\{F_{k}\right\}_{k=0}^{N-1}$	$\{0\}_{k=0}^{N-1}$

$\left\{G_{k}\right\}_{k=0}^{N-1}$	$\{0\}_{k=0}^{N-1}$

Explicit Dealiasing

- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$:

Explicit Dealiasing

- Explicit zero padding prevents mode $m-1$ from beating with itself, wrapping around to contaminate mode $N=0 \bmod N$:

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v2.05) on top of the FFTW library under the Lesser GNU Public License: http://fftwpp.sourceforge.net/

$$
\left\{F_{k}\right\}_{k=0}^{m-1}
$$

$\left\{G_{k}\right\}_{k=0}^{m-1}$

- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v2.05) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

Input: vector f, vector g
Output: vector f
$\mathrm{u} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$v \leftarrow \mathrm{fft}^{-1}(\mathrm{~g})$;
$\mathrm{u} \leftarrow \mathrm{u} * \mathrm{v}$;
for $k=0$ to $m-1$ do
$\mathrm{f}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{f}[k] ;$
$\mathrm{g}[k] \leftarrow \zeta_{2 m}^{k} \mathrm{~g}[k] ;$
end
$\mathrm{v} \leftarrow \mathrm{fft}^{-1}(\mathrm{f})$;
$\mathrm{f} \leftarrow \mathrm{fft}^{-1}(\mathrm{~g}) ;$
$\mathrm{v} \leftarrow \mathrm{v} * \mathrm{f}$;
$\mathrm{f} \leftarrow \mathrm{fft}(\mathrm{u})$;
$\mathrm{u} \leftarrow \mathrm{fft}(\mathrm{v})$;
for $k=0$ to $m-1$ do
$\mathbf{f}[k] \leftarrow \mathbf{f}[k]+\zeta_{2 m}^{-k} \mathbf{u}[k] ;$
end
return $\mathrm{f} /(2 \mathrm{~m})$;

Implicit Padding in 1D on T threads

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Convolutions in Higher Dimensions

- An explicitly padded convolution in 2 dimensions requires 12 padded FFTs and 4 times the memory of a cyclic convolution.

Recursive Convolution

- Naive way to compute a multiple-dimensional convolution:

- The technique of recursive convolution allows one to avoid computing and storing the entire Fourier image of the data:

Implicit Padding in 2D

- Extra work memory need not be contiguous with the data.

Implicit Padding in 2 D on T threads

Implicit Padding in 3D on T threads

Centered (Pseudospectral) Convolutions

- For a centered convolution, the Fourier origin $(k=0)$ is centered in the domain:

$$
\sum_{p=k-m+1}^{m-1} f_{p} g_{k-p}
$$

- Need to pad to $N \geq 3 m-2$ to remove aliases.
- The ratio $(2 m-1) /(3 m-2)$ of the number of physical to total modes is asymptotic to $2 / 3$ for large m.
- A Hermitian convolution arises since the input vectors are real:

$$
f_{-k}=\overline{f_{k}}
$$

Hermitian Convolution

- The backwards implicitly padded centered Hermitian transform appears as

$$
u_{3 \ell+r}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} w_{k, r}
$$

where

$$
w_{k, r} \doteq \begin{cases}U_{0}+\operatorname{Re} \zeta_{3}^{-r} U_{-m} & \text { if } k=0 \\ \zeta_{3 m}^{r k}\left(U_{k}+\zeta_{3}^{-r} \frac{U_{m-k}}{U_{m-k}}\right) & \text { if } 1 \leq k \leq m-1\end{cases}
$$

- We exploit the Hermitian symmetry $w_{k, r}=\overline{w_{m-k, r}}$ to reduce the problem to three complex-to-real Fourier transforms of the first $c+1$ components of $w_{k, r}$ (one for each $r=-1,0,1$), where $c \doteq\lfloor m / 2\rfloor$ zeros.
- To facilitate an in-place implementation, in our original paper [SIAM J. Sci. Comput. 33, 386 (2011)], we stored the transformed values for $r=1$ in reverse order in the upper half of the input vector.
- However, loop dependencies in the resulting algorithm prevented the top level of the 1D transforms from being multithreaded.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

Multithreaded Hermitian Convolution

- Unrolling the loop to process four inputs and outputs simultaneously allows loop independence to be achieved, significantly improving performance in both the serial and parallel contexts.

- As a result, even in 1D, implicit dealiasing of pseudospectral convolutions is now significantly faster than explicit zero padding.

1D Implicit Hermitian Convolution

3D Basdevant Reduction: 8 FFTs

- Using incompressibility, the 3D momentum equation can be written in terms of the symmetric tensor $D_{i j}=u_{i} u_{j}$:

$$
\frac{\partial u_{i}}{\partial t}+\frac{\partial D_{i j}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+F_{i} .
$$

- Naive implementation: 3 backward FFTs to compute the velocity components from their spectral representations, 6 forward FFTs of the independent components of $D_{i j}$.
- Basdevant [1983]: avoid one FFT by subtracting the divergence of the symmetric matrix $S_{i j}=\delta_{i j} \operatorname{tr} D / 3$ from both sides:

$$
\frac{\partial u_{i}}{\partial t}+\frac{\partial\left(D_{i j}-S_{i j}\right)}{\partial x_{j}}=-\frac{\partial\left(p \delta_{i j}+S_{i j}\right)}{\partial x_{j}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+F_{i} .
$$

- To compute the velocity components $u_{i}, 3$ backward FFTs are required. Since the symmetric matrix $D_{i j}-S_{i j}$ is traceless, it has just 5 independent components.
- Hence, a total of only 8 FFTs are required per integration stage.
- The effective pressure $p \delta_{i j}+S_{i j}$ is solved as usual from the inverse Laplacian of the force minus the nonlinearity.

2D Basdevant Reduction: 4 FFTs

- The vorticity $\boldsymbol{w}=\boldsymbol{\nabla} \times \boldsymbol{u}$ evolves according to

$$
\frac{\partial \boldsymbol{w}}{\partial t}+(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{w}=(\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{u}+\nu \nabla^{2} \boldsymbol{w}+\boldsymbol{\nabla} \times \boldsymbol{F}
$$

where in 2D the vortex stretching term $(\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{u}$ vanishes and \boldsymbol{w} is normal to the plane of motion.

- For C^{2} velocity fields, the curl of the nonlinearity can be written in terms of $\widetilde{D}_{i j} \doteq D_{i j}-S_{i j}$:

$$
\frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{j}} \widetilde{D}_{2 j}-\frac{\partial}{\partial x_{2}} \frac{\partial}{\partial x_{j}} \widetilde{D}_{1 j}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right) D_{12}+\frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{2}}\left(D_{22}-D_{11}\right),
$$

on recalling that S is diagonal and $S_{11}=S_{22}$.

- The scalar vorticity ω thus evolves as

$$
\frac{\partial \omega}{\partial t}+\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right)\left(u_{1} u_{2}\right)+\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(u_{2}^{2}-u_{1}^{2}\right)=\nu \nabla^{2} \omega+\frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}
$$

- To compute u_{1} and u_{2} in physical space, we need 2 backward FFTs.
- The quantities $u_{1} u_{2}$ and $u_{2}^{2}-u_{1}^{2}$ can then be calculated and then transformed to Fourier space with 2 additional forward FFTs.
- The advective term in 2D can thus be calculated with just 4 FFTs.

3D Incompressible MHD: 14 FFTs

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial t}+\frac{\partial\left(D_{i j}-S_{i j}\right)}{\partial x_{j}} & =-\frac{\partial\left(p \delta_{i j}+S_{i j}\right)}{\partial x_{j}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}} \\
\frac{\partial B_{i}}{\partial t}+\frac{\partial G_{i j}}{\partial x_{j}} & =\eta \frac{\partial^{2} B_{i}}{\partial x_{j}^{2}}
\end{aligned}
$$

where $D_{i j}=u_{i} u_{j}-B_{i} B_{j}, S_{i j}=\delta_{i j} \operatorname{tr} D / 3$, and

$$
G_{i j}=B_{i} u_{j}-u_{i} B_{j} .
$$

- The traceless symmetric matrix $D_{i j}-S_{i j}$ has 5 independent components.
- The antisymmetric matrix $G_{i j}$ has only 3 .
- An additional 6 FFT calls are required to compute the components of \boldsymbol{u} and \boldsymbol{B} in x space.
- The MHD nonlinearity can thus be computed with 14 FFT calls.

2D Navier-Stokes Pseudospectral [1 thread]

2D Navier-Stokes Pseudospectral [4 threads]

Distributed-Memory Parallelization

- The pseudospectral method uses a matrix transpose to localize the computation of the multi-dimensional FFTs onto individual processors.
- Parallel generalized slab/pencil decompositions have recently been developed for distributed-memory architectures.
- We have compared several distributed matrix transpose algorithms, both blocking and nonblocking, under pure MPI and hybrid MPI/OpenMP architectures.
- Local transposition is not required within a single MPI node.
- We have developed an adaptive algorithm, dynamically tuned to choose the optimal block size.
8×8 Block Transpose over 8 processors

Advantages of Hybrid MPI/OpenMP

- Use hybrid OpenMPI/MPI with the optimal number of threads:
- yields larger communication block size;
- local transposition is not required within a single MPI node;
- allows smaller problems to be distributed over a large number of processors;
- for 3D FFTs, allows for more slab-like than pencil-like models, reducing the size of or even eliminating the need for a second transpose.
- sometimes more efficient (by a factor of 2) than pure MPI.
- The use of nonblocking MPI communications allows us to overlap computation with communication: this can yield up to an additional 32% performance gain for implicitly dealiased convolutions, for which a natural parallelism exists between communication and computation.

2D Forced-Dissipative Turbulence Spectrum

$$
\begin{aligned}
k_{H} & =300 \\
k_{H} & =0
\end{aligned}
$$

2D Forced-Dissipative Power Law Exponent

Conservative Integration

- Conservative integration [SIAM J. Appl. Math 59, 1112 (1999)] provides a useful diagnostic technique for ensuring that the underlying dynamical symmetries have been correctly implemented.

White-Noise Forcing

- The Fourier transform of an isotropic Gaussian white-noise solenoidal force \boldsymbol{f} has the form

$$
\boldsymbol{f}_{k}(t)=F_{k}\left(1-\frac{\boldsymbol{k} \boldsymbol{k}}{k^{2}}\right) \cdot \boldsymbol{\xi}_{\boldsymbol{k}}(t), \quad \boldsymbol{k} \cdot \boldsymbol{f}_{k}=0
$$

where $F_{\boldsymbol{k}}$ is a real number and $\boldsymbol{\xi}_{\boldsymbol{k}}(t)$ is a unit central real Gaussian random 2D vector that satisfies

$$
\left\langle\boldsymbol{\xi}_{\boldsymbol{k}}(t) \boldsymbol{\xi}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)\right\rangle=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \mathbf{1} \delta\left(t-t^{\prime}\right)
$$

- This implies

$$
\left\langle\boldsymbol{f}_{\boldsymbol{k}}(t) \cdot \boldsymbol{f}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)\right\rangle=F_{\boldsymbol{k}}^{2} \delta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \delta\left(t-t^{\prime}\right)
$$

White-Noise Forcing

- The rate of energy injection ϵ is given by

$$
\epsilon=(\boldsymbol{f}(\boldsymbol{x}, t), \boldsymbol{u}(\boldsymbol{x}, t))=\int_{\Omega}\langle\boldsymbol{f}(\boldsymbol{x}, t) \cdot \boldsymbol{u}(\boldsymbol{x}, t)\rangle d \boldsymbol{x}=\operatorname{Re} \sum_{\boldsymbol{k}}\left\langle\boldsymbol{f}_{\boldsymbol{k}}(t) \cdot \overline{\boldsymbol{u}}_{\boldsymbol{k}}(t)\right\rangle
$$

- Here $\boldsymbol{u}_{\boldsymbol{k}}(t)$ is functional of the forcing:

$$
\boldsymbol{u}_{\boldsymbol{k}}(t)=\boldsymbol{u}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)+\int_{t^{\prime}}^{t} A_{\boldsymbol{k}}[\boldsymbol{u}(\tau)] d \tau+\int_{t^{\prime}}^{t} \boldsymbol{f}_{\boldsymbol{k}}(\tau) d \tau
$$

where $A_{\boldsymbol{k}}$ is a functional of \boldsymbol{u} such that $\frac{\delta A_{k}[\boldsymbol{u}(\tau)]}{\delta f_{k^{\prime}}\left(t^{\prime}\right)}$ is bounded.

- Nonlinear Green's function:

$$
\frac{\delta \boldsymbol{u}_{\boldsymbol{k}}(t)}{\delta \boldsymbol{f}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)}=\int_{t^{\prime}}^{t} \frac{\delta A_{\boldsymbol{k}}[\boldsymbol{u}(\tau)]}{\delta \boldsymbol{f}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)} d \tau+\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \mathbf{1} H\left(t-t^{\prime}\right)
$$

where H is the Heaviside unit step function.

- To prescribe the forcing amplitude $F_{\boldsymbol{k}}$ in terms of ϵ :

Theorem 1 (Novikov [1964]): If $f(\boldsymbol{x}, t)$ is a Gaussian process, and u is a functional of f, then

$$
\langle f(\boldsymbol{x}, t) u(f)\rangle=\iint\left\langle f(\boldsymbol{x}, t) f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)\right\rangle\left\langle\frac{\delta u(\boldsymbol{x}, t)}{\delta f\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)}\right\rangle d \boldsymbol{x}^{\prime} d t^{\prime}
$$

- For white-noise forcing:

$$
\begin{aligned}
\epsilon & =\operatorname{Re} \sum_{\boldsymbol{k}}\left\langle\boldsymbol{f}_{\boldsymbol{k}}(t) \cdot \overline{\boldsymbol{u}}_{\boldsymbol{k}}(t)\right\rangle=\operatorname{Re} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} \int\left\langle\boldsymbol{f}_{\boldsymbol{k}}(t) \overline{\boldsymbol{f}}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)\right\rangle:\left\langle\frac{\delta \overline{\boldsymbol{u}}_{\boldsymbol{k}}(t)}{\delta \overline{\boldsymbol{f}}_{\boldsymbol{k}^{\prime}}\left(t^{\prime}\right)}\right\rangle d t^{\prime} \\
& =\sum_{\boldsymbol{k}} F_{\boldsymbol{k}}^{2}\left(\mathbf{1}-\frac{\boldsymbol{k} \boldsymbol{k}}{k^{2}}\right):\left(\mathbf{1}-\frac{\boldsymbol{k} \boldsymbol{k}}{k^{2}}\right) H(0) \\
& =\frac{1}{2} \sum_{\boldsymbol{k}} F_{\boldsymbol{k}}^{2}
\end{aligned}
$$

on noting that $H(0)=1 / 2$.

Implementation of White-Noise Forcing

- At the end of each time-step, we implement the contribution of white noise forcing with the discretization

$$
\omega_{k, n+1}=\omega_{k, n}+\sqrt{2 \tau \eta_{k}} \xi
$$

where ξ is a unit complex Gaussian random number with $\langle\xi\rangle=0$ and $\left.\left.\langle | \xi\right|^{2}\right\rangle=1$.

- This yields the mean enstrophy injection

$$
\frac{\left.\left.\langle | \omega_{\boldsymbol{k}, n+1}\right|^{2}-\left|\omega_{\boldsymbol{k}, n}\right|^{2}\right\rangle}{2 \tau}=\eta_{\boldsymbol{k}} .
$$

Conclusions

- For centered convolutions in d dimensions, implicit padding asymptotically uses $(2 / 3)^{d-1}$ of the conventional storage.
- The factor of 2 speedup is largely due to increased data locality.
- Highly optimized and parallelized implicit dealiasing routines have been implemented as a software layer FFTW++ (v 2.05) on top of the FFTW library and released under the Lesser GNU Public License: http://fftwpp.sourceforge.net/
- The advent of implicit dealiasing of convolutions makes overlapping transposition with FFT computation feasible.
- Dynamic moment averaging allows the integration time window to be specified by the user a posteriori.
- Writing a high-performance dealiased pseudospectral code is now a relatively straightforward exercise: skeleton 2D and 3D optimized codes are available at https://github.com/ dealias/dns/tree/master/protodns.

References

[Basdevant 1983] C. Basdevant, Journal of Computational Physics, 50:209, 1983.
[Bowman \& Roberts 2010] J. C. Bowman \& M. Roberts, FFTW++: A fast Fourier transform C ${ }^{++}$header class for the FFTW3 library, http://fftwpp.sourceforge.net, May 6, 2010.
[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Bowman \& Roberts 2015] J. C. Bowman \& M. Roberts, "Adaptive matrix transpose algorithms for distributed multicore processors," in Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, edited by M. Cojocaru, I. S. Kotsireas, R. Makarov, R. Melnik, \& H. Shodiev, volume 117 of Springer Proceedings in Mathematics \& Statistics, pp. 97-103, Springer, 2015.
[Novikov 1964] E. A. Novikov, J. Exptl. Theoret. Phys. (U.S.S.R), 47:1919, 1964.
[Orszag 1971]
S. A. Orszag, Journal of the Atmospheric Sciences, 28:1074, 1971.
[Roberts \& Bowman 2018] M. Roberts \& J. C. Bowman, J. Comput. Phys., 356:98, 2018.
[Shadwick et al. 1999] B. A. Shadwick, J. C. Bowman, \& P. J. Morrison, SIAM J. Appl. Math., 59:1112, 1999.

