Bounds on the Global Attractor of 2D Incompressible Turbulence in the palenstrophy-enstrophy-energy space

John C. Bowman and Pedram Emami
Department of Mathematical and Statistical Sciences
University of Alberta

October 25, 2020

Turbulence

- In 1941, Kolmogorov conjectured that the energy spectrum of 3D incompressible turbulence exhibits a self-similar powerlaw scaling characterized by a uniform cascade of energy to molecular (viscous) scales:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

- Here k is the Fourier wavenumber and $E(k)$ is normalized so that $\int E(k) d k$ is the total energy.
- Kolmogorov suggested that C might be a universal constant.

3D Energy Cascade

2D Energy Cascade

2D Turbulence

- Consider the Navier-Stokes equations for 2D incompressible homogeneous isotropic turbulence with density $\rho=1$:

$$
\begin{gathered}
\frac{\partial \boldsymbol{u}}{\partial t}-\nu \nabla^{2} \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\boldsymbol{\nabla} P=\boldsymbol{F} \\
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \\
\int_{\Omega} \boldsymbol{u} d \boldsymbol{x}=\mathbf{0}, \quad \int_{\Omega} \boldsymbol{F} d \boldsymbol{x}=\mathbf{0} \\
\boldsymbol{u}(\boldsymbol{x}, 0)=\boldsymbol{u}_{0}(\boldsymbol{x})
\end{gathered}
$$

with $\Omega=[0,2 \pi] \times[0,2 \pi]$ and periodic boundary conditions on $\partial \Omega$.

- Introduce the Hilbert space
$H(\Omega) \doteq \mathrm{cl}\left\{\boldsymbol{u} \in\left(C^{2}(\Omega) \cap L^{2}(\Omega)\right)^{2} \mid \nabla \cdot \boldsymbol{u}=0, \int_{\Omega} \boldsymbol{u} d \boldsymbol{x}=\mathbf{0}\right\}$.
with inner product $(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{u}(\boldsymbol{x}, t) \cdot \boldsymbol{v}(\boldsymbol{x}, t) d \boldsymbol{x}$ and L^{2} norm $|\boldsymbol{u}|=(\boldsymbol{u}, \boldsymbol{u})^{1 / 2}$.
- For $\boldsymbol{u} \in H(\Omega)$, the Navier-Stokes equations can be expressed:

$$
\frac{d \boldsymbol{u}}{d t}-\nu \nabla^{2} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla P=\boldsymbol{F}
$$

- Introduce $A \doteq-\mathcal{P}\left(\nabla^{2}\right), \boldsymbol{f} \doteq \mathcal{P}(\boldsymbol{F})$, and the bilinear map

$$
\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}) \doteq \mathcal{P}(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\boldsymbol{\nabla} P)
$$

where $\mathcal{P}: C^{2}(\Omega) \rightarrow H(\Omega)$ is the Helmholtz-Leray projection:

$$
\mathcal{P}(\boldsymbol{v}) \doteq \boldsymbol{v}-\boldsymbol{\nabla} \nabla^{-2} \boldsymbol{\nabla} \cdot \boldsymbol{v}
$$

- The dynamical system can then be compactly written:

$$
\frac{d \boldsymbol{u}}{d t}+\nu A \boldsymbol{u}+\mathcal{B}(\boldsymbol{u}, \boldsymbol{u})=\boldsymbol{f}
$$

Stokes Operator A

- The operator $A=\mathcal{P}\left(-\nabla^{2}\right)$ is positive semi-definite and selfadjoint, with a compact inverse.
- On the periodic domain $\Omega=[0,2 \pi] \times[0,2 \pi]$, the eigenvalues of A are

$$
\lambda=\boldsymbol{k} \cdot \boldsymbol{k}, \quad \boldsymbol{k} \in \mathbb{Z} \times \mathbb{Z} \backslash\{\mathbf{0}\} .
$$

- The eigenvalues of A can be arranged as

$$
0<\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots, \quad \lambda_{0}=1
$$

and its eigenvectors $\boldsymbol{w}_{i}, i \in \mathbb{N}_{0}$, form an orthonormal basis for the Hilbert space H, upon which we can define any quotient power of A :

$$
A^{\alpha} \boldsymbol{w}_{j}=\lambda_{j}^{\alpha} \boldsymbol{w}_{j}, \quad \alpha \in \mathbb{R}, \quad j \in \mathbb{N}_{0}
$$

Subspace of Finite Enstrophy

- We define the subspace of H consisting of solutions with finite enstrophy:

$$
V \doteq\left\{\boldsymbol{u} \in H \mid \sum_{j=0}^{\infty} \lambda_{j}\left(\boldsymbol{u}, \boldsymbol{w}_{j}\right)^{2}<\infty\right\} .
$$

- Another suitable norm for elements $\boldsymbol{u} \in V$ is

$$
\|\boldsymbol{u}\|=\left|A^{1 / 2} \boldsymbol{u}\right|=\left(\int_{\Omega} \sum_{i=1}^{2} \frac{\partial \boldsymbol{u}}{\partial x_{i}} \cdot \frac{\partial \boldsymbol{u}}{\partial x_{i}}\right)^{1 / 2}=\left(\sum_{j=0}^{\infty} \lambda_{j}\left(\boldsymbol{u}, \boldsymbol{w}_{j}\right)^{2}\right)^{1 / 2} .
$$

Quadratic Quantities

- For any solution \boldsymbol{u} of the 2D Navier-Stokes equation, the n thorder quadratic quantity is

$$
E_{n}=\frac{1}{2}\left|A^{n} \boldsymbol{u}\right|^{2},
$$

- $E_{0}, Z \doteq E_{1 / 2}$, and $P \doteq E_{1}$ are called the energy, enstrophy, and palinstrophy.

Properties of the Bilinear Map

- We make use of the antisymmetry

$$
(\mathcal{B}(\boldsymbol{u}, \boldsymbol{v}), \boldsymbol{w})=-(\mathcal{B}(\boldsymbol{u}, \boldsymbol{w}), \boldsymbol{v})
$$

which implies the conservation of the energy $E_{0}=\frac{1}{2}|u|^{2}$.

- In 2D, we also have orthogonality:

$$
(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), A \boldsymbol{u})=0
$$

and the strong form of enstrophy invariance:

$$
(\mathcal{B}(A \boldsymbol{v}, \boldsymbol{v}), \boldsymbol{u})=(\mathcal{B}(\boldsymbol{u}, \boldsymbol{v}), A \boldsymbol{v})
$$

which implies the conservation of the enstrophy $E_{\frac{1}{2}}=\frac{1}{2}\left|A^{1 / 2} u\right|^{2}$.

- In 2D, the above properties imply the symmetry

$$
(\mathcal{B}(\boldsymbol{v}, \boldsymbol{v}), A \boldsymbol{u})+(\mathcal{B}(\boldsymbol{v}, \boldsymbol{u}), A \boldsymbol{v})+(\mathcal{B}(\boldsymbol{u}, \boldsymbol{v}), A \boldsymbol{v})=0
$$

Dynamical Behaviour

- Our starting point is the incompressible 2D Navier-Stokes equation with periodic boundary conditions:

$$
\frac{d \boldsymbol{u}}{d t}+\nu A \boldsymbol{u}+\mathcal{B}(\boldsymbol{u}, \boldsymbol{u})=\boldsymbol{f}, \quad \boldsymbol{u} \in H
$$

- Take the inner product with \boldsymbol{u} (respectively $A \boldsymbol{u}$):

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}|\boldsymbol{u}(t)|^{2}+\nu\|\boldsymbol{u}(t)\|^{2} & =(\boldsymbol{f}, \boldsymbol{u}(t)) \\
\frac{1}{2} \frac{d}{d t}\|\boldsymbol{u}(t)\|^{2}+\nu|A \boldsymbol{u}(t)|^{2} & =(\boldsymbol{f}, A \boldsymbol{u}(t))
\end{aligned}
$$

- The Cauchy-Schwarz and Poincaré inequalities yield

$$
(\boldsymbol{f}, \boldsymbol{u}(t)) \leq|\boldsymbol{f} \| \boldsymbol{u}(t)| \quad \text { and } \quad|\boldsymbol{u}(t)| \leq\|\boldsymbol{u}(t)\| .
$$

- Since the existence and uniqueness for solutions to the 2D Navier-Stokes equation has been proven, a global attractor can be defined [Ladyzhenskaya 1975], [Foias \& Temam 1979].

Dynamical Behaviour: Constant Forcing

- If the force \boldsymbol{f} is constant with respect to time, a Gronwall inequality can be exploited:

$$
|\boldsymbol{u}(t)|^{2} \leq e^{-\nu t}|\boldsymbol{u}(0)|^{2}+\left(1-e^{-\nu t}\right)\left(\frac{|\boldsymbol{f}|}{\nu}\right)^{2} .
$$

- Defining a nondimensional Grashof number $G=\frac{|\boldsymbol{f}|}{\nu^{2}}$, the above inequality can be simplified to

$$
|\boldsymbol{u}(t)|^{2} \leq e^{-\nu t}|\boldsymbol{u}(0)|^{2}+\left(1-e^{-\nu t}\right) \nu^{2} G^{2}
$$

- Similarly,

$$
\|\boldsymbol{u}(t)\|^{2} \leq e^{-\nu t}\|\boldsymbol{u}(0)\|^{2}+\left(1-e^{-\nu t}\right) \nu^{2} G^{2} .
$$

- Being on the attractor thus requires

$$
|\boldsymbol{u}| \leq \nu G \quad \text { and } \quad\|\boldsymbol{u}\| \leq \nu G
$$

$Z-E$ Bounds: Constant Forcing

- A trivial lower bound is provided by the Poincaré inequality:

$$
|\boldsymbol{u}|^{2} \leq\|\boldsymbol{u}\|^{2} \quad \Rightarrow \quad E \leq Z
$$

- An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005]) For all $\boldsymbol{u} \in \mathcal{A}$,

$$
\|\boldsymbol{u}\|^{2} \leq \frac{|\boldsymbol{f}|}{\nu}|\boldsymbol{u}| .
$$

- That is,

$$
Z \leq \nu G \sqrt{E}
$$

$Z-E$ Bounds: Constant Forcing

Extended Norm: Random Forcing

- For a random variable α, with probability density function P, define the ensemble average

$$
\langle\alpha\rangle=\int_{-\infty}^{\infty} \alpha\left(\frac{d P}{d \zeta}\right) d \zeta .
$$

- The extended inner product is

$$
(\boldsymbol{u}, \boldsymbol{v})_{\tilde{\omega}} \doteq \int_{\Omega}\langle\boldsymbol{u} \cdot \boldsymbol{v}\rangle d \boldsymbol{x}=\int_{\Omega}\left(\int_{-\infty}^{\infty} \boldsymbol{u} \cdot \boldsymbol{v} \frac{d P}{d \zeta} d \zeta\right) d \boldsymbol{x}
$$

with norm

$$
\left.|\boldsymbol{f}|_{\tilde{\omega}} \doteq\left(\left.\int_{\Omega}\langle | \boldsymbol{f}\right|^{2}\right\rangle d \boldsymbol{x}\right)^{1 / 2}
$$

- The n-th order injection rate is $\epsilon_{n}=\left(\boldsymbol{f}, A^{2 n} \boldsymbol{u}\right)$.

Dynamical Behaviour: Random Forcing

- Energy balance:

$$
\frac{1}{2} \frac{d}{d t}|\boldsymbol{u}|^{2}+\nu(A \boldsymbol{u}, \boldsymbol{u})+(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), \boldsymbol{u})=(\boldsymbol{f}, \boldsymbol{u}) \doteq \epsilon
$$

where $\epsilon \doteq \epsilon_{0}$ is the rate of energy injection.

- From the energy conservation identity $(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), \boldsymbol{u})=0$,

$$
\frac{1}{2} \frac{d}{d t}|\boldsymbol{u}|^{2}+\nu\|\boldsymbol{u}\|^{2}=\epsilon
$$

- The Poincaré inequality $\|\boldsymbol{u}\| \geq|\boldsymbol{u}|$ leads to

$$
\frac{1}{2} \frac{d}{d t}|\boldsymbol{u}|^{2} \leq \epsilon-\nu|\boldsymbol{u}|^{2}
$$

which implies that $|\boldsymbol{u}(t)|^{2} \leq e^{-2 \nu t}|\boldsymbol{u}(0)|^{2}+\left(\frac{1-e^{-2 \nu t}}{\nu}\right) \epsilon$.

- So for every $\boldsymbol{u} \in \mathcal{A}$, we expect $|\boldsymbol{u}(t)|^{2} \leq \epsilon / \nu$.
- From $|\boldsymbol{u}(t)| \leq \sqrt{\epsilon / \nu}$ we then obtain a lower bound for $|\boldsymbol{f}|$:

$$
\sqrt{\nu \epsilon} \leq \frac{\epsilon}{|\boldsymbol{u}|}=\frac{(\boldsymbol{f}, \boldsymbol{u})}{|\boldsymbol{u}|} \leq \frac{|\boldsymbol{f}||\boldsymbol{u}|}{|\boldsymbol{u}|}=|\boldsymbol{f}| .
$$

- It is convenient to use this lower bound for $|\boldsymbol{f}|$ to define a lower bound for the Grashof number $G=|\boldsymbol{f}| / \nu^{2}$, which we use as the normalization \tilde{G} for random forcing:

$$
\tilde{G}=\sqrt{\frac{\epsilon}{\nu^{3}}} .
$$

- We proved the following theorem (JDE 2018):

Theorem 2 (Emami \& Bowman [2018]) For all $\boldsymbol{u} \in \mathcal{A}$ with energy injection rate ϵ,

$$
\|\boldsymbol{u}\|^{2} \leq \sqrt{\frac{\epsilon}{\nu}}|\boldsymbol{u}|
$$

- This leads to the same form as for a constant force: $Z \leq \nu \tilde{G} \sqrt{E}$.

$Z-E$ Bounds: Random Forcing

$Z-E$ Bounds: Random Forcing

3D Energy Spectrum

Large-Scale friction

- In the random-forcing case, we have recently extended the analysis to include a large-scale friction term:

$$
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=-\nu_{0} w+\nu \nabla^{2} \omega+f
$$

- If we generalize our definition of the Grashof number to account for ν_{0} :

$$
\tilde{G}=\frac{\sqrt{\epsilon\left(\nu+\nu_{0}\right)}}{\nu^{2}}
$$

the resulting analytic bounds retain the same form!

$Z-E$ Bounds: Random Forcing+Friction

3D Energy Spectrum with Friction

$P-Z$ Bounds

- Just as the rate of energy dissipation is $2 \nu Z$, the rate of enstropy dissipation is $2 \nu P$ where P is the palenstrophy.
- Dascaliuc, Foias, and Jolly also obtained bounds for the palenstrophy-enstrophy plane.
- A critical step in their argument is the application of the Cauchy-Schwarz inequality to estimate the bilinear triplet

$$
\left(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), A^{n} \boldsymbol{u}\right) \text { for } n=2
$$

- For this bound to be sharp: $\mathcal{B}(\boldsymbol{u}, \boldsymbol{u})=\alpha A^{n} \boldsymbol{u}$ a.e. for some $\alpha \in \mathbb{R}$.
- From the self-adjointness of A, such an alignment would require

$$
\begin{aligned}
0=(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), \boldsymbol{u}) & =\left(\alpha \boldsymbol{A}^{n} \boldsymbol{u}, \boldsymbol{u}\right)=\left(\alpha \boldsymbol{A}^{n / 2} \boldsymbol{u}, \boldsymbol{A}^{n / 2} \boldsymbol{u}\right) \\
& =\alpha\left|A^{n / 2} u\right|^{2} \quad \Rightarrow \quad \mathcal{B}(\boldsymbol{u}, \boldsymbol{u})=0 \text { a.e. }
\end{aligned}
$$

which would imply no cascade!

- Numerical simulations show that these quantities are far from being aligned; in fact they are extremely close to being perpendicular!
- Consequently, the observed palenstrophy values are much lower than the predicted bounds.

$P-Z$ Upper Bounds

$P-Z$ Bounds: Random Forcing+Friction

Isotropic turbulence

- For statistically isotropic turbulence, the expected value of the bilinear triplet $\left(\mathcal{B}(\boldsymbol{u}, \boldsymbol{u}), A^{n} \boldsymbol{u}\right)$ is zero:
Theorem 3 (Emami \& Bowman [2020]) In incompressible statistically isotropic 2D turbulence,

$$
\left\langle\int_{\Omega}(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \cdot A^{n} \boldsymbol{u} d \boldsymbol{x}\right\rangle=0, \quad \forall n \in \mathbb{R}
$$

- Proof: Express $\boldsymbol{u}=(u, v)=\left(-\psi_{y}, \psi_{x}\right)$, where ψ is the stream function and define:

$$
\alpha \doteq-u_{x}=\psi_{y x}=v_{y}, \quad \beta \doteq-u_{y}=\psi_{y y}, \quad \gamma \doteq v_{x}=\psi_{x x}
$$

- Statistical isotropy then implies

$$
\begin{aligned}
\left\langle\int_{\Omega}(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \cdot A^{n} \boldsymbol{u} d \boldsymbol{x}\right\rangle & =\left\langle\int_{\Omega}\left(u u_{x}+v u_{y}\right) A^{n} u+\left(u v_{x}+v v_{y}\right) A^{n} v d \boldsymbol{x}\right\rangle \\
& =\left\langle\int_{\Omega}(-\alpha u-\beta v) A^{n} u+(\gamma u+\alpha v) A^{n} v d \boldsymbol{x}\right\rangle \\
& =\left\langle\int_{\Omega} \alpha\left(v A^{n} v-u A^{n} u\right)+\left(\gamma u A^{n} v-\beta v A^{n} u\right) d \boldsymbol{x}\right\rangle \\
& =0
\end{aligned}
$$

- We then find, by normalizing to $\tilde{G}=\sqrt{\epsilon_{\frac{1}{2}}\left(\nu+\nu_{0}\right)} / \nu^{2}$, that

$$
\frac{2 P}{(\nu \tilde{G})^{2}} \leq \sqrt{\epsilon_{\frac{1}{2}} \frac{2 Z}{(\nu \tilde{G})^{2}}}
$$

General upper bound

- For every $\sigma \in \mathbb{R}$ and for all $\boldsymbol{u} \in \mathcal{A}$ driven by a random forcing having injection rate equal to ϵ_{σ},

Theorem 4 (Emami \& Bowman [2020])

$$
\left|A^{\sigma+1 / 2} \boldsymbol{u}\right|^{2} \leq \sqrt{\frac{\epsilon_{\sigma}}{\nu}}\left|A^{\sigma} \boldsymbol{u}\right| .
$$

DNS code

- We have released a highly optimized 2D pseudospectral code in C++: https://github.com/dealias/dns.
- It uses our FFTW++ library to implicitly dealias the advective convolution, while exploiting Hermitian symmetry [Bowman \& Roberts 2011], [Roberts \& Bowman 2018].
- Advanced computer memory management, such as implicit padding, memory alignment, and dynamic moment averaging allow DNS to attain its extreme performance.
- The formulation proposed by Basdevant [1983] is used to reduce the number of FFTs required for 2D (3D) incompressible turbulence to 4 (8).
- We also include simplified 2D (146 lines) and 3D (287 lines) versions called ProtoDNS for educational purposes: https://github.com/dealias/dns/tree/master/ protodns.

Implicit Dealiasing

- Let $N=2 m$. For $j=0, \ldots, 2 m-1$ we want to compute

$$
f_{j}=\sum_{k=0}^{2 m-1} \zeta_{2 m}^{j k} F_{k}
$$

- If $F_{k}=0$ for $k \geq m$, one can easily avoid looping over the unwanted zero Fourier modes by decimating in wavenumber:

$$
\begin{aligned}
f_{2 \ell} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{2 \ell k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} F_{k}, \\
f_{2 \ell+1} & =\sum_{k=0}^{m-1} \zeta_{2 m}^{(2 \ell+1) k} F_{k}=\sum_{k=0}^{m-1} \zeta_{m}^{\ell k} \zeta_{2 m}^{k} F_{k}, \quad \ell=0,1, \ldots m-1 .
\end{aligned}
$$

- This requires computing two subtransforms, each of size m, for an overall computational scaling of order $2 m \log _{2} m=$ $N \log _{2} m$.
- Parallelized multidimensional implicit dealiasing routines have been implemented as a software layer FFTW++ (v2.06) on top of the FFTW library under the Lesser GNU Public License:
http://fftwpp.sourceforge.net/

Conclusions

- The upper bound in the $Z-E$ plane obtained previously for constant forcing also works for white-noise forcing and largescale friction (hypoviscosity).
- Previous bounds in the $P-Z$ plane vastly overestimate the values obtained from numerical simulations.
- These bounds can be greatly tightened by exploiting isotropy.
- Analytical bounds for random forcing provide a means to evaluate various heuristic turbulent subgrid (and supergrid!) models by characterizing the behaviour of the global attractor under these models.

References

[Basdevant 1983] C. Basdevant, Journal of Computational Physics, 50:209, 1983.
[Bowman \& Roberts 2010] J. C. Bowman \& M. Roberts, FFTW++: A fast Fourier transform C ${ }^{++}$header class for the FFTW3 library, http://fftwpp.sourceforge.net, May 6, 2010.
[Bowman \& Roberts 2011] J. C. Bowman \& M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.
[Dascaliuc et al. 2005] R. Dascaliuc, M. Jolly, \& C. Foias, Journal of Dynamics and Differential Equations, 17:643, 2005.
[Dascaliuc et al. 2007]
R. Dascaliuc, C. Foias, \& M. Jolly, Journal of mathematical physics, 48:065201, 2007.
[Dascaliuc et al. 2010] R. Dascaliuc, C. Foias, \& M. Jolly, Journal of Differential Equations, 248:792, 2010.
[Emami \& Bowman 2018] P. Emami \& J. C. Bowman, Journal of Differential Equations, 264:4036, 2018.
[Emami \& Bowman 2020] P. Emami \& J. C. Bowman, Journal of Differential Equations, 2020, to be submitted.
[Foias \& Temam 1979] C. Foias \& R. Temam, Journal de mathematiques pures et appliquees, 58:339, 1979.
[Foias et al. 2013]
C. Foias, M. S. Jolly, \& M. Yang, Journal of Dynamics and Differential Equations, 25:393, 2013.
[Ladyzhenskaya 1975] O. Ladyzhenskaya, Journal of Soviet Mathematics, 3:458, 1975.
[Roberts \& Bowman 2018] M. Roberts \& J. C. Bowman, J. Comput. Phys., 356:98, 2018.

