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Turbulence

• In 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = Cε2/3k−5/3.

• Here k is the Fourier wavenumber and E(k) is normalized so
that

∫
E(k) dk is the total energy.

• Kolmogorov suggested that C might be a universal constant.
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3D Energy Cascade
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2D Energy Cascade
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2D Turbulence

• Consider the Navier–Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density ρ = 1:

∂u

∂t
− ν∇2u + u·∇u +∇P = F ,

∇·u = 0,∫
Ω

u dx = 0,

∫
Ω

F dx = 0,

u(x, 0) = u0(x),

with Ω = [0, 2π]×[0, 2π] and periodic boundary conditions on ∂Ω.

• Introduce the Hilbert space

H(Ω)
.
= cl

{
u ∈ (C2(Ω) ∩ L2(Ω))2 | ∇·u = 0,

∫
Ω

u dx = 0

}
.

with inner product (u,v) =
∫

Ω u(x, t)·v(x, t) dx and L2 norm

|u| = (u,u)1/2.
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• For u ∈ H(Ω), the Navier–Stokes equations can be expressed:

du

dt
− ν∇2u + u·∇u +∇P = F .

• Introduce A
.
= −P(∇2), f

.
= P(F ), and the bilinear map

B(u,u)
.
= P (u·∇u +∇P ) ,

where P : C2(Ω)→ H(Ω) is the Helmholtz–Leray projection:

P(v)
.
= v −∇∇−2∇·v.

• The dynamical system can then be compactly written:

du

dt
+ νAu + B(u,u) = f .
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Stokes Operator A

• The operator A = P(−∇2) is positive semi-definite and self-
adjoint, with a compact inverse.

• On the periodic domain Ω = [0, 2π]× [0, 2π], the eigenvalues of
A are

λ = k·k, k ∈ Z× Z\{0}.
• The eigenvalues of A can be arranged as

0 < λ0 < λ1 < λ2 < · · · , λ0 = 1

and its eigenvectors wi, i ∈ N0, form an orthonormal basis for the
Hilbert space H , upon which we can define any quotient power
of A:

Aαwj = λαjwj, α ∈ R, j ∈ N0.
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Subspace of Finite Enstrophy

• We define the subspace of H consisting of solutions with finite
enstrophy:

V
.
=

u ∈ H |
∞∑
j=0

λj(u,wj)
2 <∞

 .

• Another suitable norm for elements u ∈ V is

||u|| =
∣∣∣A1/2u

∣∣∣ =

(∫
Ω

2∑
i=1

∂u

∂xi
·∂u
∂xi

)1/2

=

 ∞∑
j=0

λj(u,wj)
2

1/2

.
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Quadratic Quantities

• For any solution u of the 2D Navier–Stokes equation, the nth-
order quadratic quantity is

En =
1

2
|Anu|2,

•E0, Z
.
= E1/2, and P

.
= E1 are called the

energy, enstrophy, and palinstrophy.

9



Properties of the Bilinear Map

• We make use of the antisymmetry

(B(u,v),w) = −(B(u,w),v),

which implies the conservation of the energy E0 = 1
2|u|2.

• In 2D, we also have orthogonality:

(B(u,u), Au) = 0

and the strong form of enstrophy invariance:

(B(Av,v),u) = (B(u,v), Av).

which implies the conservation of the enstrophy E1
2

= 1
2|A1/2u|2.

• In 2D, the above properties imply the symmetry

(B(v,v), Au) + (B(v,u), Av) + (B(u,v), Av) = 0.
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Dynamical Behaviour

• Our starting point is the incompressible 2D Navier–Stokes
equation with periodic boundary conditions:

du

dt
+ νAu + B(u,u) = f , u ∈ H.

• Take the inner product with u (respectively Au):

1

2

d

dt
|u(t)|2 + ν||u(t)||2 = (f ,u(t)),

1

2

d

dt
||u(t)||2 + ν|Au(t)|2 = (f , Au(t)).

• The Cauchy–Schwarz and Poincaré inequalities yield

(f ,u(t)) ≤ |f ||u(t)| and |u(t)| ≤ ||u(t)||.
• Since the existence and uniqueness for solutions to the 2D

Navier–Stokes equation has been proven, a global attractor can
be defined [Ladyzhenskaya 1975], [Foias & Temam 1979].
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Dynamical Behaviour: Constant Forcing

• If the force f is constant with respect to time, a Gronwall
inequality can be exploited:

|u(t)|2 ≤ e−νt|u(0)|2 + (1− e−νt)
(|f |
ν

)2

.

• Defining a nondimensional Grashof number G =
|f |
ν2

, the above

inequality can be simplified to

|u(t)|2 ≤ e−νt|u(0)|2 + (1− e−νt)ν2G2.

• Similarly,

||u(t)||2 ≤ e−νt||u(0)||2 + (1− e−νt)ν2G2.

• Being on the attractor thus requires

|u| ≤ νG and ||u|| ≤ νG.
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Z–E Bounds: Constant Forcing

• A trivial lower bound is provided by the Poincaré inequality:

|u|2 ≤ ||u||2 ⇒ E ≤ Z.

• An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u ∈ A,

||u||2 ≤ |f |
ν
|u|.

• That is,

Z ≤ νG
√
E.
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Z–E Bounds: Constant Forcing
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Extended Norm: Random Forcing

• For a random variable α, with probability density function P ,
define the ensemble average

〈α〉 =

∫ ∞
−∞

α

(
dP

dζ

)
dζ.

• The extended inner product is

(u,v)ω̃
.
=

∫
Ω

〈u·v〉 dx =

∫
Ω

(∫ ∞
−∞

u·v dP
dζ
dζ

)
dx,

with norm

|f |ω̃
.
=

(∫
Ω

〈
|f |2

〉
dx

)1/2

.

• The n-th order injection rate is εn =
(
f , A2nu

)
.
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Dynamical Behaviour: Random Forcing

• Energy balance:

1

2

d

dt
|u|2 + ν(Au,u) + (B(u,u),u) = (f ,u)

.
= ε,

where ε
.
= ε0 is the rate of energy injection.

• From the energy conservation identity (B(u,u),u) = 0,

1

2

d

dt
|u|2 + ν||u||2 = ε.

• The Poincaré inequality ||u|| ≥ |u| leads to

1

2

d

dt
|u|2 ≤ ε− ν|u|2,

which implies that |u(t)|2 ≤ e−2νt|u(0)|2 +

(
1− e−2νt

ν

)
ε.

• So for every u ∈ A, we expect |u(t)|2 ≤ ε/ν.
16



• From |u(t)| ≤
√
ε/ν we then obtain a lower bound for |f |:

√
νε ≤ ε

|u| =
(f ,u)

|u| ≤
|f ||u|
|u| = |f |.

• It is convenient to use this lower bound for |f | to define a lower
bound for the Grashof number G = |f |/ν2, which we use as the
normalization G̃ for random forcing:

G̃ =

√
ε

ν3
.

• We proved the following theorem (JDE 2018):

Theorem 2 (Emami & Bowman [2018]) For all u ∈ A
with energy injection rate ε,

||u||2 ≤
√
ε

ν
|u|.

• This leads to the same form as for a constant force: Z ≤ νG̃
√
E.

17



Z–E Bounds: Random Forcing
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Z–E Bounds: Random Forcing
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3D Energy Spectrum
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Large-Scale friction

• In the random-forcing case, we have recently extended the
analysis to include a large-scale friction term:

∂ω

∂t
+ u·∇ω = −ν0w + ν∇2ω + f.

• If we generalize our definition of the Grashof number to account
for ν0:

G̃ =

√
ε(ν + ν0)

ν2
,

the resulting analytic bounds retain the same form!
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Z–E Bounds: Random Forcing+Friction
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3D Energy Spectrum with Friction
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P–Z Bounds

• Just as the rate of energy dissipation is 2νZ, the rate of enstropy
dissipation is 2νP where P is the palenstrophy.

• Dascaliuc, Foias, and Jolly also obtained bounds for the
palenstrophy–enstrophy plane.

• A critical step in their argument is the application of the
Cauchy–Schwarz inequality to estimate the bilinear triplet

(B(u,u), Anu) for n = 2.

• For this bound to be sharp: B(u,u) = αAnu a.e. for some
α ∈ R.

• From the self-adjointness of A, such an alignment would require

0 = (B(u,u),u) = (αAnu,u) = (αAn/2u,An/2u)

= α|An/2u|2 ⇒ B(u,u) = 0 a.e.,

which would imply no cascade!
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• Numerical simulations show that these quantities are far from
being aligned; in fact they are extremely close to being
perpendicular!

• Consequently, the observed palenstrophy values are much lower
than the predicted bounds.
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P–Z Upper Bounds
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P–Z Bounds: Random Forcing+Friction
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Isotropic turbulence

• For statistically isotropic turbulence, the expected value of the
bilinear triplet (B(u,u), Anu) is zero:

Theorem 3 (Emami & Bowman [2020]) In
incompressible statistically isotropic 2D turbulence,〈∫

Ω

(u·∇)u·Anu dx

〉
= 0, ∀n ∈ R.

28



• Proof: Express u = (u, v) = (−ψy, ψx), where ψ is the stream
function and define:

α
.
= −ux = ψyx = vy, β

.
= −uy = ψyy, γ

.
= vx = ψxx.

• Statistical isotropy then implies〈∫
Ω

(u·∇)u·Anu dx

〉
=

〈∫
Ω

(uux + vuy)A
nu + (uvx + vvy)A

nv dx

〉
=

〈∫
Ω

(−αu− βv)Anu + (γu + αv)Anv dx

〉
=

〈∫
Ω

α(vAnv − uAnu) + (γuAnv − βvAnu) dx

〉
= 0.

• We then find, by normalizing to G̃ =
√
ε1

2
(ν + ν0)/ν2, that

2P

(νG̃)2
≤
√
ε1

2

2Z

(νG̃)2
.
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General upper bound

• For every σ ∈ R and for all u ∈ A driven by a random forcing
having injection rate equal to εσ,

Theorem 4 (Emami & Bowman [2020])∣∣∣Aσ+1/2u
∣∣∣2 ≤√εσ

ν
|Aσu|.
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DNS code

• We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

• It uses our FFTW++ library to implicitly dealias the
advective convolution, while exploiting Hermitian symmetry
[Bowman & Roberts 2011], [Roberts & Bowman 2018].

• Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

• The formulation proposed by Basdevant [1983] is used to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).

• We also include simplified 2D (146 lines) and 3D (287 lines)
versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/

protodns.
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Implicit Dealiasing

• Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2` =

m−1∑
k=0

ζ2`k
2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1 =

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

• This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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• Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.06) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
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Conclusions

• The upper bound in the Z–E plane obtained previously for
constant forcing also works for white-noise forcing and large-
scale friction (hypoviscosity).

• Previous bounds in the P–Z plane vastly overestimate the
values obtained from numerical simulations.

• These bounds can be greatly tightened by exploiting isotropy.

• Analytical bounds for random forcing provide a means to
evaluate various heuristic turbulent subgrid (and supergrid!)
models by characterizing the behaviour of the global attractor
under these models.
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